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Abstract

Introduction: Fibroblast-like synoviocytes (FLS) play a central role in defining the stromal environment in
inflammatory joint diseases. Despite a growing use of FLS isolated from murine inflammatory models, a detailed
characterisation of these cells has not been performed.

Methods: In this study, FLS were isolated from inflamed joints of mice expressing both the T cell receptor
transgene KRN and the MHC class II molecule Ag7 (K/BxN mice) and their purity in culture determined by
immunofluorescence and real-time reverse transcription polymerase chain reaction (real-time RT-PCR). Basal
expression of proinflammatory genes was determined by real-time RT-PCR. Secreted interleukin 6 (IL-6) was
measured by enzyme-linked immunosorbent assay (ELISA), and its regulation by tumor necrosis factor-alpha (TNF-a
and corticosterone (the major glucocorticoid in rodents) measured relative to other mesenchymal cell populations.

Results: Purity of FLS culture was identified by positive expression of fibronectin, prolyl 4-hydroxylase, cluster of
differentiation 90.2 (CD90.2) and 248 (CD248) in greater than 98% of the population. Cultured FLS were able to
migrate and invade through matrigel, a process enhanced in the presence of TNF-a. FLS isolated from K/BxN mice
possessed significantly greater basal expression of the inflammatory markers IL-6, chemokine ligand 2 (CCL-2) and
vascular cell adhesion molecule 1 (VCAM-1) when compared to FLS isolated from non-inflamed tissue (IL-6, 3.6
fold; CCL-2, 11.2 fold; VCAM-1, 9 fold; P < 0.05). This elevated expression was abrogated in the presence of
corticosterone at 100 nmol/l. TNF-a significantly increased expression of all inflammatory markers to a much
greater degree in K/BxN FLS relative to other mesenchymal cell lines (K/BxN; IL-6, 40.8 fold; CCL-2, 1343.2 fold;
VCAM-1, 17.8 fold; ICAM-1, 13.8 fold; P < 0.05), with secreted IL-6 mirroring these results (K/BxN; con, 169 ± 29.7
versus TNF-a, 923 ± 378.8 pg/ml/1 × 105 cells; P < 0.05). Dose response experiments confirmed effective
concentrations between 10 and 100 nmol/l for corticosterone and 1 and 10 ng/ml for TNF-a, whilst inflammatory
gene expression in FLS was shown to be stable between passages four and seven.

Conclusions: This study has established a well characterised set of key inflammatory genes for in vitro FLS culture,
isolated from K/BxN mice and non-inflamed wild-type controls. Their response to both pro- and anti-inflammatory
signalling has been assessed and shown to strongly resemble that which is seen in human FLS culture.
Additionally, this study provides guidelines for the effective characterisation, duration and treatment of murine FLS
culture.

Introduction
Rheumatoid arthritis (RA) is a chronic autoimmune
inflammatory disease that leads to progressive damage to
articular and periarticular structures. It is characterised
by hyperplasia of fibroblast-like synoviocytes (FLS) within

the synovium and recruitment of multiple leukocyte
populations that drive the inflammatory process [1]. Our
understanding of the aetiology and pathology of inflam-
matory joint disease has been greatly advanced through
the use of animal models [2-7]. Despite variation in the
targeting and severity of inflammation, these models all
result in some degree of damage to articular cartilage or
surrounding bone. Importantly, they all present with
synovial hyperplasia, characterised by hyperproliferation
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of FLS. Consequently, these models have been important
in investigating the roles of FLS in the mediation of
inflammatory bone loss [8-11].
FLS are stromal cells of mesenchymal origin that demon-

strate highly active behaviour, producing a range of extra-
cellular matrix components and secreted factors that help
maintain the normal environment of the synovial fluid and
articular surface [12-14]. In addition, these cells have been
shown to be key mediators in the maintenance of inflam-
mation and in driving joint destruction during synovitis.
During joint inflammation, FLS take on an aggressive, inva-
sive phenotype, breaking down cartilage by the action of
matrix metalloproteinases, whilst their production of
secreted factors such as receptor activator of nuclear factor
kappa-B (NF�-B) ligand (RANKL) promotes osteoclast dif-
ferentiation, survival and activity, contributing to bone ero-
sion and juxta-articular osteoporosis [15,16].
The expression of multiple proinflammatory adhesion

markers and cytokines is upregulated in human FLS iso-
lated from inflamed RA joints, which impact on leukocyte
migration, survival and activation [17-20]. Amongst the
cytokines secreted by FLS, IL-6 has been shown to play a
significant role in the pathology of RA, and is strongly
upregulated during inflammation, having diverse roles both
locally and systemically [21,22]. This activated inflamma-
tory phenotype observed in human FLS has been shown to
be maintained over prolonged cell culture, even in the
absence of proinflammatory cytokines [23-27]. Conse-
quently, FLS are targets for disease-modifying and anti-
inflammatory drugs, which has resulted in a substantial
body of work characterising these cells and examining their
contribution in human disease using well-defined methods
of isolation [28]. In contrast, isolation of FLS from murine
models of inflammation has proved more challenging as a
result of the smaller size of affected tissues. Consequently,
both murine FLS isolation methods and the resulting cell
cultures have yet to be as well characterised as their human
counterparts. This lack of knowledge hinders research
utilising these cells in vitro, used to delineate the pathology
in mouse models of inflammatory joint disease.
The aims of this study were to comprehensively charac-

terise the inflammatory phenotype of FLS isolated and cul-
tured from the K/BxN model of inflammatory joint
disease. In particular, we were interested in investigating

the expression of inflammatory markers relative to normal
mesenchymal cell populations, and determining how this
inflammatory phenotype is maintained over prolonged cell
culture.

Materials and methods
Mouse models
K/BxN mice that spontaneously develop arthritis were
generated as previously described by Kouskoff et al.
[29,30]. Male KRN transgenic mice (kindly provided by
Le Centre Européen de Recherche en Biologie et en
Médecine) were crossed with female NOD mice. Result-
ing K/BxN mice exhibit significant reproducible joint
inflammation at 60 days. Animals were kept at the animal
facility of the ANZAC Research Institute, in accordance
with Institutional Animal Welfare Guidelines and
according to an approved protocol. Ethical approval was
given by the Sydney Local Health District Animal Wel-
fare Committee under protocols No 2008/043 and
2012/006. Clinical scores of joint swelling were deter-
mined using the method described by both Buttgereit
and Lee et al. [31,32]. Scores of joint swelling are dis-
played in Table 1. To generate one FLS cell line, tissues
from all limbs, from a minimum of three mice from the
same litter were combined. Wild-type (WT) mice from
the same background were used to generate FLS from
non-inflamed joints.

FLS isolation and culture
The method used for the isolation of FLS from synovial
tissue was modified from a method previously described
[33]. FLS lines one, two and three were isolated from
K/BxN litters one to three respectively. Mice were eutha-
nized by cervical dislocation prior to dissection of inflamed
joints. The front and hind limbs were separated at the
humerus/ulna/radius and femur/fibula/tibia junctions,
respectively. Limbs were washed in DMEM, high glucose,
GlutaMAX (Life Technologies, Grand Island, NY, USA)
supplemented with 10% heat-inactivated FBS, 100 U/ml
penicillin and 100 mg/ml streptomycin. All further dissec-
tion was performed with tissues immersed in culture
media. Attached skin, nail, muscle and tendon were
removed by microdissection taking care to avoid damaging
the bones. Any damaged bones were immediately removed

Table 1 K/BxN clinical scores.

Average clinical score (n = 3 per litter)

Weight Wrist (L) Wrist (R) Ankle (L) Ankle (R) Total

K/BxN litter 1 27.43 + 2.2 3.00 2.83 2.83 2.67 11.33 ± 0.6

K/BxN litter 2 23.26 + 3.5 2.67 3.00 2.67 3.00 11.33 ± 0.3

K/BxN litter 3 28.36 + 2.6 2.67 3.00 3.00 3.00 11.66 ± 0.4

WT litter 1 24.31 + 1.1 0.00 0.00 0.00 0.00 0 ± 0

WT litter 2 25.01 + 2.9 0.00 0.00 0.00 0.00 0 ± 0
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from the cell isolation process to prevent contamination of
FLS culture by cells from the bone marrow compartment.
The individual bones of the paws were then isolated by
dissection to open up the joint spaces and expose the
synovial tissues. Dissected bones with synovial tissue were
incubated in 20 ml of culture media containing 1 mg/ml
of collagenase type 4 (Worthington Biochemical Corp.,
Freehold, NJ, USA, 220 U/mg) and 0.1 mg/ml of deoxyri-
bonuclease I (Sigma-Aldrich, Castle Hill, NSW, Australia),
shaking vigorously for 1 hr at 37°C. Tissues were vortexed
at high speed and the media removed to a fresh tube.
Tissues were then resuspended in 20 ml of fresh media,
vortexed once again and combined with the former, leav-
ing the tissue and bones behind. The combined media was
centrifuged at 1200 rpm for 3 min and the cell pellet
resuspended in 20 ml of fresh media and cultured at 37°C,
5% C02. Culture media was changed every three days and
cells subcultured at 80 to 90% confluence prior to charac-
terisation at passage four.

Cell culture
Isolated FLS and the murine mesenchymal C2C12 cell line
(ATCC, Manassas, VA, USA) were grown in DMEM high
glucose, GlutaMAX (Life Technologies, Grand Island, NY,
USA) supplemented with 10% heat-inactivated FBS,
100 U/ml penicillin and 100 mg/ml streptomycin. The
partially differentiated murine preosteoblastic cell line,
MC3T3-E1 cells (ATCC, USA) were cultured in MEM
alpha (Life Technologies, Grand Island, NY, USA) supple-
mented with 10% heat-inactivated FBS, 100 U/ml penicil-
lin, 100 g/ml streptomycin and 1% L-glutamine. All cells
were cultured at 37°C, 5% C02 and the media changed
every three days. Cells were sub-cultured at 80 to 90%
confluence. Unless stated otherwise, fibroblasts were trea-
ted with 10 ng/ml tumour necrosis factor (TNF)-a, (R&D
Systems, Abingdon, UK) or 100 nmol/l corticosterone
(Sigma-Aldrich, Castle Hill, NSW, Australia) for 24 hrs
before harvesting.

Immunofluorescence
Fluorescence immunohistochemistry was performed on
FLS at passage 4 in cell culture. Cells were fixed in 2% par-
aformaldehyde before incubation with primary antibody
for one hr at room temperature. Cells were stained using
polyclonal antisera to the following: fibronectin 1:400
(F3648, Sigma-Aldrich, Castle Hill, NSW, Australia),
CD248 1:200 (PAB13304, Abnova, Taipei City, Taiwan),
CD90.2 1:100 (550543; BD Biosciences Pharminogen,
Franklin Lakes, NJ, USA), CD31 1:50 (ab28364, Abcam,
Cambridge, UK), and CD68 1:100 (H-255, Santa Cruz Bio-
technology, Inc., Santa Cruz, CA, USA). The following
secondary antibodies were used for 1 hr at room tempera-
ture: goat anti-rabbit immunoglobulin G (IgG) labelled
with FITC 1:400 (sc2012, Santa Cruz Biotechnology, Inc.,

Santa Cruz, CA, USA) and rat anti-mouse IgG labelled
with Alexa Fluor 633 1:400 (A21094, Invitrogen, Grand
Island, NY, USA). Nuclei were counterstained using TO-
PRO™-3 1:400 (T3605, Life Technologies, Melbourne,
VIC, Australia) for 1 hr at room temperature. Immuno-
fluorescence was performed using an Olympus (Olympus
Corp., Tokyo, Japan) FV5-PSU confocal microscope and
analyzed using FLUOVIEW software.

Matrigel invasion assay
Invasion of FLS was examined across matrigel-coated
transwell inserts. Eight micron pore size matrigel-coated
inserts (BD Biosciences, San Jose, CA, USA) were incu-
bated in normal FLS culture media for 2 hrs in 24-well
plates. 3000 FLS were then seeded in the inner compart-
ment of the transwell system in 0.5 ml of FLS culture
media containing 0.1% BSA. 0.75 ml of FLS culture
media containing 10% FBS and 50 ng/ml platelet-derived
growth factor (PDGF) with or without 10 ng/ml IL-1 or
TNF-a stimulant (R&D systems, Abingdon, UK) was
then added to the outer compartment. FLS were incu-
bated at 37°C, 5% C02 for 24 hrs. The insert membrane
was then isolated and fixed in 10% buffered formalin
before washing in PBS and staining with Harris haema-
toxylin. FLS that invaded through the matrigel and
passed through the 8 micron pores were counted.

RNA extraction/reverse transcription
RNA isolation was performed using the InnuPREP mini
kit (Analytik Jena AG, Jena, Germany) following the
manufacturer’s protocol. First-strand cDNA was synthe-
sized from 1 μg of total RNA by incubating for 1 h at
50°C with SuperScript III reverse transcriptase (Invi-
trogen, Mulgrave, VIC, Australia) following oligo(dT)
priming.

Real-time PCR
Expression of mRNA for IL-6, chemokine ligand 2
(CCL-2), vascular cell adhesion molecule 1 (VCAM-1),
intercellular adhesion molecule 1 (ICAM-1) and bone
gamma-carboxyglutamic acid-containing protein (BGLAP)
was assessed using IQ SYBR Green Supermix (Bio-Rad
Laboratories, Regents Park, NSW, Australia) according to
the manufacturer’s instructions, using a Bio-Rad iCycler
iQ5 real-time PCR detection system. Primers for 18S were
used for cDNA normalization. Reactions occurred as fol-
lows: 95°C for 2 minutes, 40 cycles of 95°C for 10 seconds,
60°C for 15 seconds and 72°C for 30 seconds. Data were
obtained as Ct values (the cycle number at which logarith-
mic PCR plots cross a calculated threshold line), and used
to determine ΔCt values (Ct of target gene - Ct of house-
keeping gene) as raw data for gene expression. The fold
change in gene expression was determined by subtracting
ΔCt values for treated cells from their respective control
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samples. The resulting ΔΔCt values were then used to cal-
culate fold change in gene expression according to the
expression 2ΔΔCt. Primer sequences used are summarized
in Table 2.

Immunohistochemistry
Immunohistochemical assessment of CD248 and fibro-
nectin expression within littermates of non-inflamed
control and inflamed K/BxN ankle joints were per-
formed. Briefly, following decalcification in EDTA, paraf-
fin-embedded sections were cut and stained with either
the fibronectin 1:400 (F3648, Sigma-Aldrich, Castle Hill,
NSW, Australia) or CD248 1:400 (PAB13304, Abnova,
Taipei City, Taiwan) primary antibodies. A biotinylated
anti-rabbit immunoglobulin (Vectastatin ABC kit, Vector
Laboratories, Burlingame, CA, USA) served as the
secondary antibody. DAB substrate kit for peroxidase
(Vector Laboratories, Burlingame, CA, USA) was used
for chromagen development. Samples were counter-
stained with Gill’s haematoxylin.

IL-6 ELISA
IL-6 levels in supernatants from cultured cells were mea-
sured using a commercially available sandwich ELISA in
accordance with the manufacturer’s instructions (R&D
systems, Abingdon, UK). Data were expressed as pg IL-6/
1 × 105 cells.

Statistical analysis
Data are reported as mean ± standard error (SE) of repli-
cate mean values for separate mouse litter cell cultures.
One-way ANOVA analysis of variance was performed
using SPSS Data Editor (SPSS Inc., Santa Clara, CA, USA).

Results
Characterisation of FLS culture
For the purpose of characterisation, only cells that survived
in culture and actively proliferated beyond passage four
were utilised. K/BxN FLS exhibited a classic spindle-shaped

fibroblastic phenotype that formed parallel clusters when
confluent (Figure 1a). Analysis of cells by quantitative PCR
identified significant expression of mRNA for the enzyme
prolyl 4-hydroxylase (an enzyme required for fibroblastic
collagen synthesis that has previously been shown to be an
effective FLS marker [34]) and the synovial fibroblast sur-
face marker CD248 in the three K/BxN FLS lines used in
this study (Figure 1b, Additional file 1). In contrast, mRNA
expressions of the osteoblast product osteocalcin and
macrophage marker CD68 were entirely absent. When
analysed by immunohistochemistry, > 98% of FLS stained
positively for the stromal mesenchymal marker fibronectin
and the synovial fibroblastic surface markers CD90.2 and
CD248 (Figure 1c-h). In contrast, less than 2% of cells
stained positively for the endothelial marker CD31 or the
macrophage marker CD68 (Additional file 2). Examination
of invasive behaviour in FLS revealed that both non-
inflamed control FLS and K/BxN FLS migrated through
the matrigel-coated insert (Figure 1i). Pretreatment with
TNF-a for 24 hr prior to seeding resulted in a strong trend
towards increasing K/BxN FLS invasion across the matrigel
insert (con, 2.16% ± 0.5 vs. TNF-a, 10% ± 4.9 invasion rela-
tive to non-inflamed control; P = 0.06). PCR analysis of
cadherin-11 confirmed positive mRNA expression within
22 cycles in both WT control and K/BxN FLS with no sig-
nificant differences between groups when normalised to
the housekeeping gene 18S (WT con FLS, 4.08 ± 0.24; K/
BxN FLS, 4.38 ± 0.34 ΔCt; NS) (Figure 1j). No differences
in cadherin-11 mRNA expression were observed following
preincubation with TNF-a for 24 hr (Additional file 3).

CD248 and fibronectin expression in vivo
To better qualify the use of CD248 and fibronectin as
markers for the identification of FLS, we assessed the tis-
sue localization by immunohistochemical stains in both
non-inflamed control and inflamed K/BxN joints. Syno-
vial staining for CD248 was relatively weak within the
joints of non-inflamed control mice with few positively
staining cells (Figure 2a). By contrast, CD248 staining
throughout the synovium of inflamed K/BxN joints was
markedly elevated compared to non-inflamed controls
(Figure 2b, c). Similarly, fibronectin-positive stromal cells
were largely absent in non-inflamed control joints, how-
ever, their expression was elevated within the synovium
of K/BxN inflamed joints (Figure 2d, e, f).

Fibroblast inflammatory gene expression
We examined the mRNA expression of the proinflamma-
tory cytokine IL-6, the chemokine CCL-2 and the surface
markers VCAM-1 and ICAM-1, to obtain a basic measure
of the inflammatory profile of FLS isolated from K/BxN
mice. Results shown are given as fold change relative to
FLS isolated from normal joints in control wild-type mice
(WT control FLS) to better assess basal activation of

Table 2 Primer sequences.

Gene Fwd Rvs

18S CATGATTAAGAGGGACGGC TTCAGCTTTGCAACCATACTC

IL-6 AGTTGCCTTCTTGGGACTGA GGTAGCATCCATCATTTCTTTGTA

CCL-2 AGAAGTCATAGCCACTCTCAAGG TGAACTCTCAGACAGCGAGG

VCAM-
1

GGAGACCTGTCACTGTCAACTG TCCATTTCACCACTGTGTAACC

ICAM-
1

AGACACAAGCAAGAAGACCACA TGACCAGTAGAGAAACCCTCG

BGLAP GCTCTGTCTCTCTGACCTCACA TAGATGCGTTTGTAGGCGG

CD68 GCTTCTGCTGTGGAAATGC GGTAGGTTGATTGTCGTCTGC

P4htm GATTGTGGAGTTCAGTGAGCC TTCATCATAGGTCCTGTTGTCTG

CD248 GCCAGCAGATGTGTGTCAA GTAGGTGCCAGCCATAGGAT
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Figure 1 Validation of FLS culture. (a) Confluent monolayer of K/BxN (fibroblast-like synoviocytes) FLS as observed in vitro at 10× magnification.
(b) mRNA expression of 18S, P4H, CD248, osteocalcin (OCN) and CD68 determined by standard RT-PCR at 35 cycles in one non-inflamed control FLS
wild-type (WT), three K/BxN FLS lines (FLS 1 to 3), primary calvarial osteoblasts (OBs) and the macrophage cell line RAW 264.7 (MF). Expression of
CD248 (blue), CD90.2 (magenta) and fibronectin (red) in non-inflamed FLS (c, e, g) and K/BxN FLS (d, f, h), determined by confocal fluorescence
immunohistochemistry. (i) Invasion of FLS across matrigel-coated transwell inserts relative to untreated non-inflamed control FLS in the presence or
absence of TNF-a (ng/ml). (j) ΔCt mRNA expression of cadherin-11 normalised for the housekeeping gene 18s. Data presented are from three
individual WT control FLS and three K/BxN FLS after loading 25 ng of mRNA for RT-PCR. For Figure 1 c-h, results shown are representative of three
separate K/BxN FLS lines. Figure 1b has been cropped, to allow presentation of multiple gels.
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inflammatory markers. Basal expression of IL-6, CCL-2
and VCAM-1 were significantly higher in K/BxN FLS rela-
tive to WT control FLS (IL-6, 3.6 ± 0.25 fold; CCL-2, 11.2
± 0.28 fold; VCAM-1, 9 ± 0.1 fold relative to untreated
WT control FLS; P < 0.05), whilst no difference was
observed with ICAM-1 (Figure 3a, b, c, d). Treatment with
the anti-inflammatory glucocorticoid, corticosterone,
resulted in a significant decrease in both IL-6 and VCAM-
1 expression relative to their respective untreated controls
(IL-6, 5.3 ± 0.04 fold; VCAM-1, 3.3 ± 0.07 fold; P < 0.05)
and led to a strong trend towards decreased CCL-2
expression (1.9 ± 0.9 fold; P = 0.09) (Figure 3a, b, c, d).
These decreases in IL-6, VCAM-1 and CCL-2 in K/BxN
FLS resulted in their expression being comparable to that
observed in untreated WT control FLS.
All inflammatory markers were significantly increased in

both WT control FLS and K/BxN FLS in response to the
proinflammatory cytokine TNF-a (IL-6, 40.8 ± 2.8 fold;
CCL-2, 1343.2 ± 362.2 fold; VCAM-1, 25.3 ± 2.6 fold;
ICAM-1, 13.8 ± 2.4 fold in K/BxN FLS relative to
untreated WT control FLS; P < 0.05) (Figure 3e, f, g, h).
The increase seen in IL-6 and CCL-2 was significantly
greater in K/BxN FLS relative to the increase in WT

control FLS (IL-6, 3.45 ± 1.3 fold; CCL-2, 5.7 ± 1.4 fold
versus TNF-a induction in WT control FLS; P < 0.05).

Regulation of IL-6 expression in FLS
IL-6 mRNA expression was examined in response to the
proinflammatory cytokine, TNF-a and the anti-inflam-
matory glucocorticoid, corticosterone. Time-course ana-
lysis of two FLS lines revealed maximal responses
between 8 and 24 hr for TNF-a (10 ng/ml) and 8 and
16 hr for corticosterone (100 nmol/l) (Additional file 3).
Consequently for all experiments in this study treat-
ments were fixed at 16 hr. Dose response experiments
were performed in two FLS lines (Figure 4a, b). TNF-a
resulted in a significant increase in IL-6 mRNA expres-
sion at 1 ng/ml (3.9 ± 0.41 fold; P < 0.05). IL-6 mRNA
expression continued to increase in a dose-dependant
manner up to the maximum supraphysiological dose
used in the study at 25 ng/ml (8 ± 0.23 fold; P < 0.001).
Treatment with corticosterone resulted in a dose-depen-
dant decrease in IL-6 mRNA expression that was signifi-
cant at 10 nmol/l (1.9 ± 0.04 fold; P < 0.05) with
maximal inhibition at 100 nmol/l (11.1 ± 0.02 fold; P <
0.05). For all experiments in this study TNF-a and

Figure 2 Synovial CD248 and fibronectin expression in vivo. Decalcified paraffin-embedded joint sections were stained for CD248 and
fibronectin and counterstained with Gill’s haematoxylin. Staining was examined in non-inflamed control (a, d) and inflamed K/BxN (b, e) joints.
(c, f) demonstrates the inflamed synovium of K/BxN joints at increased magnification. Black arrows denote positive staining of CD248 and
fibronectin respectively. Bars = 100 μm.
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corticosterone treatments were fixed at 10 ng/ml and
100 nmol/l respectively.
To examine how the inflammatory phenotype of FLS

isolated from inflamed tissues compares to cells isolated
from non-inflamed tissues as well as undifferentiated and
partially differentiated mesenchymal cell lines, we set up a
panel of treatments looking at IL-6 expression in a range
of cell types. These included FLS isolated from normal
joints in control mice, as well as the undifferentiated
mesencyhmal precursor line C2C12 and the partially dif-
ferentiated osteoblast cell line MC3T3E-1. At the mRNA
level, WT control FLS, C2C12 and MC3T3-E1 possessed a
similar basal expression of IL-6 (Figure 5c). All lines signif-
icantly increased expression of IL-6 in response to the
proinflammatory cytokine TNF-a relative to the untreated
WT control FLS (WT control FLS, 11.8 ± 2.7 fold; C2C12,
15.6 ± 1.3 fold; MC3T3-E1, 11.4 ± 1.2 fold; P < 0.01).
Treatment with corticosterone resulted in a significant

decrease in IL-6 mRNA expression in the MC3T3-E1 line
(5.1 ± 0.05 fold relative to untreated control; P < 0.05),
whilst no significant decrease was observed in WT control
FLS or C2C12. When compared to these cell lines, K/BxN
FLS isolated from inflamed tissue had significantly higher
basal expression of IL-6 mRNA. Similarly, treatment of
K/BxN FLS with TNF-a resulted in a significantly greater
upregulation of IL-6 mRNA expression relative to the
other cell lines (40.8 ± 2.8 fold increase versus untreated
WT control FLS; P < 0.001). Treatment with corticoster-
one significantly reduced expression of IL-6 mRNA in
K/BxN FLS relative to untreated control (6.7 ± 0.1 fold;
P < 0.01). This was comparable to levels observed in WT
control FLS.
A very similar pattern was observed for IL-6 secretion

into culture media for WT controls FLS, MC3T3-E1 and
K/BxN FLS (Figure 5d). No significant difference was
observed between basal expression in WT control FLS,

Figure 3 Inflammatory gene regulation by corticosteone and TNF-a in FLS. Fold change in mRNA expression of inflammatory genes in
(fibroblast-like synoviocytes) FLS, determined by real-time RT-PCR. Expression of mRNA was measured at 16 hr for IL-6, chemokine ligand 2 (CCL-2),
vascular cell adhesion molecule 1 (VCAM-1) and intercellular adhesion molecule 1 (ICAM-1) following pretreatment with either corticosterone (a-d)
(100 nmol/l) or TNFa (e-h) (10 ng/ml) for 24 hr. Data were normalized for levels of the housekeeping gene 18S rRNA and presented as fold change in
expression (± standard error) relative to untreated wild-type (WT) control FLS. *P < 0.05, **P < 0.001 versus respective untreated control; #P > 0.05
versus untreated WT control FLS. Results shown are the combined duplicates of three separate FLS lines and two WT control FLS lines.
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C2C12 and MC3T3-E1 (47.6 ± 2.3, 51.3 ± 5.4 and 39.7 ±
9.4 pg/ml/1 × 105 cells; NS). K/BxN FLS possessed signif-
icantly higher basal production of IL-6 relative to WT
control FLS, C2C12 and MC3T3-E1 cells (169 ± 29.7 pg/
ml/1 × 105 cells; P < 0.05). All lines observed significantly
increased IL-6 secretion in response to TNF-a relative to
untreated controls (WT control FLS, 338 ± 39.4; C2C12
194 ± 10.2, MC3T3-E1, 285.9 ± 122; K/BxN FLS, 886.9 ±
378.3 pg/ml/1 × 105 cells; P < 0.05). The induction in
K/BxN FLS was significantly greater than the induction
observed in WT control FLS and MC3T3-E1 cells

(P < 0.05). Treatment with corticosterone had no signifi-
cant effect on IL-6 secretion in WT control FLS or
MC3T3-E1 cells but resulted in a significant decrease in
K/BxN FLS and C2C12 (K/BxN; Con, 169 ± 29.7 versus
corticosterone, 79.5 ± 71.3 pg/ml/1 × 105 cells; P < 0.05).

Inflammatory gene expression with progressive
subculture
To assess the maintenance of inflammatory genes over
time we collected mRNA in duplicate from one repre-
sentative FLS culture between passages two and eight

Figure 4 Regulation of IL-6 in FLS. Dose response analysis of IL-6 mRNA expression, determined by RT real-time PCR in (fibroblast-like
synoviocytes) FLS isolated from K/BxN mice following treatment with (a) corticosterone (0, 1, 10, 100, 500, 1000 nmol/l) or (b) TNFa (0, 0.1, 1, 5,
10, 25 ng/ml). (c) Fold change in IL-6 mRNA expression in wild-type (WT) control FLS, C2C12, MC3T3-E1 and K/BxN FLS, determined by real-time
RT-PCR. All mRNA data were normalized for levels of the housekeeping gene 18S rRNA and presented as fold change in expression (± standard
error) relative to either untreated control or untreated WT con FLS. (d) IL-6 secretion into culture media (pg/ml/100000 cells, ± standard error) in
WT con FLS, C2C12, MC3T3-E1 and K/BxN FLS, determined by specific ELISA. Both mRNA and conditioned media were collected at 16 hr
following treatment with either control, TNFa (10 ng/ml) or corticosterone (100 nmol/l). *P < 0.05, **P < 0.001 versus respective untreated
controls; #P < 0.05 versus untreated WT control FLS. Dose response experiments are the combined duplicates of two K/BxN FLS. All other data
are the combined duplicates of three separate FLS lines, two WT control FLS lines, two C2C12 repeats and two MC3T3-E1 repeats.
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(Figure 5a, b, c, d). IL-6, CCL-2, VCAM-1 and ICAM-1
were assessed over these time points. IL-6, CCL-2 and
VCAM-1 dropped sharply at passage three compared to
passage two in cultures (IL-6, 4.3 ± 0.3 fold; CCL-2, 7.1
± 0.05 fold; VCAM-1, 1.7 ± 0.02 fold, P < 0.05). Expres-
sion of IL-6 mRNA remained stable after this point up
to passage eight. Similarly, expression of CCL-2,
VCAM-1 and ICAM-1 remained stable after passage
three up to passage seven with a significant decrease in
expression at passage eight relative to passage three
(CCL-2, 15.3 ± 0.01 fold; VCAM-1, 3.01 ± 0.03 fold;
ICAM-1, 7.1 ± 0.01 fold relative to passages three; P <
0.05). Expression of the macrophage marker CD68 also

displayed a significant decrease beyond passage three
(Additional file 3).

Discussion
Fibroblast-like synoviocytes have been shown to play a
central role in defining the stromal environment in
inflammatory joint diseases and to be mediators of joint
destruction and persistent inflammation [26,35,36]. To
date, extensive research has been performed using
human FLS isolated from synovial tissue from patients
undergoing joint arthroplasty. These cells have been well
characterised in multiple disease states, including RA,
osteoarthritis, psoriatic arthritis, juvenile onset arthritis

Figure 5 Regulation of inflammatory markers over prolonged culture. Fold change in mRNA expression of inflammatory genes in
fibroblast-like synoviocytes (FLS), determined by real-time RT-PCR between passages 2 and 8 (P2 to P8). Expression of mRNA was measured at
16 hr for (a) IL-6, (b) chemokine ligand 2 (CCL-2), (c) vascular cell adhesion molecule 1 (VCAM-1) and (d) intercellular adhesion molecule 1
(ICAM-1). For each gene product data were normalized for levels of the housekeeping gene 18S rRNA and are presented as fold change in
expression (± standard error) relative to the P2 control. *P < 0.05 versus passage 2. #P < 0.05 versus passage 3. Results shown are the combined
duplicates of two K/BxN FLS.
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and crystal arthropathy [34,37]. In contrast, despite a
growing use of FLS isolated from murine inflammatory
models, a similar thorough characterisation of mouse
FLS has yet to be performed. In the present study, we
successfully isolated FLS from K/BxN mice and charac-
terised multiple inflammatory markers. Cells were char-
acterised on multiple criteria to provide the best
confirmation of their origin and purity. These included
general stromal fibroblast markers such as fibronectin
and prolyl 4-hydroxylase [38] and more specific FLS mar-
kers such as CD90.2 [39,40] and CD248 [41]. Alone,
CD90.2 stains numerous cell types including thymocyte
populations, neurons, epithelial cells and subsets of fibro-
blasts [42]. By contrast, CD248 has been shown to be a
fairly selective marker present in stromal fibroblasts and
pericytes within proliferating tissues such as inflamma-
tory lesions, lymphoid tissues, foetal tissues and tumours
[43-45]. Of particular interest are reports demonstrating
elevated CD248 expression within FLS and pericytes of
rheumatoid and psoriatic synovial tissues compared with
healthy controls [41]. We observed similar findings
within the synovium of inflamed K/BxN joints with
greater expression of both CD248 and fibronectin-posi-
tive cells compared to non-inflamed controls. The corre-
lation between CD248 and fibronectin within the
inflamed synovium and that observed in our in vitro cell
culture strongly suggests that these cells derive from this
tissue. However, it is the combination of CD90.2, CD248
with prolyl 4-hydroxylase and fibronectin that indicate
that these cells are truly FLS. Interestingly, we identified
expression of CD248 in our non-inflamed control FLS.
Although expression of this marker is greatly reduced in
the synovium of healthy controls, we were unable to
identify significant differences in expression between
non-inflamed and inflamed FLS by immunoflourescence.
The analysis of CD248 expression in different groups by
flow cytometry may provide a better measure of differ-
ences in relative expression, as well as allowing us to bet-
ter distinguish between CD248-positive cells within
ectopic lymphoid structures. However, the process of
actively culturing non-inflamed control FLS may itself
induce CD248 expression, with elevated CD248 being
observed in the stromal cells of proliferating tissues. One
final question we hoped to better address using FLS iso-
lated by this method was whether they were representa-
tive of an intimal or subintimal FLS population. Intimal
FLS can be distinguished from subintimal fibroblasts via
a number of well-characterised markers. These include a
high expression of the enzyme uridine diphosphoglucose
dehydrogenase (UDPGD), and the surface markers
VCAM-1 and cadherin-11 [46,47]. mRNA analysis of
both cadherin-11 and VCAM1 confirmed that both of
these markers were highly expressed in both the non-
inflamed and inflamed K/BxN FLS cultures. Although

these finding do not eliminate the possibility of a subinti-
mal fibroblast contamination, they do suggest that our
cultures are predominantly intimal. A more rigorous
approach would be to stain these cells for cadherin-11
and UDPGD to assess their purity. Finally, as part of the
characterisation of the FLS cultures, we were able to
show that these cells were able to migrate through a
matrigel membrane using a Boyden chamber method,
using PDGF as a chemoattractant. This was further
enhanced in the presence of TNF-a. The ability of FLS to
invade into cartilage is a defining characteristic of
inflamed synovial fibroblasts isolated from patients with
rheumatoid arthritis [15]. PDGF and TGF-a are known
to be potent stimulators of fibroblast migration and inva-
sive behaviour [48]. Further experiments to characterise
murine FLS might examine more closely their response
to these secreted factors.
Using these well-characterised FLS cultures, we gener-

ated an inflammatory gene set focussing on IL-6, CCL-2,
VCAM and ICAM-1. These cytokines, chemoattractants
and adhesion molecules are considered to play a signifi-
cant role in the pathology of RA and inflammatory disease
[17-22,49].
In human RA and osteoarthritis (OA) FLS cultures the

expression of these markers is elevated relative to fibro-
blasts isolated from non-inflamed tissues such as dermal
and bone marrow fibroblasts [35]. Our FLS cultures mir-
rored these finding, with greater expression of inflamma-
tory markers compared to fibroblasts isolated from
non-inflamed synovium. This suggests that these cells are
a useful model with relevance to human disease. Similarly,
glucocorticoids were able to abrogate these elevated
inflammatory markers, reducing their expression to a level
that matched that of other mesenchymal cell lines [25].
TNF-a expression is highly upregulated in the RA syno-

vium [25,26,35] and regulates proinflammatory cytokines
such as IL-1, IL-6, IL-8 and granulocyte-macrophage col-
ony-stimulating factor (GM-CSF) [50,51]. In particular, its
importance has been demonstrated through the efficacy of
TNF-a-depleting antibodies in the treatment of RA [52].
In this study, we examined a set of key inflammatory
genes in murine FLS. In response to TNF-a all markers
were significantly increased. The increase in IL-6 and
CCl-2 was greater in FLS isolated from inflamed tissue
relative to non-inflamed joints [35]. By contrast VCAM-1
and ICAM-1 demonstrated similar TNF-a induction in
FLS isolated from inflamed and non-inflamed tissue.
These data indicate that the persistent changes elicited on
murine FLS by the inflammatory environment appear to
be directed towards the systemic or local actions of IL-6
and CCL-2 mediated chemoattraction of monocytes popu-
lations. The idea of FLS derived IL-6 being of importance
is of particular interest, as this cytokine has been shown to
drive differentiation and activation of T helper (Th)
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17 cells in RA [21,22]. Consequently these data suggest
there may be a similar mechanism involved in K/BxN
arthritis. IL-6 secretion by FLS followed an identical pat-
tern to changes in mRNA expression. These data highlight
the use of IL-6 as an effective marker reflecting our results
in the overall inflammatory gene set. Indeed, in multiple
cell types including the uncommitted mesenchymal line
C2C12, the partially differentiated osteoblast line MC3T3-
E1 and control FLS isolated non-inflamed FLS, all had sig-
nificantly lower levels of IL-6 compared to FLS isolated
from inflamed joints. Certainly the K/BxN FLS possessed
a greater capacity to respond to TNF-a confirming that
these cells maintain an activated inflammatory phenotype
compared to other mesenchymal cell lines.
As basal IL-6 expression was relatively high in K/BxN

FLS, as well as being sensitive to both pro- and ant-
inflammatory intervention, we concluded this cytokine
may make a useful marker of inflammatory activation in
murine FLS. Time course analysis and dose responses of
IL-6 mRNA expression in response to corticosterone
and TNF-a demonstrated changes with time and dose
occurred across ranges that are considered to be physio-
logical and/or that have been shown to be reached
within inflamed tissues [53]. The findings within this
study should facilitate the selection of appropriate doses
and time points for readouts using murine FLS.
We also investigated the stability of the inflammatory

phenotype in FLS with prolonged culture. Our data
demonstrate significant macrophage contamination in
primary cultures up to passage four. From this point all
inflammatory genes examined remained stable through
to passage seven. Beyond passage seven, several of the
inflammatory genes began to show a significant decrease
in expression. Consequently, based on these data, we
would recommend use of murine FLS between passages
four and eight. These finding are very similar to the
subculture viability observed in human FLS.
In addition to the collagenase and in vitro culture

method of FLS isolation used in this paper, several other
methods have been successfully applied for the purpose
of human synovial fibroblast culture. Of particular inter-
est is the CD14-negative selection method where mag-
netic beads are used to remove synovial macrophages
from the culture [34]. This can be further coupled with
CD90.2-positive selection to yield an even purer FLS
population. This has the advantage of removing many of
the primary contaminating cell types early on in FLS
culture, negating the need for prolonged subculture and
in vitro expansion, potentially providing a cell popula-
tion that is more representative of in vivo synovial fibro-
blasts. Future work in the K/BxN mice might utilise this
methodology to compare and improve the characterisa-
tion of FLS isolated from inflamed synovium. The uses
of synovial fragments for direct FLS culture outgrowth

have also proved a viable method of isolation in human
inflammatory disease. Unfortunately, this method is
more complicated in murine inflammatory models due
to the reduced quantities of inflamed synovium within
murine joints.
The use of murine FLS have been instrumental in

delineating the mechanisms of inflammatory bone loss.
These include observations by Wei et al. and Li et al.
demonstrating proinflammatory mediated signalling can
induce RANKL secretion by FLS, increasing osteoclast
activity [9,11]. More recently, seminal work by Diarra
et al. identified proinflammatory NF�-B signalling being
important in increasing DKK-1 secretion by murine
FLS, interfering with osteoblast maturation [10]. Many
more studies have focused on the roles FLS play in
pathophysiology of inflammatory disease exploring their
contribution to leukocyte activation and driving the
inflammatory process [54-56]. Importantly, work focus-
ing on murine FLS culture in inflammatory models have
provided greater insights into synoviocyte survival,
migration, proliferation and contribution towards joint
destruction that occur in human FLS-mediated disease
[57-60].
By examining multiple proinflammatory genes in

K/BxN FLS, we have created an inflammatory gene set
that can be used to identify these cells in vitro. This
information also provides a benchmark for examining
how this profile is influenced by various pro- and anti-
inflammatory interventions. This will help establish a
normal standard profile from which to compare FLS iso-
lated from transgenic mice. We examined FLS isolated
from the K/BxN mice model of inflammation. This had
the advantage of providing us with cells from tissues that
have been exposed to prolonged inflammation, mirroring
the situation in human inflammatory joint disease such
as RA. Encouragingly the inflammatory gene expression
observed in murine FLS were very similar to that seen in
human FLS cultures, responding in an identical manner
as previously reported for both TNF-a and the glucocor-
ticoid corticosterone [25]. Additionally, these markers
were maintained in the same way as with human culture
over prolonged culture [25,34]. Consequently these data
supports the use of these cells in ongoing studies looking
at the mechanism of inflammation, where differences
between murine and human can be common. It is cur-
rently unclear how the K/BxN FLS isolated here compare
to FLS isolated from other inflammatory models such as
collagen antibody-induced arthritis (CAIA) and antigen-
induced arthritis (AIA). In human disease, FLS have been
shown to possess different inflammatory profiles and
responses between disease states such as OA and RA.
Consequently, future studies might benefit from similar
characterisation of FLS in a panel of inflammatory mouse
models.
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Conclusions
Fibroblast-like synoviocytes have been shown to play a
key role in the pathophysiology of inflammatory disease.
In this study, we have characterised FLS isolated by col-
lagenase digestion of synovial tissue from the K/BxN
inflammatory mouse model. These were shown to
respond to pro- and anti-inflammatory stimuli and
express stromal and inflammatory markers in a manner
that closely resembled that seen in human FLS culture.
Consequently, this study provides characterisation and
culture guidelines that support the growing body of work
on murine FLS to model human inflammatory disease.

Additional material

Additional file 1: Unedited mRNA gel images. Unedited gels for the
mRNA expression of 18S, prolyl 4-hydroxylase (P4H), CD248, osteocalcin
(OCN) and CD68 determined by standard RT-PCR at 35 cycles in one
non-inflamed control FLS (wild-type), three K/BxN FLS lines (FLS 1 to 3),
primary calvarial osteoblasts (OBs) and the macrophage cell line RAW
264.7 (MF).

Additional file 2: Positive control images for CD31 and CD68
staining. Expression of CD31 (blue) in K/BxN fibroblast-like synoviocytes
(FLS) culture determined by confocal immunofluorescence and in murine
lung by immunohistocemistry, CD68 (red) in K/BxN FLS and in RAW
CD68 +ve cells determined by confocal immunofluorescence. Nuclei are
counterstained in green. Images shown are representative of three
separate FLS cell lines.

Additional file 3: mRNA expression of CD68, cadherin 11 and IL-6.
(a) Fold change in mRNA expression of the macrophage surface marker
CD68 in K/BxN fibroblast-like synoviocytes (FLS) at passages 3 and 4
determined by real-time RT-PCR. For each gene product data were
normalized for levels of the housekeeping gene 18S rRNA and are
presented as fold change in expression (± standard error) relative to the
P2 control. Results shown are the combined duplicates of two K/BxN
FLS. (b) mRNA ΔCt values for cadherin 11 in three separate wild-type
non-inflamed and three K/BxN FLS cell lines after 16 hr treatments with
either vehicle or TNF-a at 10 ng/ml. (c) Fold change in IL-6 mRNA
expression over 0, 2, 4, 8, 16 and 24 hr following treatment with either
corticosterone (100 nmol/l) or TNF-a (10 ng/ml). Results shown are the
combined duplicates of three separate FLS lines. Data were normalized
for levels of the housekeeping gene 18S rRNA and are presented as fold
change in expression (± standard error) relative to the 0 hr control. *P <
0.05, **P < 0.001 versus respective untreated control.
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