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Overcoming an Annotation Hurdle: Digitizing Pen Annotations
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Background: The development of artificial intelligence (Al) in pathology frequently relies on digitally annotated whole slide images (WSI).
The creation of these annotations — manually drawn by pathologists in digital slide viewers — is time consuming and expensive. At the same
time, pathologists routinely annotate glass slides with a pen to outline cancerous regions, for example, for molecular assessment of the
tissue. These pen annotations are currently considered artifacts and excluded from computational modeling. Methods: We propose a novel
method to segment and fill hand-drawn pen annotations and convert them into a digital format to make them accessible for computational
models. Our method is implemented in Python as an open source, publicly available software tool. Results: Our method is able to extract pen
annotations from WSI and save them as annotation masks. On a data set of 319 WSI with pen markers, we validate our algorithm segmenting
the annotations with an overall Dice metric of 0.942, Precision of 0.955, and Recall of 0.943. Processing all images takes 15 min in contrast
to 5 h manual digital annotation time. Further, the approach is robust against text annotations. Conclusions: We envision that our method can
take advantage of already pen-annotated slides in scenarios in which the annotations would be helpful for training computational models. We
conclude that, considering the large archives of many pathology departments that are currently being digitized, our method will help to collect
large numbers of training samples from those data.
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or other regions of interest. As an example, glass slides are
commonly annotated for molecular assessment to outline tumor
regions to be sampled for genetic analysis and sequencing.
Tissue from the original paraffin-embedded specimen can
hence be sampled from the same region that the pathologist
indicated on the glass slide after inspecting the slide. However,
these pen annotations are hand-drawn on glass and not ad hoc

INTRODUCTION

Algorithms in computational pathology can be trained with
the help of annotated image data sets. In some scenarios, the
knowledge of located tumor regions on an image is beneficial,
as the models are designed to learn from the differences
between cancerous tissue and surrounding normal tissue.[!

A large part of the corresponding pipelines for pathology Al
development is therefore the creation of annotated data sets
on scanned WSI such that cancerous regions are digitally
accessible. Annotations are usually acquired with the help of
pathologists, drawing on WSI with digital tools on a computer
screen. Generating those annotated data sets can constitute
a bottleneck since it is time consuming, cumbersome, and
error-prone, depending on the level of granularity of the
annotations.

At the same time, many glass slides are already physically
annotated by pathologists with a pen to outline tumor regions
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utilizable by a digital algorithm. They have yet to be digitized.

With this work, we present a novel method to extract pen
annotations from WSI to be able to utilize them for downstream
digital processing. As illustrated in Figure 1 with a scanned pen
annotation on a WSI (left), our method extracts binary digital
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masks of the outlined regions (middle, blue mask). Hence,
it allows us to take advantage of the annotations which have
already been made from trained pathologists, reducing the need
to collect new, manually drawn annotations, such as shown
in Figure 1, right (red manually drawn digital annotation).
Considering the plethora of archived image data in pathology
departments, our method enables to access thousands of such
hand-drawn annotations, making these annotations available
for computational pathology for the first time.

Currently, pen annotations on digital WSI are usually
considered artifacts, disturbing downstream computational
analysis as they cover or stain the underlying tissue. Therefore,
research exists aiming to automatically detect and exclude
pen annotations on WSI from analysis along with tissue folds,
out-of-focus areas, air bubbles, and other artifacts.[*! Instead,
we propose to make use of the already annotated glass slides
and digitize the inhibited information to make it accessible to
computational algorithms.

Our open-source code is available online at https://github.com/
MSKCC-Computational-Pathology/PenAnnotationExtractor
and can be used by other researchers to overcome the
bottleneck of manually annotating digital slides.

MEeTHODS

Pen annotation extraction

The annotation extractor is implemented as a command line
script in Python 3. Its input is a folder containing thumbnail
images of all WSI to be processed. We extracted the thumbnails
stored in WSI prior to processing using the freely available
library OpenSlide.””’ The output is a different folder with
detected pen annotation masks for those images, each mask
with the same dimensions as the corresponding thumbnail
image. Seven processing steps compose the workflow for every
thumbnail image in the input folder, as illustrated in Figure 2.

In step 1, a Gaussian blur filter with radius 3 is applied to the
thumbnail image to reduce unspecific noise. In step 2, the
blurred image is converted to the HSV (Hue, Saturation, Value)
color space. We use the HSV color space as we found the RGB
color space not to be robust enough to detect all variations
introduced during staining and scanning. Further, HSV is
better suitable to separate the markers by addressing the raw
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luminance values. The HSV image is used in step 3 to mask
the tissue with H&E-related color thresholds. Pixel values
between (135, 10, 30) and (170, 255, 255) are considered
tissue without pen.

In step 4, pen-stroke masks are extracted from the HSV
image based on pen color-related thresholds. Our data set
comprises three pen colors, black, blue, and green. Pixel
values between (0, 0, 0) and (180, 255, 125) are considered
to originate from black pen. Pixel values between (100, 125,
30) and (130, 255, 255) are considered to originate from blue
pen. And pixel values between (40, 125, 30) and (70, 255,
255) are considered to originate from green pen. These HSV
values describe a spectrum of the corresponding colors and
have worked well for us to capture the pen annotated pixels.
As we do not differentiate between the pen colors, the three
individual color masks are joined to the overall pen mask.
Note that our method can be extended to other pen colors by
including their specific thresholds.

To close gaps in the annotated pen contours, a morphologic
dilation with a circular kernel is employed on the overall pen
mask. The dilation thickens the contours of the pen by the
given kernel size and thus closes holes in the lines. This step
is needed to account for thin pen lines and for small gaps in
the drawn lines, e.g., at a/most closed ends of a circle. The
larger the gaps are, the larger the kernel size has to be in
order to close the shape. We run our algorithm in four rounds
with an increasing kernel size of 5, 10, 15, and 20 pixels. In
each round, pen annotations with too large gaps will result in
empty masks (as the closed contour in the next step cannot
be found), and we subject those images to the next run with
larger kernel size.

In step 5, the dilated mask is subject to contour extraction and
filling.['” To reduce noise in the filled contours, components
smaller than 3000 pixels are filtered. This threshold was chosen
as it worked best on our data set by filtering small regions
such as unrelated pixels, small contours, and text regions
while letting tissue annotations pass. However, we propose
to explore variable filter sizes based on thumbnail dimension
and resolution in future work. The resulting mask is then
subtracted in step 6 from the filled contour mask to preserve
only the inner region.

Figure 1: Example of a digitized pen annotation. Left: The original glass slide, manually annotated by a pathologist with a blue pen on the glass slide.
Middle: Automatically segmented annotated region (blue) with our procedure based on the pen and tissue region. Right: For comparison: manually
digitally annotated region (red) with a digital tool by a pathologist. This manual digital annotation is time consuming and redundant
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Figure 2: Annotation extraction pipeline. Step 1: From a WSI, a thumbnail is extracted as input on which a Gaussian filter is applied. Step 2: The
blurred thumbnail is converted to HSV. Step 3: The tissue is separated from the background. Step 4: From the HSV image, the pixels of the pen colors
are separated from the rest and dilated to close small gaps. Step 5: A contour finder fills closed contours identifying the “inner” regions. Then, noise
such as small regions are filtered based on size. Step 6: The pen mask is subtracted from the contour mask to obtain the content of the annotated
region only. Step 6: The final output is created by multiplying the tissue mask with the annotation mask

In step 6, the inner region mask is multiplied with the tissue
mask to exclude background regions that are not tissue. The
noise filter is applied again to remove small regions introduced
at the annotation mask generation, resulting in the final mask
of the pen annotated region.

Note that if there was no pen annotation on a slide in the first
place, the final pen annotation mask will be empty.

Validation data set and manual annotations

To evaluate our method, we utilized 319 WSI with pen markers,
scanned on an Aperio AT2 scanner (Leica Biosystems, Buffalo
Grove, Illinois, USA). The WSI have been manually annotated
by a pathologist using an in-house developed digital slide
viewer!'!! on a Microsoft Surface Studio with a digital pen as
input device. The pathologist sketched the inner regions of the
visible pen markers on the full WSI. Note that the pathologist
could use any magnification level in the viewer to annotate
the WSI. When the pen shape was coarse, the digital manual
annotation was done on a low magnification level of the
WSI. When the pen shape was fine or narrow, the pathologist
zoomed in to higher magnification levels to annotate the WSI.
In any case, the digital annotation mask was saved by the
viewer internally at the original dimension of the WSI. The
manual annotations were then down-scaled to the size of the
thumbnail images.

To assess the performance of our method, we calculated the
four similarity metrics Dice coefficient!'?! (or F-Score), Jaccard
index!"! (or Intersection over Union (IoU)), Precision, Recall
and Cohen’s Kappa!'¥ between an automatically generated
annotation mask 4 and a manually drawn annotation mask A:

2¥|ANM
Dice = 2AnM| =F _score
|A[+|M |
ANnM
Jaccard = g =JoU
| AU M |
ANM
Precision=g
| A

ANM

Recallzw
| M |
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where p, is the probability of agreement on the label
assigned to a pixel, and p,is the expected agreement if
both annotations are assigned randomly. All metrics were
calculated using the Scikit-learn!'” package in Python.
Although these metrics are similar, they highlight slightly
different aspects. Dice and Jaccard express the relative
amount of overlap between automatic and manually
segmented regions. Precision expresses the ability
to exclude areas which do not have pen annotations.
Recall quantifies the ability to include regions with pen
annotations. The Kappa value expresses the agreement
between automatic and manually segmented regions as
a probability. All values except Kappa range between
0 (poor automatic segmentation) and 1 (perfect automatic
segmentation). Kappa values range between -1 and 1, with
0 meaning no agreement between manual and automatic
segmentation better than chance level, and 1 and -1 meaning
perfect agreement or disagreement, respectively.

ResuLts

We quantify the performance of our method on a data set of
319 WSI. The thumbnails of the WSI have a width of 485-1024
px (median 1024 px) and a height of 382—768 px (median 749
px). As shown in Figure 3, right, and Table 1, the median dice
coefficient between the automatically segmented and manual
pen masks is 0.942 (mean 0.865 + 0.207), the median Jaccard
index is 0.891 (mean 0.803 + 0.227), the median Precision is
0.955 (mean 0.926 £ 0.148), the median Recall is 0.943 (mean
0.844 + 0.237), and the median Kappa value is 0.932 (mean
0.852+£0.216). Figure 3, left, sketches a Precision/Recall curve
describing our data set. Note that the precision is generally very
high (>0.90), while the Recall distributes over a larger range
with a median of 0.943, meaning that some manual annotations
are missed. The extreme outliers with zero Precision and
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Recall indicate disjoint annotations and are discussed in the
next section.

Figure 4 illustrates two examples with high scores (Dice 0.983
and 0.981, top), two examples with medium scores (0.755 and
0.728, middle), and two examples with low scores (0.070 and 0,
bottom). The easiest annotations are those with closed shapes
such as circles or polygons. Still, even if the annotation is
easy to process by our method, the score can be lowered if the

http://www.jpathinformatics.org/content/12/1/9

tissue within the annotation is sparse while the manual digital
annotation is coarse, as illustrated in the two medium examples.
Difficult annotations for our method are shapes that are not
closed and therefore cannot be filled, slides with artifacts
such as broken cover slips [Figure 4 second from bottom], or
complex annotations such as ring-shaped objects [Figure 4
bottom]. These difficult cases are outliers in our data set, as
indicated by the statistics in Figure 3.
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Figure 3: Performance metrics for the proposed annotation extraction method. Left: Dice coefficient (median 0.942), Jaccard index (median 0.891),
Precision (median 0.955), Recall (median 0.943) and Kappa (median 0.932) of the automatically segmented annotated regions compared to the
masks which were manually drawn by a pathologist. Right: Precision/Recall curve of automatically generated and manually drawn annotation masks.

All measures are calculated pixel-wise. n = 319

Figure 4: Examples of two high scored extractions (top, Dice 0.983 and 0.981) and two low scored extractions (bottom, 0.070 and 0.0). Left:
Original image. The annotations are drawn with a pen on the glass slide. Middle: Automatically segmented annotations. Right: Manually segmented
annotations. Note that our method can differentiate between text and tissue outlines. The two low scored examples are difficult due to a broken cover

slip, or due to a ring-shaped annotation
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Table 1: Statistical summary of the similarity metrics comparing the automatically segmented annotations with the

manual annotations (n=319)

Dice Jaccard Precision Recall Kappa
Mean+SD 0.865+0.207 0.803+0.227 0.926+0.148 0.844+0.237 0.852+0.216
Minimum 0 0 0 0 —0.143
25% 0.896 0.812 0.931 0.860 0.879
50% 0.942 0.891 0.955 0.943 0.932
75% 0.964 0.931 0.975 0.972 0.958
Maximum 0.983 0.967 0.999 0.998 0.979

SD: Standard deviation

An interesting observation is that text annotations are robustly
ignored throughout all samples by our method, as illustrated
in Figure 4 top. This is achieved by the size-based noise filter
that removes small closed areas in roundish letters. We do not
incorporate a specific text recognition program.

Annotation time

The time needed for manual digital coarse annotations on
all WSI was approximately 5 h, with an average of 1 min
per slide.

In contrast, our method runs in 15 min for all slides after
finalizing all parameters. Note that images are being processed
in sequence, and the script can further be optimized with
parallel processing. Due to the time savings, we propose to use
our method to extract coarse annotations whenever possible.

Note that this comparison has limitations. While the pathologist
can annotate in the viewer at any magnification level, e.g., to
account for fine-grained sections, our method runs solely on
thumbnails without any option for fine-grained annotations.
Further, we do not know the time needed to annotate the glass
slides itself with a pen and cannot compare pen annotation time
with manual digital annotation time.

ConcLusioN

WSI can contain analog, hand-drawn pen annotations from
pathologists. These annotations are commonly used to coarsely
outline cancerous areas subject to molecular follow-up or
genetic sequencing. Therefore, these annotations can be
very valuable for various cancer classification models in
computational pathology. However, pen annotations are usually
considered as unwanted image artifacts and are aimed to be
excluded from the analysis. Instead, we consider the scenario
in which these annotations would be beneficial for the classifier
if they could be accessed by the algorithm. For this, we present
a software that allows for the digital extraction of the inner
part of hand-drawn pen annotations. Our method identifies and
segments the pen regions, closes the contours and fills them, and
finally exports the obtained mask. The tool is freely available
at https://github.com/MSKCC-Computational-Pathology/
PenAnnotationExtractor.

The performance of our algorithm has been assessed on a
pen-annotated data set of 319 WSI, resulting in an overall
Dice metric of 0.942 and overall Precision and Recall of

0.955 and 0.943, respectively. Most suitable pen shapes are
closed areas as they are easily extractable by our method.
However, problematic pen annotations include shapes that
are improperly closed or complex by nature (e.g., with holes
in them middle). Improperly closed shapes can be addressed
with manual adjustments of the dilution radius. More complex
shapes such as doughnut-shaped annotations would require
further improvements of our method.

In general, the approach that we present can be extended to
other data sets, for example to process WSI with a different
staining than H&E, or to account for more pen colors. It is not
a fully automatic pen-annotation extraction method, since it
needs potential adjustments of the used parameters. Still, we
showed that it is able to capture a bulk part of common
annotations which would need much more time to draw
manually. Further, we provide guidance to fine tune potential
parameters.

Pen annotations can be very diverse and might have various
meanings. Our method appeared to be robust against text,
possibly since the text does not contain large closed shapes
and is typically on the white background and not on the
tissue area.

However, pen annotations can be very imprecise since they
are drawn on the glass directly, which can be a limitation. It
is almost impossible to outline the exact boarder of cancerous
regions without any magnification. It has to be kept in mind that
using our tool will lead to digital regions at the same precision
as the original annotation.

We conclude that a primary use case for our method can be
the gathering of enriched tumor samples for training or fine
tuning of pathology Al in scenarios in which pen-annotated
tumor regions are available.
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