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Abstract

Original Article

IntroductIon

Algorithms in computational pathology can be trained with 
the help of annotated image data sets. In some scenarios, the 
knowledge of located tumor regions on an image is beneficial, 
as the models are designed to learn from the differences 
between cancerous tissue and surrounding normal tissue.[1‑5] 
A large part of the corresponding pipelines for pathology AI 
development is therefore the creation of annotated data sets 
on scanned WSI such that cancerous regions are digitally 
accessible. Annotations are usually acquired with the help of 
pathologists, drawing on WSI with digital tools on a computer 
screen. Generating those annotated data sets can constitute 
a bottleneck since it is time consuming, cumbersome, and 
error‑prone, depending on the level of granularity of the 
annotations.

At the same time, many glass slides are already physically 
annotated by pathologists with a pen to outline tumor regions 

or other regions of interest. As an example, glass slides are 
commonly annotated for molecular assessment to outline tumor 
regions to be sampled for genetic analysis and sequencing. 
Tissue from the original paraffin‑embedded specimen can 
hence be sampled from the same region that the pathologist 
indicated on the glass slide after inspecting the slide. However, 
these pen annotations are hand‑drawn on glass and not ad hoc 
utilizable by a digital algorithm. They have yet to be digitized.

With this work, we present a novel method to extract pen 
annotations from WSI to be able to utilize them for downstream 
digital processing. As illustrated in Figure 1 with a scanned pen 
annotation on a WSI (left), our method extracts binary digital 
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masks of the outlined regions (middle, blue mask). Hence, 
it allows us to take advantage of the annotations which have 
already been made from trained pathologists, reducing the need 
to collect new, manually drawn annotations, such as shown 
in Figure 1, right (red manually drawn digital annotation). 
Considering the plethora of archived image data in pathology 
departments, our method enables to access thousands of such 
hand‑drawn annotations, making these annotations available 
for computational pathology for the first time.

Currently, pen annotations on digital WSI are usually 
considered artifacts, disturbing downstream computational 
analysis as they cover or stain the underlying tissue. Therefore, 
research exists aiming to automatically detect and exclude 
pen annotations on WSI from analysis along with tissue folds, 
out‑of‑focus areas, air bubbles, and other artifacts.[6‑8] Instead, 
we propose to make use of the already annotated glass slides 
and digitize the inhibited information to make it accessible to 
computational algorithms.

Our open‑source code is available online at https://github.com/
MSKCC‑Computational‑Pathology/PenAnnotationExtractor 
and can be used by other researchers to overcome the 
bottleneck of manually annotating digital slides.

Methods

Pen annotation extraction
The annotation extractor is implemented as a command line 
script in Python 3. Its input is a folder containing thumbnail 
images of all WSI to be processed. We extracted the thumbnails 
stored in WSI prior to processing using the freely available 
library OpenSlide.[9] The output is a different folder with 
detected pen annotation masks for those images, each mask 
with the same dimensions as the corresponding thumbnail 
image. Seven processing steps compose the workflow for every 
thumbnail image in the input folder, as illustrated in Figure 2.

In step 1, a Gaussian blur filter with radius 3 is applied to the 
thumbnail image to reduce unspecific noise. In step 2, the 
blurred image is converted to the HSV (Hue, Saturation, Value) 
color space. We use the HSV color space as we found the RGB 
color space not to be robust enough to detect all variations 
introduced during staining and scanning. Further, HSV is 
better suitable to separate the markers by addressing the raw 

luminance values. The HSV image is used in step 3 to mask 
the tissue with H&E‑related color thresholds. Pixel values 
between (135, 10, 30) and (170, 255, 255) are considered 
tissue without pen.

In step 4, pen‑stroke masks are extracted from the HSV 
image based on pen color‑related thresholds. Our data set 
comprises three pen colors, black, blue, and green. Pixel 
values between (0, 0, 0) and (180, 255, 125) are considered 
to originate from black pen. Pixel values between (100, 125, 
30) and (130, 255, 255) are considered to originate from blue 
pen. And pixel values between (40, 125, 30) and (70, 255, 
255) are considered to originate from green pen. These HSV 
values describe a spectrum of the corresponding colors and 
have worked well for us to capture the pen annotated pixels. 
As we do not differentiate between the pen colors, the three 
individual color masks are joined to the overall pen mask. 
Note that our method can be extended to other pen colors by 
including their specific thresholds.

To close gaps in the annotated pen contours, a morphologic 
dilation with a circular kernel is employed on the overall pen 
mask. The dilation thickens the contours of the pen by the 
given kernel size and thus closes holes in the lines. This step 
is needed to account for thin pen lines and for small gaps in 
the drawn lines, e.g., at almost closed ends of a circle. The 
larger the gaps are, the larger the kernel size has to be in 
order to close the shape. We run our algorithm in four rounds 
with an increasing kernel size of 5, 10, 15, and 20 pixels. In 
each round, pen annotations with too large gaps will result in 
empty masks (as the closed contour in the next step cannot 
be found), and we subject those images to the next run with 
larger kernel size.

In step 5, the dilated mask is subject to contour extraction and 
filling.[10] To reduce noise in the filled contours, components 
smaller than 3000 pixels are filtered. This threshold was chosen 
as it worked best on our data set by filtering small regions 
such as unrelated pixels, small contours, and text regions 
while letting tissue annotations pass. However, we propose 
to explore variable filter sizes based on thumbnail dimension 
and resolution in future work. The resulting mask is then 
subtracted in step 6 from the filled contour mask to preserve 
only the inner region.

Figure 1: Example of a digitized pen annotation. Left: The original glass slide, manually annotated by a pathologist with a blue pen on the glass slide. 
Middle: Automatically segmented annotated region (blue) with our procedure based on the pen and tissue region. Right: For comparison: manually 
digitally annotated region (red) with a digital tool by a pathologist. This manual digital annotation is time consuming and redundant
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In step 6, the inner region mask is multiplied with the tissue 
mask to exclude background regions that are not tissue. The 
noise filter is applied again to remove small regions introduced 
at the annotation mask generation, resulting in the final mask 
of the pen annotated region.

Note that if there was no pen annotation on a slide in the first 
place, the final pen annotation mask will be empty.

Validation data set and manual annotations
To evaluate our method, we utilized 319 WSI with pen markers, 
scanned on an Aperio AT2 scanner (Leica Biosystems, Buffalo 
Grove, Illinois, USA). The WSI have been manually annotated 
by a pathologist using an in‑house developed digital slide 
viewer[11] on a Microsoft Surface Studio with a digital pen as 
input device. The pathologist sketched the inner regions of the 
visible pen markers on the full WSI. Note that the pathologist 
could use any magnification level in the viewer to annotate 
the WSI. When the pen shape was coarse, the digital manual 
annotation was done on a low magnification level of the 
WSI. When the pen shape was fine or narrow, the pathologist 
zoomed in to higher magnification levels to annotate the WSI. 
In any case, the digital annotation mask was saved by the 
viewer internally at the original dimension of the WSI. The 
manual annotations were then down‑scaled to the size of the 
thumbnail images.

To assess the performance of our method, we calculated the 
four similarity metrics Dice coefficient[12] (or F‑Score), Jaccard 
index[13] (or Intersection over Union (IoU)), Precision, Recall 
and Cohen’s Kappa[14] between an automatically generated 
annotation mask A and a manually drawn annotation mask M:
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where p0 is the probability of agreement on the label 
assigned to a pixel, and pe is the expected agreement if 
both annotations are assigned randomly. All metrics were 
calculated using the Scikit‑learn[15] package in Python. 
Although these metrics are similar, they highlight slightly 
different aspects. Dice and Jaccard express the relative 
amount of overlap between automatic and manually 
segmented regions. Precision expresses the ability 
to exclude areas which do not have pen annotations. 
Recall quantifies the ability to include regions with pen 
annotations. The Kappa value expresses the agreement 
between automatic and manually segmented regions as 
a probability. All values except Kappa range between 
0 (poor automatic segmentation) and 1 (perfect automatic 
segmentation). Kappa values range between ‑1 and 1, with 
0 meaning no agreement between manual and automatic 
segmentation better than chance level, and 1 and ‑1 meaning 
perfect agreement or disagreement, respectively.

results

We quantify the performance of our method on a data set of 
319 WSI. The thumbnails of the WSI have a width of 485–1024 
px (median 1024 px) and a height of 382–768 px (median 749 
px). As shown in Figure 3, right, and Table 1, the median dice 
coefficient between the automatically segmented and manual 
pen masks is 0.942 (mean 0.865 ± 0.207), the median Jaccard 
index is 0.891 (mean 0.803 ± 0.227), the median Precision is 
0.955 (mean 0.926 ± 0.148), the median Recall is 0.943 (mean 
0.844 ± 0.237), and the median Kappa value is 0.932 (mean 
0.852 ± 0.216). Figure 3, left, sketches a Precision/Recall curve 
describing our data set. Note that the precision is generally very 
high (>0.90), while the Recall distributes over a larger range 
with a median of 0.943, meaning that some manual annotations 
are missed. The extreme outliers with zero Precision and 

Figure 2: Annotation extraction pipeline. Step 1: From a WSI, a thumbnail is extracted as input on which a Gaussian filter is applied. Step 2: The 
blurred thumbnail is converted to HSV. Step 3: The tissue is separated from the background. Step 4: From the HSV image, the pixels of the pen colors 
are separated from the rest and dilated to close small gaps. Step 5: A contour finder fills closed contours identifying the “inner” regions. Then, noise 
such as small regions are filtered based on size. Step 6: The pen mask is subtracted from the contour mask to obtain the content of the annotated 
region only. Step 6: The final output is created by multiplying the tissue mask with the annotation mask
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Recall indicate disjoint annotations and are discussed in the 
next section.

Figure 4 illustrates two examples with high scores (Dice 0.983 
and 0.981, top), two examples with medium scores (0.755 and 
0.728, middle), and two examples with low scores (0.070 and 0, 
bottom). The easiest annotations are those with closed shapes 
such as circles or polygons. Still, even if the annotation is 
easy to process by our method, the score can be lowered if the 

tissue within the annotation is sparse while the manual digital 
annotation is coarse, as illustrated in the two medium examples. 
Difficult annotations for our method are shapes that are not 
closed and therefore cannot be filled, slides with artifacts 
such as broken cover slips [Figure 4 second from bottom], or 
complex annotations such as ring‑shaped objects [Figure 4 
bottom]. These difficult cases are outliers in our data set, as 
indicated by the statistics in Figure 3.

Figure 3: Performance metrics for the proposed annotation extraction method. Left: Dice coefficient (median 0.942), Jaccard index (median 0.891), 
Precision (median 0.955), Recall (median 0.943) and Kappa (median 0.932) of the automatically segmented annotated regions compared to the 
masks which were manually drawn by a pathologist. Right: Precision/Recall curve of automatically generated and manually drawn annotation masks. 
All measures are calculated pixel‑wise. n = 319

Figure 4: Examples of two high scored extractions (top, Dice 0.983 and 0.981) and two low scored extractions (bottom, 0.070 and 0.0). Left: 
Original image. The annotations are drawn with a pen on the glass slide. Middle: Automatically segmented annotations. Right: Manually segmented 
annotations. Note that our method can differentiate between text and tissue outlines. The two low scored examples are difficult due to a broken cover 
slip, or due to a ring‑shaped annotation
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An interesting observation is that text annotations are robustly 
ignored throughout all samples by our method, as illustrated 
in Figure 4 top. This is achieved by the size‑based noise filter 
that removes small closed areas in roundish letters. We do not 
incorporate a specific text recognition program.

Annotation time
The time needed for manual digital coarse annotations on 
all WSI was approximately 5 h, with an average of 1 min 
per slide.

In contrast, our method runs in 15 min for all slides after 
finalizing all parameters. Note that images are being processed 
in sequence, and the script can further be optimized with 
parallel processing. Due to the time savings, we propose to use 
our method to extract coarse annotations whenever possible.

Note that this comparison has limitations. While the pathologist 
can annotate in the viewer at any magnification level, e.g., to 
account for fine‑grained sections, our method runs solely on 
thumbnails without any option for fine‑grained annotations. 
Further, we do not know the time needed to annotate the glass 
slides itself with a pen and cannot compare pen annotation time 
with manual digital annotation time.

conclusIon

WSI can contain analog, hand‑drawn pen annotations from 
pathologists. These annotations are commonly used to coarsely 
outline cancerous areas subject to molecular follow‑up or 
genetic sequencing. Therefore, these annotations can be 
very valuable for various cancer classification models in 
computational pathology. However, pen annotations are usually 
considered as unwanted image artifacts and are aimed to be 
excluded from the analysis. Instead, we consider the scenario 
in which these annotations would be beneficial for the classifier 
if they could be accessed by the algorithm. For this, we present 
a software that allows for the digital extraction of the inner 
part of hand‑drawn pen annotations. Our method identifies and 
segments the pen regions, closes the contours and fills them, and 
finally exports the obtained mask. The tool is freely available 
at https://github.com/MSKCC‑Computational‑Pathology/
PenAnnotationExtractor.

The performance of our algorithm has been assessed on a 
pen‑annotated data set of 319 WSI, resulting in an overall 
Dice metric of 0.942 and overall Precision and Recall of 

0.955 and 0.943, respectively. Most suitable pen shapes are 
closed areas as they are easily extractable by our method. 
However, problematic pen annotations include shapes that 
are improperly closed or complex by nature (e.g., with holes 
in them middle). Improperly closed shapes can be addressed 
with manual adjustments of the dilution radius. More complex 
shapes such as doughnut‑shaped annotations would require 
further improvements of our method.

In general, the approach that we present  can be extended to 
other data sets, for example to process WSI with a different 
staining than H&E, or to account for more pen colors. It is not 
a fully automatic pen‑annotation extraction method, since it 
needs potential adjustments of the used parameters. Still,  we 
showed that it is able to capture  a bulk part of common 
annotations which would need much more time to draw 
manually. Further, we provide guidance to fine tune potential 
parameters.

Pen annotations can be very diverse and might have various 
meanings. Our method appeared to be robust against text, 
possibly since the text does not contain large closed shapes 
and is typically on the white background and not on the 
tissue area.

However, pen annotations can be very imprecise since they 
are drawn on the glass directly, which can be a limitation. It 
is almost impossible to outline the exact boarder of cancerous 
regions without any magnification. It has to be kept in mind that 
using our tool will lead to digital regions at the same precision 
as the original annotation.

We conclude that a primary use case for our method can be 
the gathering of enriched tumor samples for training or fine 
tuning of pathology AI in scenarios in which pen‑annotated 
tumor regions are available.
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Table 1: Statistical summary of the similarity metrics comparing the automatically segmented annotations with the 
manual annotations (n=319)

Dice Jaccard Precision Recall Kappa
Mean±SD 0.865±0.207 0.803±0.227 0.926±0.148 0.844±0.237 0.852±0.216
Minimum 0 0 0 0 −0.143
25% 0.896 0.812 0.931 0.860 0.879
50% 0.942 0.891 0.955 0.943 0.932
75% 0.964 0.931 0.975 0.972 0.958
Maximum 0.983 0.967 0.999 0.998 0.979
SD: Standard deviation
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