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Nickel-catalysed selective migratory
hydrothiolation of alkenes and alkynes with thiols
Yulong Zhang1,3, Xianfeng Xu1,3 & Shaolin Zhu 1,2

Direct (utilize easily available and abundant precursors) and selective (both chemo- and

regio-) aliphatic C–H functionalization is an attractive mean with which to streamline che-

mical synthesis. With many possible sites of reaction, traditional methods often need an

adjacent polar directing group nearby to achieve high regio- and chemoselectivity and are

often restricted to a single site of functionalization. Here we report a remote aliphatic C–H

thiolation process with predictable and switchable regioselectivity through NiH-catalysed

migratory hydrothiolation of two feedstock chemicals (alkenes/alkynes and thiols). This mild

reaction avoids the preparation of electrophilic thiolation reagents and is highly selective to

thiols over other nucleophilic groups, such as alcohols, acids, amines, and amides.

Mechanistic studies show that the reaction occurs through the formation of an RS-Bpin

intermediate, and THF as the solvent plays an important role in the regeneration of NiH

species.
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Organosulfur compounds, metabolites or macromolecules
essential to life, are prevalent in pharmaceuticals, natural
products, and materials (Fig. 1a)1–3. They compose ~20%

of all Food and Drug Administration-approved drugs4,5. The
development of protocols for the sustainable and efficient con-
struction of C–S bonds is important in chemical synthesis.
Commonly used methods for the construction of such bonds
include Michael addition, SN2-type alkylation, and the powerful
transition-metal-catalyzed C–S cross-coupling6–11. One potential
and more attractive strategy for their construction is through the
selective C−H functionalization9, because this leads to the utili-
zation of more widely available starting materials or more concise
synthetic routes. However, to achieve excellent regio- and che-
moselectivity, most of these processes need a polar directing
group in the vicinity, and this limits their application in organic
synthesis. As an alternative, the recently emerging metal-hydride-
catalyzed12–15 olefin remote functionalization16–53 can install a
functional group at a distal position in a hydrocarbon chain
under mild conditions. Starting from the ubiquitously available
olefin-containing substrates, and using an extra hydride source,
the NiH-catalyzed remote hydrofunctionalization39–53 with
aryl/alkyl halides as electrophiles has been established as a pow-
erful protocol for the construction of a diverse range of C–C

bonds at a distal, inert sp3 C–H position (Fig. 1b)43–53. However,
the electrophilic amination or thiolation reagents required to
forge the more challenging carbon–heteroatom bond are gen-
erally not stable and often not commercially available, especially
when bearing functional groups. Their preparation is nontrivial
and time consuming, and often involves the use of the stoichio-
metric amounts of hazardous reagents.

To address these challenges, we enquired whether unmodified
nucleophilic thiols that are widely available could be employed
directly. Here we present the successful application of these ideas
and describe an operationally trivial approach that allows the
direct selective sp3 C–H thiolation with a naked thiol (Fig. 1c) at a
distal benzylic position, the α-carbon of an ether, or a terminal
position of the hydrocarbon chain of an alkene. A number of
features of a transformation of this sort can be highlighted as
follows: (a) high chemoselectivity of the thiol group in the pre-
sence of a series of potentially reactive functional groups such as
amides, acids, alcohols, and amines; (b) excellent regioselectivity
amongst multiple sites, including a benzylic position, a carbon α
to the oxygen atom position, or a terminal position; (c) a regio-
convergent process for the conversion, for example, of isomeric
mixtures of olefins; and (d) feedstock thiols as thiolation reagents,
such a process avoids the preparation of electrophilic thiolation
reagents.

Results
Regiodivergent thiolation reaction design and optimization.
We began our investigation by examining the remote hydro-
thiolation of 4-phenyl-1-butene (1a) with benzyl mercaptan (2a).
After careful evaluation of a variety of nickel sources, ligands, bases,
hydride sources, and solvents (Fig. 2), we found that a reaction at
60 °C employing a combination of NiI2 as a catalyst, bathocuproine
(L1, 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline) as a ligand,
HBpin (pinacolborane) as the hydride source, Li3PO4 as the base,
and mixed tetrahydrofuran/acetonitrile (THF/CH3CN) as the sol-
vent delivers the desired migratory benzylic thiolation product (3a)
in 75% isolated yield as a single regioisomer [regioisomeric ratio
(major product: all other isomers) >99:1] (Fig. 2, entry 1). Use of
other nickel sources, such as NiCl2 or NiBr2, leads to diminished

a Representative organosulfur compounds in natural products and pharmaceuticals

b Previous work: remote hydrofunctionalization of alkenes with electrophilic coupling reagents

c This work: selective migratory thiolation of unactivated alkenes/alkynes with thiols directly
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Fig. 1 Design of a NiH-catalyzed remote hydrothiolation reaction. a
Representative organosulfur compounds in natural products and
pharmaceuticals. b Previous work: remote hydrofunctionalization of alkenes
with electrophilic coupling reagents. c This work: selective migratory
hydrothiolation of unactivated alkenes/alkynes with thiols directly. tBu, tert-
butyl; Ph, phenyl; FG, functional group; LG, leaving group
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Entry Deviation from standard conditions Yield of 3a (%)* r.r.†

2 NiCl2, instead of NiI2 0 –

3 NiBr2, instead of NiI2 15 64:36

4 L2, instead of L1 30 93:7

5 Me(MeO)2SiH, instead of HBpin 0 –

7 CsF, instead of Li3PO4 0 –

8 THF only 75 >99:1

9 CH3CN only 5

10 50 °C, instead of 60 °C 75 >99:1
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Fig. 2 Optimization of regiodivergent remote hydrothiolation. *Yields were
determined by gas chromatography (GC) analysis using n-tetradecane as
the internal standard. The yield within parentheses is the isolated yield and is
an average of two runs (0.20mmol scale). †r.r. refers to regioisomeric ratio,
representing the ratio of the major product to the sum of all other isomers as
determined by GC analysis. ‡The linear thioether (3A) is obtained as a single
isomer; conditions B for terminal selectivity: NiI2 (5mol%), L2 (6mol%),
(MeO)2MeSiH (3.5 equiv.), DMSO (0.50M), 50 °C, 48 h. Ph, phenyl; Bn,
benzyl; nPr, n-propyl; HBpin, pinacolborane; THF, tetrahydrofuran; DMSO,
dimethyl sulfoxide
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yields and selectivities (Fig. 2, entries 2 and 3). Ortho substituents
in the bipyridine ligand are critical for the reaction, and use of a
similar ligand (L2) leads to inferior yield and regioisomeric ratio
(Fig. 2, entry 4). Changing the hydride source to silanes, such as
dimethoxy(methyl)silane, results in none of the desired product
(Fig. 2, entry 5). The addition of the base Li3PO4 improves the yield
but is not essential (Fig. 2, entry 1 vs. entry 6). CsF, which we
previously used in remote hydroarylation reactions45, leads to
complete failure of the reaction (Fig. 2, entry 7). Notably, control
experiments show that the cyclic ether solvent is necessary for the
reaction to proceed (Fig. 2, entry 8 vs. entry 9). In addition, a
slightly lower yield is obtained at lower temperature (Fig. 2, entry
10). Interestingly, after a thorough re-evaluation of the reaction
parameters, we were able to change the thiolation site to the
terminal position54–60 to generate a very good yield of the linear
thioether as a single isomer (Fig. 2, entry 11).

Substrate scope. With the optimal conditions in hand, we sought
to define the scope of the alkene component (Fig. 3). First, an
array of terminal aliphatic alkenes with a variety of ortho, meta,

and para substituents on the remote aryl ring (3c–3l) are found to
perform well producing the desired benzylic thioether exclusively
(Fig. 3a). Substrates containing both electron-rich (3c and 3g)
and electron-deficient (3d–3f and 3 h) arenes are suitable for this
reaction. Structurally complex aromatic systems such as sugar-
linked aryl ring (3j) and camphor-linked aryl ring (3k) are
amenable to the migratory cross-coupling. Heteroaromatic sub-
strates, such as those containing a pyridine-linked aryl ring (3l) or
a thiophene (3m) in place of the aryl group, are also well toler-
ated. Unactivated internal olefins also readily undergo alkene
isomerization-hydrothiolation smoothly (Fig. 3b). As expected, E/
Z alkene mixtures (3n–3r and 3t) react well, and high selectivity
for thiolation at the benzylic position is observed, regardless of
the starting position of the C=C bond. For substrates with a
tertiary carbon on a benzyl position, which previous
reports43,46,48 have noted as challenging, migration towards the
benzylic position and subsequent thiolation to generate the S-
containing tetrasubstituted carbon center is still preferred (3t).
Styrenes themselves (3u–3c′) are also suitable partners under
these conditions (Fig. 3c). Compounds with a variety of func-
tional groups on the aryl ring of styrene are tolerated, including
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an aryl fluoride (3u), a boronic acid pinacol ester (3v), an aryl
nitrile (3w), and an ester (3c′). The reaction can also be extended
to α-methyl styrenes to provide exclusively the benzylic thioethers
(3b′ and 3c′) with a fully substituted carbon center.

It is important to highlight that alkynes, another type of easily
prepared starting material, could undergo reductive remote
hydrothiolation to deliver the same migratory thiolation products
(3d′ and 3e′, Fig. 3d). Mechanistically, the vinylnickel inter-
mediate formed upon hydrometallation of the alkyne is selectively
captured by a proton source (thiol) forming an alkene. Isotope
labeling experiments indicated that the source of protons in this
reaction is mainly from the thiol (see Supplementary Fig. 10 for
details), while the alkylnickel intermediate formed upon hydro-
metallation of this alkene selectively engages with the NiH-
catalyzed chainwalking-thiolation reaction. Finally, the current
benzylic regioselectivity can also be easily extended, as in
thiolation at the carbon α to the oxygen atom, producing the
monothioacetals (3f′ and 3g′, Fig. 3e) in moderate yields as single
isomers.

Further investigation of the reaction demonstrated the broad
scope of thiol partner (Fig. 4). In general, both aliphatic (4b–4m)
and aromatic (4n–4c′) thiols are excellent reaction partners and
give the corresponding benzylic thioethers with good to excellent
yields and regioselectivities. An array of primary and secondary
aliphatic thiols all prove to be competent substrates, delivering
the desired benzylic thiolation products in good to excellent yields
(4b–4l). For the steric hindered tertiary thiol, a disulfide can be
used to obtain a satisfactory yield (4m). In addition, a variety of
electron-withdrawing (4o–4u and 4w) and electron-rich (4v and
4x–4b′) thiophenol derivatives are competent substrates. A
variety of heterocycles frequently found in medicinally active
agents, including both furan (4i, 4c′) and thiophene (4j), are also
compatible, and a variety of functional groups are readily

accommodated, including esters (4e and 4h), an aryl fluoride
(4p), an aryl chloride (4q–4s), and ethers (4u–4x). Notably,
potential coupling motifs, including a primary alcohol (4f), a
primary carboxylic acid (4g), a phenol (4y), a primary aniline
(4z), a secondary Boc carbamate (4h), and a secondary acetyl
amide (4a′) remain intact, which demonstrates both the excellent
chemoselectivity of this transformation and their potential
application in selective cysteine conjugation in biomolecules.

Discussion
To gain some insights into the chainwalking process of olefin
isomerization, olefin 1a was subjected to the standard reaction
conditions in the absence of any thiol. A significant amount of
other olefin isomers arising from the olefin isomerization is
observed within 1 h, which indicates that occurrence of olefin
isomerization does not depend on the presence of the thiol and
also suggests that olefin isomerization is unrelated to C–S cou-
pling (Fig. 5a, above). Additionally, consistent with our previously
reported results, a mixture of olefins is observed when the reac-
tion is run to partial conversion (Fig. 5a, below), indicating that
olefin isomerization proceeds with fast dissociation and reasso-
ciation of the NiH species. Furthermore, the corresponding iso-
topic labeling experiments were carried out with deuterothiol and
deuteropinacolborane, respectively (Fig. 5b). No deuterium
incorporation in the desired product is noted when deuterothiol
is used, indicating that the thiol is not involved in chainwalking
process. As expected, deuterium scrambling and deuterium
incorporation is observed at all positions along the aliphatic
chain, with the exception of the benzylic position. Mass spec-
trometric analysis revealed that a mixture of undeuterated,
monodeuterated, and polydeuterated products is obtained. This is
consistent with the hypothesis that chainwalking occurs with

4t 75% yield, >99:1 r.r.4s 68% yield, >99:1 r.r.
4q (o-Cl) 76% yield, >99:1 r.r.
4r (m-Cl) 77% yield, >99:1 r.r.4p 83% yield, >99:1 r.r.

4v (o-OMe) 95% yield, >99:1 r.r.
4w (m-OMe) 98% yield, >99:1 r.r.
4x (p-OMe) 90% yield, >99:1 r.r. 4y† 88% yield, >99:1 r.r.

4u 88% yield, >99:1 r.r.

4c' 78% yield, >99:1 r.r.4z† 92% yield, >99:1 r.r. 4b' 76% yield, >99:1 r.r.

4o 95% yield, >99:1 r.r.

4a' 94% yield, >99:1 r.r.

S

Ph nPr

Cl

S

Ph nPr

F

S

Ph nPr

ClCl

S

Ph nPr

F3C

S

Ph nPr

OCF3

S

Ph nPr

OMe

S

Ph nPr

OH

S

Ph nPr

NH2

S

Ph nPr

NHAc

4b 82% yield, >99:1 r.r. 4g† 66% yield, >95:5 r.r.4f† 89% yield, >95:5 r.r.

4k 77% yield, >99:1 r.r. 4l 89% yield, 1:1 d.r., >99:1 r.r. 4m‡ 90% yield, >99:1 r.r.

4d 87% yield, >95:5 r.r.

tBu
S

Ph nPr

Cy
S

Ph nPr

S

Ph nPr

iPr

Me

S

Ph nPr

O
Me

S S

nPr

Ph

Ph

nPr

S

Ph nPr

S

Ph nPr

()16

Me
S

Ph nPr

()4

4i X = O, 63% yield, >99:1 r.r.
4j X = S, 70% yield, >99:1 r.r.

S

Ph nPr

X

OH S

Ph nPr

()8 CO2H

4e 78% yield, >95:5 r.r.

4n 95% yield, >99:1 r.r.

S

Ph nPr

tBu

4h 70% yield, 1:1 d.r., >99:1 r.r.

S

Ph nPr

CO2Et

NHBoc

4c 90% yield, >99:1 r.r.

S

Ph nPr

Bn

Cysteine derivative

n-Pr
nPrnPr

Ph PhS
()10

O()2

O

SPh

3

S

10 mol% NiI2, 12 mol% L1
3.5 equiv. HBpin

2.0 equiv. Li3PO4
THF/DMPU (2:1, 0.33 M)

50 °C, 48 h

Ph +

2
thiol

1a
alkene

4
(Remote C–H thiolation)

R–SH
Ar Me

SR
√ Chemoselective

√ Benign conditions

√ Broad substrate scope Selective coupling of thiol group

SHHO

CO2H

NH2

aryl/alkyl

Et

Fig. 4 Substrate scope of thiol partner. Under each product is given yield in percent, and either the regioisomeric ratio (r.r.) or the diastereomeric ratio (d.r.).
Yield and r.r. are as defined in Fig. 3 legend. †5.0 equiv. HBpin was used. ‡Di-tert-butyl disulfide (0.10mmol, 0.50 equiv.) was used. Boc, tert-butoxycarbonyl;
Ac, acetyl; DMPU, 1,3-dimethyl-3,4,5,6-tetrahydro-2(1H)-pyrimidinone

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-09783-w

4 NATURE COMMUNICATIONS |         (2019) 10:1752 | https://doi.org/10.1038/s41467-019-09783-w |www.nature.com/naturecommunications

www.nature.com/naturecommunications


dissociation and reassociation of free NiH/NiD from the NiH/
NiD-alkene complex. Finally, no migratory reaction takes place
when the linear sulfide (3A) is resubjected to the standard

conditions, suggesting that chainwalking preceeds the C–S cou-
pling (Fig. 5c, above). Following the detection of trace amounts of
a remote hydroboration product (6), this migrated hydroboration
intermediate was resubjected to the standard conditions. How-
ever, no desired thiolation product was observed, suggesting that
the C–S coupling step does not proceed through the remote
hydroboration intermediate (Fig. 5c, below).

To shed light on the thiolation process, a variety of experi-
ments were carried out. When 0.5 equiv. of a symmetrical dis-
ulfide is used instead of 1.0 equiv. of the corresponding thiol, the
desired remote hydrothiolation product is obtained in a com-
parable yield (Fig. 6a), indicating that the disulfide might be the
potential reactive intermediate of the thiol. Monitoring the
remote hydrothiolation reaction of a disulfide by 19F NMR
(fluorine-19 nuclear magnetic resonance), however, indicates that
the disulfide (δ=−114.9 ppm) is first transformed into an RS-
Bpin intermediate (δ=−116.8 ppm) (Fig. 6b). Significantly,
analogous experiments on the corresponding thiol substrate (δ=
−118.9 ppm) also reveal the generation of this RS-Bpin inter-
mediate (δ=−116.8 ppm) with no trace of disulfide detected
(Fig. 6c). Meanwhile, the generation of H2 in this standard
reaction is also observed by gas chromatography (GC) analysis.
Overall, these results reinforce the notion that the disulfide is not
involved as the active intermediates from the thiol, and suggests
that the in situ generated RS-Bpin might be the actual thiolation
reagent.

Encouraged by these results, we wondered whether the pre-
generated RS-Bpin reagent could be employed directly instead of
a thiol. Indeed, as shown in Fig. 7, changing the thiolation reagent
from a thiol to RS-Bpin 2A′, generated in situ from the thiol and
HBpin, a competent yield of 3a is obtained. In this case, only a
stoichiometric amount of the alkene is required and the desired
thiolation product could still be obtained in comparable yield (cf.
Fig. 7, entries 3–6). For instance, 3a is obtained in 84% yield when

a Alkene isomerization

b Isotopic labelling

c Potential migratory process
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1:1 stoichiometry of alkene and RS-Bpin is used and the yields are
even better (88 and 93%, respectively) when a slightly excess of
alkene or RS-Bpin is used (1.2 equiv.). This finding, together with
the results disclosed in Fig. 6, suggests that the reactive inter-
mediate of thiol is the RS-Bpin complex.

Control experiments reveal that the solvent THF plays an
important role. Only 5% yield of desired product is observed in
the absence of this solvent. As shown in Fig. 8a, a different
reactivity is observed when the solvent THF is replaced by a
variety of other ethers in the standard reaction conditions. The
nature of the ether backbone plays a crucial role, we found that
only cyclic ethers with a β-hydride can produce the desired
product in a reasonable yield. In contrast, acyclic ethers or cyclic
ethers lacking a β-hydride do not have such a profound effect on
reactivity. We postulated that the ether solvent might participate
in the catalytic cycle. To verify this hypothesis, additional studies
about the amount and consumption of ethers were carried out. As
shown in Fig. 8b, both the yields and regioselectivities improved
when the amount of THF is increased. The consumption of ether
could also be observed during the reaction process (Fig. 8c). Only
trace amounts of product (~1% yield) are produced during the
first 6 h and the regioselectivity is poor in the first 12 h of the

reaction. Subsequently, the yield of desired product increases
significantly, but the yield of other regioisomers (linear isomer)
fails to increase after the first 12 h (Fig. 8c, entry 3 vs. entry 1).
The origin of this apparent induction period as well as initial low
regioselectivity is still under investigation. Finally, as shown in
Fig. 4d, when deuterated THF-d8 is used in both standard and
modified standard reactions, a small amount of deuterium
scrambling and deuterium incorporation at all positions except
the benzylic position along the aliphatic chain of the desired
product is observed by 2H NMR and mass spectrometric analysis.
This indicates that a small amount of NiD is involved in the
chainwalking process and the small amount of NiD should come
from the deuterated THF-d8.

To probe further the role of THF, Boron-11 NMR (11B NMR)
experiments were carried out to trace the standard reaction. As
shown in Fig. 8e, the generation of RS-Bpin intermediate (δ=
33.6 ppm) is confirmed again by 11B NMR spectroscopic analysis.
We could also observe two new boron signals accompanied with
the consumption of THF, which matches the signals of Bpi-
nOBpin (δ= 21.2 ppm) and ROBpin (δ= 22.3 ppm).

Although an in-depth mechanistic discussion must await fur-
ther investigation, a description of the proposed pathway, based
on the above mechanistic studies, is shown in Fig. 9. The active
nickel(I) hydride species (I)61–66, which is initially formed from a
Ni(II) precursor, a ligand, and an hydride source, inserts into the
alkene (1a), and initiates the relatively fast and reversible chain-
walking process through iterative β-hydride elimination/migra-
tory reinsertion processes. A series of isomeric alkylnickel(I)
species (II, IV, …) is then accessed through this chainwalking
process. Controlled by the choice of ligand, selective reaction of
the benzylic alkylnickel(I) intermediate (IV) with the thiolation
reagent, the RS-Bpin (2A′) generated in situ from thiol and
pinacolborane, probably through an oxidative addition and
sequential facile reductive elimination67–70 process then delivers
the benzylic thiolation product (3a) along with LNi(I)Bpin (V).
The active LNi(I)Bpin (V) species is then captured by THF to
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generate the corresponding alkylnickel(I) intermediate (VI).
Sequential chainwalking and β-oxy elimination would deliver the
isomeric mixture of butene along with LNi(I)OBpin (VII). The
nickel hydride species (I) is then regenerated in situ by a stoi-
chiometric amount of the pinacolborane to complete the catalytic
cycle. Additional studies aimed at a full elucidation of the reaction
pathway are in progress.

Mixtures of olefin isomers are generally more widely available
than single isomers. Owing to the difficulty of isolation of each
pure isomer, such mixtures are substantially cheaper than the
pure isomers. Conversion of such mixtures in a regioconvergent
process into value-added specialty chemicals is therefore of
considerable interest. As expected, the robustness and utility of
this catalytic system are further demonstrated through the
employment as starting materials of isomeric mixtures of olefins,
and the benzylic thioethers (3s and 3o) can be obtained in high
yield as a single regioisomer in both cases (Fig. 10a).

Finally, as shown in Fig. 2 and Fig. 10b, the current benzylic
regioselectivity can also be switched to a terminal site to form the
anti-Markovnikov hydrothiolation54–60 products. A series of
terminal alkenes can be effectively hydrothiolated under a mod-
ified reaction conditions (8a–8d).

In summary, we have developed a NiH-catalyzed remote
hydrothiolation reaction of alkenes using thiols directly as thio-
lation reagents. This transformation utilizes readily accessible
alkenes/alkynes and thiols as starting materials and earth-
abundant nickel salts as catalysts. The mild process allows the
direct installation of a thioether group at a benzylic, α-ether, or a
terminal position with excellent regio- and chemoselectivity, as
well as high functional group tolerance. Moreover, mechanistic
studies reveal that the activated thiolation reagent is the RS-Bpin
intermediate, and the ether solvent plays an important role in the
regeneration of NiH species. Finally, the practical value of this
transformation is highlighted by the regioconvergent conversion
of unrefined isomeric mixtures of alkenes. The application of this
protocol in cysteine bioconjugation as well as an asymmetric
version of the current transformation is currently in progress and
will be reported in due course.

Methods
General procedure for NiH-catalyzed remote hydrothiolation. To an oven-dried
8 mL screw-cap vial equipped with a magnetic stir bar was added NiI2 (3.2 mg, 5.0
mol%) and bathocuproine (L1, 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline)
(4.0 mg, 6.0 mol%). The vial was introduced into a nitrogen-filled glove box,
anhydrous THF (0.40 mL) and CH3CN (0.20 mL) were added, and the mixture was
stirred for 10 min, at which time alkene (0.40 mmol, 2.0 equiv.), benzyl mercaptan
(25.0 mg, 0.20 mmol, 1.0 equiv.), HBpin (pinacolborane, 100 μL, 0.70 mmol,
3.5 equiv.) and Li3PO4 (50 mg, 0.40 mmol, 2.0 equiv.) were added to the resulting
mixture in this order. The tube was sealed with a teflon-lined screw cap, removed
from the glove box and stirred at 60 °C for 24 h (the mixture was stirred at
750 rpm). After the reaction was complete, the reaction mixture was immediately
filtered through a short pad of silica gel (using EtOAc in hexanes) to give the crude
product. n-Tetradecane (20 μL) was added as an internal standard for GC analysis.
1,1,2,2-Tetrachloroethane (10.5 μL, 0.10 mmol) was added as internal standard for
1H NMR analysis of the crude material. The product was purified by chromato-
graphy on silica gel for each substrate. The yields reported are the average of at
least two experiments, unless otherwise indicated. See Supplementary Information
for more detailed experimental procedures and characterization data for all
products.

Data availability
The authors declare that the main data supporting the findings of this study, including
experimental procedures and compound characterization, are available within the article
and its Supplementary Information files, or from the corresponding author upon
reasonable request.
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