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Abstract: This article examines the presence of the empirical tendency known as the Menzerath–
Altmann Law (MAL) on protein secondary structures. MAL is related to optimization principles
observed in natural languages and in genetic information on chromosomes or protein domains. The
presence of MAL is examined on a non-redundant dataset of 4728 proteins by verifying significant,
negative correlations and testing classical and newly proposed formulas by fitting the observed
trend. We conclude that the lengths of secondary structures are specifically dependent on their
number inside the protein sequence, while possibly reflecting the formula proposed in this paper.
This behavior is observed on average but is individually avoidable and possibly driven by a latent
cost function. The data suggest that MAL could provide a useful guiding principle in protein design.

Keywords: Menzerath–Altmann law; secondary structures; proteins; quantitative linguistics; empiri-
cal law; formula fitting

1. Introduction

The Menzerath–Altmann law (MAL) is a specific empirical relation holding between
the average lengths of so-called components and their constructs. This relation was first
observed on natural languages [1,2], where we find the longer words are on average (mea-
sured in syllables), the shorter are the syllables (measured in phonemes), yielding an inverse
trend relation that can be described by a specific mathematical formula. Subsequently,
the MAL has been observed to hold for genetic information: on genomes (constructs) and
chromosomes (constituents) [3–7]; genes (construct) and exons (constituents) [8]; proteins
(constituents) and proteomes (constructs) [9]; and, finally, proteins (constructs) and do-
mains (constituents) [10]. The presence of the MAL is assumed to be related to the principle
of least effort or the search for a balance between conflicting demands [2]. From this point
of view, the MAL has been discussed as a state of equilibrium between cost (in terms of
energy) and robustness and flexibility of the molecular system [10].

The purpose of this work is to assess the presence of the MAL on the secondary
structures of proteins, i.e., to study whether and how the average lengths of α-helices and
β-sheets (measured in the number of amino acids) are dependent on their count inside
the proteins and what formula can describe this relation. This has not been yet studied;
however, findings may provide information on protein design, protein evolution, protein
pathology and/or protein model assessment.

The observation of the MAL in [3] raised a discussion about the inevitability or trivial-
ity of the inverse dependency described by the MAL, as it also emerged from stochastic
simulations in [4]. Its inevitability has been rejected by empirical observations in [5–7],
which point out that the MAL is at least optional as several species violated this inverse
relation at the levels of chromosome and genomes by displaying its opposite: the longer
the chromosomes, the longer the genomes. The question of inevitability based on stochastic
simulations was also discussed and rejected in [11]. More recently, [12] examined the
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emergence of the inverse trend on language-like patterns, while pointing to the need to
differentiate between two distinct principles: the Menzerath Law (ML) and the Menzerath–
Altmann Law, which differ by means of its detection and implications.

ML is a label only for the presence of the inverse relation itself. It is tested by the
presence of significant, negative correlations in the data (i.e., [3–5,8]); this inverse relation
may, however, arise also from stochastic processes, and its mere presence is insufficient to
draw any conclusions.

Menzerath–Altmann Law (MAL) is, in contrast to ML, a specific description of the
relation defined by a specific formula. In other words, while ML assumes any, even
chaotical downward trend to be accepted, the MAL assumes the existence of a specific
non-chaotical average behavior reflecting a specific formula. The formulas describing the
MAL were originally designed for natural languages and are examined by means of data
fitting (i.e., [6,7,9,10]). It has been shown that such formulas fit natural language texts better
than they can fit the products of stochastic processes.

As an implication, this article first tests the necessary ML (i.e., the inverse dependency
of the average lengths of secondary structures to their number in protein) and, in the case
the ML is not rejected, the work examines which specific MAL formula best describes the
relation found. The formulas used are presented in [2,4,13] and include a newly developed
formula. The main conclusions of this work aim to demonstrate whether an inverse
relation holds between the number of secondary structures and their average lengths in the
proteins, determine how this relation can be mathematically modeled, and determine what
the possible implications and applications of our findings are.

2. Results

We collected a dataset of 4728 proteins. Each protein has an experimentally solved 3D
structure continuously covering at least 95% of the sequence in order to acquire information
about the number of secondary structures and their lengths (counted in amino acids).
Minimum and maximum counts of secondary structures (per protein) are 1 and 142,
respectively. The minimum and maximum lengths of the proteins are 7 and 2127 amino
acids, respectively. To overview the dataset and its individual proteins, see Figure 1
displaying each protein as a single point. The x axis corresponds to the number of secondary
structures of the protein, and the y axis is the mean average length of the protein’s secondary
structures (in amino acids). Besides the expected narrowing of the y values as x increases
and a potentially inverse relation between x and y, no clear trend is visible.
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is represented by a single point. Axis x is the count of the secondary structures of the protein, and
axis y is the average length of its secondary structures counted in amino acids. For example, point
[x = 3, y = 21.33] stands for a protein that has three secondary structures, e.g., of lengths 29, 15 and
20 amino acids, yielding a mean average of 21.3 amino acids. Menzerath’s Law assumes there to
be a downwards trend (i.e., x and y are negatively correlated), whereas the Menzerath–Altmann’s
Law assumes there is a clear average trend that can be described by a specific mathematical formula.
However, from this plot, it is hard to determine whether any specific correlation holds for these data,
and subsequent formal analyses are required.

2.1. Verifying the x-y Dependence and ML

Based on [1,2,12], the next step is to verify the relation between the number of sec-
ondary structures (x) and their average lengths (y). Consequently, if this relation is verified,
it then becomes necessary to verify its inverse nature—i.e., to determine whether the
statement the more secondary structures, the shorter they are applies to the data.

Regarding the definition of the MAL, the test must be also applied to proteins grouped
into bins (i.e., ‘binned’ data). Bins are formed by proteins with the same number of sec-
ondary structures (sharing the same x value). Bins have their own new y values calculated
as an average length of all secondary structures of proteins in the bin, marked as y. The
bins’ minimum and maximum y values are 4.4 and 15.6 amino acids, respectively.

The results for testing the existence of the relation based on correlation tests both
for the original and the binned data are presented in Table 1. The correlation coefficients
are supplemented with 95% confidence intervals and p-values. The results show that
the dependency between the average length of the secondary structures and their count
is statistically significant since η (as assumed in [14]) and also Pearson and Spearman’s
coefficients are significant with p-values < 0.001. The relation is also negative (inverse) as
Pearson and Spearman’s coefficients are both negative in their whole 95%. The statement
the more secondary structures, the shorter they are, applies for both original individual
proteins data and their binned representation. The ML is thus not rejected for the data.

Table 1. Results of the test for the presence of a negative relation between number of secondary
structures and their size (i.e., Menzerath’s Law) by means of calculating correlation coefficients:
Pearson’s, Spearman’s and Correlation ratio η. The coefficients are calculated for the counts of
secondary structures (x) and their average lengths counted in amino acids (y) and their binned
version (y). The coefficients are accompanied by 95% confidence intervals to support their positions
and p-values to support their significant difference from zero. The results show the negative trend of
Menzerath’s Law is statistically significant in the data examined.

Correlation Result 95% CI p-Value

Pearson r −0.219 [−0.241, −0.199] <0.001
Spearman ρ −0.172 [−0.204, −0.142] <0.001

Correlation ratio η 1 0.394 [0.352, 0.449] <0.001
(binned) Pearson r −0.495 [−0.572, −0.428] <0.001

(binned) Spearman ρ −0.620 [−0.703, −0.513] <0.001
1 In contrast to Pearson’s r and Spearman’s ρ, Correlation ratio η does not convey information on positive or
negative relation but shows only its strength on a range from 0 to 1 where 0 means zero and 1 maximal correlation.

2.2. MAL Formula Fitting and Assessment

Since ML cannot be rejected, the presence of the MAL and the discussed formulae
can be assessed on the dataset. The specific MAL formulas are listed as (1–5) below.
Formulae (1–2) are originally proposed by [2]. Formula (3) is the triviality indicating power-
law formula based on [4]. Formula (4) is its generalization where a new parameter d, which
stands for a minimal secondary structure length, is added in analogy to [13]. Formula (5)
is a newly developed empirical formula derived from the dataset by a symbol regression
method for purposes of comparison, as it should fit the data better than the others. Re-
garding [2,6,12], we fit the formulae on the binned data obtained in the previous step, i.e.,
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fitting x (the number of secondary proteins) and y (the average lengths of the secondary
structures of the proteins in the bin):

y = axbecx, (1)

y = axb, (2)

y = ax−1, (3)

y = d + ax−1, (4)

y =
√

d + ax−1 , (5)

where a, b, c, d ∈ R are model parameters that will be found by fitting the dataset. Thus,
these formulae take a count of secondary structures of a protein x and calculate the expected
length of the secondary structures (counted in amino acids) y and vice versa. If there is a
shared, average trend in the data, it should presumably follow one of the formulae.

As noted above, Formula (2) is a general case of Formula (3), where parameter b = −1
is fixed. Thus, Formula (3) will be omitted from the graphs while its presence is assessed
by Formula (2) by the non-significant difference of parameter b from −1. Next, we proceed
to fit the formulae on the dataset.

The numerical results for the fits yielding final models for weighted data are presented
in Table 2 with the values of the individual parameters, their standard errors and two fit
quality indicators: residual standard error (s) and Akaike Information Criterion (AIC).

Table 2. Results of fitting the individual formulas of Menzerath–Altmann’s Law on the dataset of
4728 proteins binned by the number of secondary structures. The relation of the number of secondary
structures inside proteins (x) and their average lengths counted in amino acids (y) is carried by
the weighted non-linear least-squares method. The table lists the resulting fitted formula (model)
parameters a–d ∈ R with their respective standard errors (in brackets) and summaries of the quality
of the model (a) residual standard error (s) and (b) Akaike Information Criterion (AIC). For purposes
of both s and AIC, the lower the number, the better the formula fits the data. The results show that
all the model parameters have significant roles (i.e., are significantly non-zero) and that the best
available model is (5) following both criteria s and AIC.

Model a b c d s AIC

1 12.305 (±0.351) −0.176 (±0.012) 0.003 (±0.0004) 10.072 −68,085
2 10.715 (±0.247) −0.108 (±0.007) 11.679 −68,077
3 75.238 (±7.156) 162.313 −67,444
4 11.008 (±0.515) 6.99 (±0.037) 8.763 −68,127
5 207.738 (±10.117) 46.938 (±0.575) 8.135 −68,133

The first piece of information we gain from Table 2 is all the parameters a–d are
significantly different from zero, meaning they have significant roles in their formulas and
cannot be omitted without changing the quality of the model. Regarding the note above,
this also applies to Formula (4) and its parameter d, rejecting the triviality nature of the
pure power relationship attributed to the MAL in [4]. The inevitability is however still an
open question, as Formula (4) is a generalization of (2).

The second piece of information we gain from Table 2 pertains to the quality of the
individual fits. For both indicators, the residual standard error (s) and Akaike Information
Criterion (AIC), the lower the number, the better the fit. First, using s as the criterion, we
order the formulae from the worst to the best as follows: (3), (2), (1), (4), (5). The pure power
Formula (3) is identified as the worst, causing the largest residual errors; on the contrary,
its generalization (4) is the second-best. The best fit is provided by the newly proposed
Formula (5). The same ordering of the formulae is also obtained by using AIC as the
criterion, marking (5) as the best fitting formula. Such findings contradict the inevitability
of the pure power law.
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To accompany the findings, the formulas are also fitted on the non-weighted data.
This step should introduce more variability in the fits and cause larger errors as the single
observations may bend the fitted curves towards themselves more than they would if we
were using the weighted data. See Table A1 in Appendix A for the fit results. Assessing
the parameters, we again find that all parameters have significant roles and also that the
individual formulas are again ordered (from the worst to the best scoring) as (3), (2), (1),
(4), (5) for the indicator s and (3), (1), (2), (4), (5) for the indicator AIC. This indicates that
Formulae (4) and (5) have the best fit even when encountered with more variable data.

Figure 2 plots the x and y binned data and the individual formula fits (models), both
using (solid red lines) and not using (red dashed lines) data weights. In contrast to Figure 1,
the protein bins are now plotted as single points. In addition, contrary to Figure 1, a hidden
average trend can be easily observed. Qualitative differences between the Models (1–5)
are also noticeable, mainly at the very beginning where Models (1–2) cannot reach the
upper bins. In comparison to Models (1–2) (and 3, respectively), Model (4) and especially
Model (5) barely change their fit when provided with weighted or unweighted data. This
observation suggests that providing weights contributes to model precision rather than
bending the curve entirely. This behavior indicates that the proposed Formula (5) is more
stable than the others. Let us remember Formula (3) is omitted from the plot as it is a
sub-formula of (4).
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Figure 2. The visualization of the resulting fits of the individual Menzerath–Altmann Law formulae
(Models 1, 2, 4, 5) on a dataset of 4728 proteins, binned by their number of secondary structures (i.e.,
the same value on the x axis) for the coefficients listed in Table 2. The y axis stands for the mean
average secondary structure lengths (in amino acids) of the proteins inside the bin. The formulas are
fitted by the non-linear least-squares method, reflecting weights of the individual observations counts
for each bin (solid red line) and the number of secondary structures and not reflecting any weights
(dashed red line). The average trend of the secondary structure lengths and counts is captured by all
the models. Models 4–5 tend to have less difference on weighted and unweighted fits, showing more
robustness. Let us note that Model Formula (3) as a sub-formula of (2) has a greater possibility of
better fitting the data. The model predictions are also made for x ∈ N+, and as it is noticeable, Models
(1) and (2) miss predicting the first upper bins (from the left) entirely. Additionally, the average trend
is now clearly visible in opposition to Figure 1.
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Such findings imply that we can reasonably model the relation between the average
lengths of secondary structures of proteins (y, in amino acids) and their count inside the
proteins (x) by means of a mathematical formula. This observation allows us to predict,
interpolate, or extrapolate values for x and y for yet unseen proteins with a predefined
accuracy.

2.3. Assessment of MAL Model Outliers

Model (5) seems like a reasonable choice for the data, although some bins deviate
around the model naturally. However, larger than expected deviations are present at the
individual protein level. Such unexpected deviations are of interest as they violate the
formula-based balance of the average secondary structure lengths and counts. As such,
proteins violating the trend fall into two categories of so-called outliers depending on
whether they surpass or fall below the model.

First, we identify the surpassing protein outliers. Exactly 100 proteins belong in this
group, see Appendix B for the complete list. The top extreme outliers include ATP synthase
subunit b, chloroplastic (ATPF_SPIOL), Tropomyosin alpha-1 chain (TPM1_RABIT) or Cell
division protein ZapB (ZAPB_ECOLI), i.e., proteins related to ATPase, muscle filament and
cell division functions. However, examining outliers individually is a dangerous process
as some of the outliers’ striking features may be, in fact, common in the dataset and thus
expected in a random sample. A bulk approach with statistical verification is consequently
used for a statistical overview of protein subcellular localizations, as listed in the UniProt
hierarchy.

By assessing the subcellular localization of the surpassing outliers, we find several
significant differences in how the localization should be present if the outliers were ran-
domly sampled from the dataset (i.e., select without any rules or system). Table 3 lists such
differently occurring locations within the outliers, their overall count (frequency) inside the
dataset and their count among the outliers; the most extreme protein cases are provided as
examples. The results show that the significant bias is towards the membrane locations
(see Discussion further). For the complete list of the surpassing outliers along with the
localization assessment, see Appendix B.

Table 3. Statistical analysis of the subcellular locations (according to the UniProt hierarchy) of the
protein outliers whose ratio of the secondary structure lengths (counted in amino acids) to their count
unexpectedly surpass the value predicted by the Menzerath–Altmann Law formula fitted on the
dataset of 4728 proteins. The outliers surpass three studentized residuals and more above model.
The table shows localizations that are present in the group of the surpassing outliers differently than
expected in comparison to their proportion in the whole dataset. Both listed unexpected differences
mean the outliers are biased towards a specific location. In the case of the current data, the surpassing
outliers are in cell membrane locations more than expected, i.e., the statistical test yields p-value < 0.05
(respectively p-value < 0.0002369668 after Bonferroni Correction of α).

Protein Subcellular Location Frequency Frequency in Outliers Examples

Cell membrane 168 (6.9%) 23 (23.0%) ATPF_MYCS2, CEIA_ECOLX, COX13_THET8
Cell inner membrane 103 (4.2%) 16 (16.0%) HPPA_THEMA, EMRD_ECOLI, MURJ_THEAB

Second, we identify outliers that are placed unexpectedly far below the model. How-
ever, we find no such outliers in this case. This is due to the symmetrical outlier detection
mechanism, which reflects mainly the more extreme surpassing proteins to which, in com-
parison, the proteins below are not recognizable as outliers. To obtain a few examples
of the below-placed proteins, the outlier threshold is increased to −2 of the studentized
standard deviations, creating an asymmetric condition. This increase provides seven out-
liers: Complement factor H (CFAH_HUMAN), V(D)J recombination-activating protein
2 (RAG2_MOUSE), 50S ribosomal protein L2 (RL2_DEIRA), Fascin (FSCN1_HUMAN),
DNA-directed RNA polymerase II subunit RPB2 (RPB2_YEAST), Streptogramin A acetyl-
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transferase (VATD_ENTFC) and Wound-induced proteinase inhibitor 2 (IP21_SOLLC);
however, analysis of their subcellular location biases does not reveal any significant results.

3. Discussion

This article examined whether there exists a dependency (a correlation) between the
average lengths of the secondary structures of proteins (measured in amino acids) and their
counts inside the proteins. Consequently, the article examined how this relationship could
be described by means of mathematical formulae known from the analogical phenomenon
in natural languages. For purposes of the analysis, a nonredundant dataset of 4728 proteins
with determined 3D information available for at least 95% of the protein sequences was
examined.

3.1. Presence of Menzerath’s Law, Menzerath–Altmann’s Law and the Formulae

First, we identified that Menzerath’s Law holds for the proteins dataset, as more
secondary structures led to average shorter lengths and vice versa. Consequently, the best
way to describe this relation formally was assessed through Formulae (1)–(4), which were
derived by theory and Formula (5), which was derived empirically from the data. The
results in Table 2 (visualized in Figure 2) show the models based on Formulae (4) and (5)
are more suitable than the others, and the newly proposed Formula (5) shows the best
fit. Formulae (4) and (5) could be understood as a description of the average tendency
of the proteins to maintain a specific—possibly optimal—ratio between their secondary
structures’ lengths and their counts. As observed, this ratio can be skewed if needed as the
model outliers showed.

3.2. Outliers of Menzerath–Altmann’s Law

The preliminary analysis of the surpassing outliers showed a systematical bias towards
certain subcellular locations, mainly the cell membrane. In other words, membrane proteins
violate the relation that the more secondary structures, the shorter they are the most from the
whole dataset. The reason for this can be attributed to their nature: membrane proteins are
usually composed of helical structures, which need to be typically 20–30 amino acids long
to span the entire membrane [15]. The lengths of such helices have thus their specific limit,
regardless of the number of transmembrane helices. Another example can be represented by
human protein α-actinin 2 (ACTN2_HUMAN), whose helices create a lattice that supports
the whole structure of muscle contraction, serving as a spacer of a defined length that
connects actin filaments [16]—its helices have also defined lengths.

The two largest (surpassing) outliers are both ATP synthase subunits (ATPF_SPIOL,
ATPF_MYCS2), both composed of two helices (126 and 21 AA.; 111 and 19 AA.) with an
average length larger than that expected by the model. Both proteins are part of a large
protein complex of ATP synthase.

4. Materials and Methods
4.1. Materials

Only protein sequences with experimental evidence of the protein’s existence and
with experimentally solved 3D structure(s), and therefore annotated secondary structure
information, were used. First, proteins with experimental evidence were extracted from
the UniProtKB database release 2021_04 [17] along with their sequence lengths.

To find out which of these sequences have experimentally solved 3D structures for a
complete protein, the SIFTS database was used [18]. SIFTS provides a mapping between
UniProtKB and PDBe [19] at a chain and residue level. Identifiers for proteins with con-
tinuous observation of at least 95% from the original sequence length (in amino acids,
AA) were obtained (i.e., 14 AA sequence must be observed whole, for 33 AA sequence, at
least 32 AAs need to be observed, for 75 AA sequence at least 72 AAs are required, etc.;
continuous means that the unobserved residues were only allowed for the very beginnings
or ends of the sequences).
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To remove closely related and similar sequences from the dataset, sequences were clustered
based on identity of 30% or more with MMseqs2 software [20] used, e.g., in [21–24]. (Results
from methods CD-HIT, PISCES [25,26] as well as clustering levels 30% and 90% were also
tested; these results lead to the same conclusions as described above.) One representative
of each cluster was used to create the final list (see Appendix B for the complete list). For
all the sequences in the final list, we extracted secondary structure annotations (types and
lengths of secondary structure elements) and subcellular localization from UniProtKB. For
the process overview, see Figure 3.
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Figure 3. Schematic overview of the data acquisition and preprocessing. The first step is to obtain
the UniProt database of reviewed proteins, where only proteins with experimental evidence are
chosen for analysis. The second step is to use SIFTS database to acquire only such proteins that have
experimentally solved 3D structure and at least 95% of its sequence has been observed. The third
step is to use sequence clustering to obtain only proteins dissimilar to others with a threshold of
30%. The resulting dataset containing 4728 proteins is then used in this article for the evaluation of
Menzerath’s Law and Menzerath–Altmann’s Law. The variable n stands for the number of proteins
available at a given step.

4.2. Methods of Testing ML and MAL

The relationship between the secondary structure counts and their average lengths
counted in AA presented in Table 1 was quantified using Pearson product-moment cor-
relation coefficient (r) and Spearman’s rank correlation coefficient (ρ). Calculations were
performed on individual proteins (i.e., each data point represents one protein) as well
as on groups of proteins with the same number of secondary structures (each data point
corresponds to the average length of the secondary structures in a particular group; labeled
as binned data). In addition to these usual indicators of linear or monotonic dependence,
the correlation ratio η was also employed. This later ratio is a measure of the strength
of the relationship between two variables, which does not necessarily follow a linear or
(more generally) monotonic relation. This indicator is based on the sum of squares in the
context of analysis of variance, and its squared value can be computed as the ratio of the
between-group sum of squares to the total sum of squares.

Binned data were used in fitting statistical Models 1 to 5. Parameters of the models and
their standard errors were estimated using the nonlinear weighted least-squares (NWLS)
method with the Gauss–Newton algorithm. Unlike ordinary least squares (OLS), NLS (or
NWLS) is an efficient tool to estimate parameters even for models that cannot be written as
a linear combination of independent variables [27], as in the cases of the assessed formulas.
NLS methods were used for fitting the data, e.g., in [28–30]. The weights were defined as
w = n× x, where n denotes the number of proteins of a given length and x their length
in number of secondary structures. The weights determined in this way are therefore
proportional to the inverse of the sampling variance of the data points in the binned data.
The models were also fitted using the nonlinear least-squares (NLS) method that applies the
same weight to all data points regardless of how many and what observations they contain.
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The fit of the models to the data was assessed using two indices: the residual standard
error and the AIC. The residual standard error was calculated as (6):

s =

√√√√∑k
j=1 wj

(
yj − ŷj

)2

k− p
, (6)

where k ∈ N denotes the number of the bins, y ∈ R+ is the average value of the length of
secondary structures in the given category, ŷ ∈ R is the predicted value according to the
corresponding model, and p ∈ N is the number of free parameters of this model.

The AIC is based on information theory and quantifies the amount of information
contained in the data that the model is unable to reproduce. The AIC can take both positive
and negative values, and in general, when comparing two models using the same dataset, the
model that produces the lower AIC value exhibits a better fit [31,32]. AIC is defined as (7):

AIC = 2p− log(L) , (7)

where p ∈ N is the number of free parameters of the model, and L is the maximum value of
the likelihood function of the model on the given data.

Some authors [33] linearize the relation by means of the logarithmic transformation of
both sides of the equation before estimating the parameters. We have omitted this step since
Models (4) and (5) cannot be converted to the linear form in this way. However, performing
this step would produce little change in the results, and the order of magnitudes of residual
standard errors does not change.

The identification of outliers is based on standardized (internally studentized) residu-
als. The standardized residual is the quotient obtained by dividing the raw residual by the
estimate of its standard deviation. This measure of the difference between the expected and
observed values makes it possible to compare the distances of individual observations from
the regression curve, regardless of their weight and position on the x-axis. A protein with
studentized standard deviations (st. res.) >3 is considered as an outlier. For the proteins
below, the model threshold is increased to −2.

The statistical assessment of the occurrence of a given feature (location) among the
outliers in comparison to the whole dataset is based on the UniProt annotation. The localiza-
tions contained in the dataset have 211 distinct categories. The statistical verification of the
significant presence of the feature in outliers in comparison to the whole dataset is carried by
hypergeometric distribution, from which the exact p-value can be calculated by (8):

p(X ≥ x)
n

∑
k = x

(
M
k

)(
N −M
n− k

)
(

N
n

) (8)

where x ∈ N is a number of outliers with the examined feature, n ∈ N is a number of all
outliers, M ∈ N is a number of proteins with the examined feature in the whole dataset,
and N ∈ N is a number of all proteins in the dataset. Consequently, since there are multiple
categories, the p-value threshold α = 0.05 must be corrected to α′ accordingly by Bonferroni
Correction (9):

α′ =
α

c
(9)

where α ∈ R is the original p-value threshold, and c ∈ N is the number of categories, in
our case yielding p-value threshold for localization α′ = 0.05/211 = 0.0002369668. Let us
also note the Bonferroni Correction is considered conservative.
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The empirical Formula (5) has been developed by symbolic regression, presented,
e.g., in applications to material science in [34], to reduce mean square error (MSE; 10) of
predicting y value from x on the binned protein dataset, i.e., finding a function y = f (x).

MSE =
1
n ∑(ŷ− y)2 (10)

All statistical analyses were performed using R Statistical Software (version 4.0.2).
Model parameters were estimated using the nls function of the stats package.

5. Conclusions
5.1. The Average Secondary Structures Length of a Protein Is Dependent on Their Number

The results show the average lengths of the α-helix and β-sheet secondary structures
measured in a number of amino acids are related to their count inside a protein and that
the relation can be described by a specific mathematical formula listed as (5).

5.2. The Formula Describes a Possible OPTIMAL Relation

Formula (5) describes a trend followed by the average proteins, around which the
others deviate. This formula is, however, derived from the data and yet lacks theoretical
rationale. From this point, Formula (4), which is similar by its nature, provides a theoretical
background stemming from natural language [13]. Such a formula can be understood as
possibly describing the optimal relation of how many amino acids on average are used for
the secondary structures when a given number of secondary structures are needed.

5.3. Proteins Can Outlie the Described Relation

As the results showed, proteins can outlie the average relation either by surpassing
the expected average or by falling below. Such outlying can be connected with proteins
residing at specific locations or having specific functions, especially membrane proteins or
proteins forming large complexes (e.g., ribosome). As pointed out in the Discussion, there
exist structural reasons for the membrane proteins to outlie the average relation as they
need to reflect the size of the cell membranes.

5.4. The Relation Can Be Connected to Evolution

The observed behavior is based on the average of proteins and, as discussed above,
can be avoided to some extent. This raises a question on the evolutionary perspective of
proteins’ compliance with the MAL, whether balancing the number of secondary structures
and their lengths yields an evolutionary advantage. In such a case, the outliers also have an
evolutionary reason to avoid it, as in the case of membrane proteins, which need to reflect
the size of predefined cell membranes.

5.5. Implications and Possible Applications

Data show the presence of MAL at the secondary structures and protein level as a
possible optimal ratio between the secondary structure lengths in amino acids and their
number. This can be taken into account, e.g., while designing protein sequences.

5.6. Further Research

We will briefly present eight possible avenues for future inquiry that stem from our
investigation. First, the role of the arithmetic means in the MAL can be examined and
interchanged with the trimmed mean and/or the median to examine the individual protein
outliers. Second, the fit performance of various protein types/families/taxonomies can
be examined and compared. Third, the role of protein domains can be examined. Fourth,
a thorough analysis of MAL compliance based on protein locations and functions can be
carried. Fifth, the theoretical questions raised on the prior and posterior sequence boundary
existence may be researched. Sixth, testing may be conducted about whether significant
deviations may be used for protein model assessment. Seventh, further research is required
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to determine the theoretical foundations behind Formula (5). Eighth, the MAL compliance
of Transient Secondary Structures of Intrinsically disordered proteins (IDPs) in comparison
to the regular secondary structures analyzed in this article can be researched [35].
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Abbreviations

AA Amino acid(s).
AIC Akaike Information Criterion.
CI Confidence Interval, 95%.
MAL Menzerath–Altmann Law.
ML Menzerath’s Law.
MSE Mean-Squared error.
NLS Non-linear Least Squares.
NWLS Non-linear Weighted Least Squares.
OLS Ordinary Linear Squares.
r Pearson’s correlation coefficient.
s Standard error.
st. res. Studentized residuals.
ρ Spearman’s rank correlation coefficient.
η Correlation coefficient eta.
x The number of secondary structures in a given protein.
y The average length of the secondary structures in a given protein, mea-

sured in number of amino acids (AA).
y The average of multiple y values in a bin (i.e., a group of proteins with the

same number of secondary structures x).

Appendix A

The following table (Table A1) lists the results of fitting the Formulas (1)–(5) on
unweighted data as the model robustness check in comparison to the fits applied on the
weighted data and its results in Table 2. Since the results are not primary for the article, the
table is located in the Appendix.

https://www.uniprot.org/downloads
https://www.ebi.ac.uk/pdbe/docs/sifts/
https://www.ebi.ac.uk/pdbe/docs/sifts/
https://github.com/oltkkol/mal-proteins
https://github.com/oltkkol/mal-proteins
https://github.com/oltkkol/mal-proteins/tree/main/fitting_script
https://github.com/oltkkol/mal-proteins/tree/main/fitting_script
https://github.com/oltkkol/mal-proteins/tree/main/dataset
https://github.com/oltkkol/mal-proteins/tree/main/dataset
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Table A1. Results of fitting the individual formulas of the Menzerath–Altmann Law on the dataset of
4728 proteins binned by the number of secondary structures. The relation of the number of secondary
structures inside proteins (x) and their average lengths counted in amino acids (y) is carried by the
unweighted non-linear least-squares method. The table lists the resulting fitted formula (model)
parameters a–d ∈ R with their respective standard errors (in brackets) and summaries of the quality
of the model (a) residual standard error s and (b) Akaike Information Criterion (AIC). For purposes
of both s and AIC, the lower the number, the better the formula fits the data. The results show all the
model parameters have significant roles (i.e., are significantly non-zero) and that the best available
model is (5) in both criterions s and AIC. This table serves as a supplement for the corresponding
weighted fit introduced in the Results section of this article.

Model a b c d s AIC

1 11.252 (±1.42) −0.132 (±0.042) 0.001 (±0.001) 5.325 −39,821.1
2 9.429 (±0.671) −0.069 (±0.017) 5.361 −39,822.6
3 150.149 (±18.233) 41.601 −39,433.5
4 12.493 (±2.891) 6.825 (±0.086) 5.286 −39,822.8
5 229.332 (±58.361) 45.681 (±1.360) 5.258 −39,823.2

Appendix B

The whole dataset of 4.728 proteins incorporating measured values and details is
available here: https://github.com/oltkkol/mal-proteins/blob/main/dataset/min95obs_
mmseq_30_rich.csv (accessed on 22 January 2022). The surpassing outliers information is
available here: https://github.com/oltkkol/mal-proteins/blob/main/dataset/results_
surpassing_outliers.tsv (accessed on 22 January 2022). The below outliers information is
available here: https://github.com/oltkkol/mal-proteins/blob/main/dataset/results_
below_outliers.tsv (accessed on 22 January 2022). The surpassing outliers localization as-
sessment is available here: https://github.com/oltkkol/mal-proteins/blob/main/dataset/
results_surpassing_locations.tsv (accessed on 22 January 2022).
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