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Abstract

The adult human brain remains plastic even after puberty. However, whether first lan-

guage (L1) training in adults can alter the language network is yet largely unknown.

Thus, we conducted a longitudinal training experiment on syntactically complex Ger-

man sentence comprehension. Sentence complexity was varied by the depth of the

center embedded relative clauses (i.e., single or double embedded). Comprehension

was tested after each sentence with a question on the thematic role assignment. Thirty

adult, native German speakers were recruited for 4 days of training. Magnetoencepha-

lography (MEG) data were recorded and subjected to spectral power analysis covering

the classical frequency bands (i.e., theta, alpha, beta, low gamma, and gamma). Normal-

ized spectral power, time-locked to the final closure of the relative clause, was sub-

jected to a two-factor analysis (“sentence complexity” and “training days”). Results
showed that for the more complex sentences, the interaction of sentence complexity

and training days was observed in Brodmann area 44 (BA 44) as a decrease of gamma

power with training. Moreover, in the gamma band (55–95 Hz) functional connectivity

between BA 44 and other brain regions such as the inferior frontal sulcus and the infe-

rior parietal cortex were correlated with behavioral performance increase due to train-

ing. These results show that even for native speakers, complex L1 sentence training

improves language performance and alters neural activities of the left hemispheric lan-

guage network. Training strengthens the use of the dorsal processing stream with

working-memory-related brain regions for syntactically complex sentences, thereby

demonstrating the brain's functional plasticity for L1 training.
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1 | INTRODUCTION

Our brains are highly plastic in nature, which is fundamental for the

optimization and adaptation of cognitive functions in response to

everyday life challenges. The language domain, one of the most

sophisticated cognitive domains in humans, provides an excellent win-

dow for studying this neurobiological property. In adults the language

network is fully mature, both structurally and functionally
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(e.g., Skeide & Friederici, 2016). Nevertheless, it appears to remain

plastic during the whole lifespan, as we continue to learn new words,

adapt the use of known words and phrases to current conventions,

and learn new languages. This plasticity is of special importance in the

case of disease or injury. For example, clinical stroke studies have

reported that damaged language networks could gradually reorganize

within the spared language regions and perilesional tissues in the left

hemisphere as well as newly recruited regions in the right hemisphere

(Brownsett et al., 2014; Hartwigsen & Saur, 2019). Evidence for the

ongoing plasticity of the intact language systems mainly comes from

adult second language (L2) learning studies. They suggest that even

short-term learning experience can induce detectable functional

changes in language-related brain regions, such as the left inferior

frontal gyrus (IFG) and the superior temporal gyrus (STG) – for a

review, see Tables 1 and 2 in Li, Legault, & Litcofsky, 2014. Moreover,

studies with different types of grammar have revealed that training

over hours or days leads to significant functional changes in Broca's

area and its dorsal connection to the left temporal lobe, that is, the

arcuate fasciculus (Bahlmann, Schubotz, & Friederici, 2008; Bahlmann,

Schubotz, Mueller, Koester, & Friederici, 2009; Flöel, de Vries, Scholz,

Breitenstein, & Johansen-Berg, 2009; Friederici, Bahlmann, Heim,

Schubotz, & Anwander, 2006; Uddén, Ingvar, Hagoort, &

Petersson, 2017).

However, it is unknown whether and to what extent the language

network is modulated, if healthy participants undergo comprehension

training with syntactically challenging sentences in their mother

tongue. Therefore, we conducted a longitudinal experiment with

adult, native German speakers. On four consecutive days, the partici-

pants listened to complex German sentences and were required to

answer probing questions that tested their understanding of the the-

matic role assignment indicating who is doing what to whom. The sen-

tences contained either single or double embedded relative clauses.

An analysis of seven European languages including German showed

that in modern spoken languages, sentences containing multiple cen-

ter embedded relative clauses are quite sparsely used, and that even

in writing, the maximal level of center embedding is limited to three

(Karlsson, 2007). Therefore, these sentences were thought to be ideal

material for the current experiment.

We expected functional changes over training days within the

language network, especially in the core language areas, such as

Brodmann's area (BA) 44, a key syntactic region, and the posterior

superior temporal gyrus/sulcus (pSTG/pSTS), which subserves syntac-

tic and semantic information integration (Brauer, Anwander, &

Friederici, 2011; Friederici, 2017a; Friederici, 2017b; Friederici

et al., 2006; Wilson et al., 2011; Zaccarella, Schell, & Friederici, 2017).

Furthermore, language-related working memory systems, such as the

left inferior frontal sulcus (IFS) and the left inferior parietal cortex

(IPC), might also need to be functionally modulated to successfully

comprehend complex sentences (Gruber & von Cramon, 2003;

Makuuchi, Bahlmann, Anwander, & Friederici, 2009; Makuuchi &

Friederici, 2013).

During training, brain activity was recorded with magnetoenceph-

alography (MEG), which monitors tiny magnetic field variations caused

by synchronous synaptic activity in neuronal populations. The high

temporal resolution of this method allowed us to focus precisely on

the final closures of the hierarchically center-embedded structures,

the stage in sentence processing at which all embedded structures are

integrated into a consistent meaning. Because local information

processing in the brain, as well as interactions between areas, are

often characterized by frequency specific activity (brain oscillations or

rhythms) (see below), we performed source localized time-frequency

analysis on the acquired MEG data. Accumulated evidence assigns

brain rhythms in different frequency bands to various processes

related to the language domain (for reviews, Bastiaansen &

Hagoort, 2006; Maguire & Abel, 2013; Meyer, 2018; Murphy &

Benítez-Burraco, 2019; Prystauka & Lewis, 2019; Martorell, Morucci,

Mancini, & Molinaro, 2020). For instance, the gamma band (>30 Hz)

has been reported to reflect syntactic structure building (Ding,

Melloni, Zhang, Tian, & Poeppel, 2016; Nelson et al., 2017) or, more

generally, sentence-level information composition (see Martorell

et al., 2020 for a recent review). Recent intercranial measurements in

language related regions of the left hemisphere (Nelson et al., 2017)

showed that high gamma power gradually increases when reading

sentences word by word, until it suddenly drops when the words can

be merged into a phrase (phrase closure). This increasing gamma

power might be interpreted as a signature of syntactic structure build-

ing or as reflecting increasing working memory demands. Conse-

quently, the decrease at the phrase boundary could be related either

to the completion of the syntactic structure or to the sudden release

of working memory (Lundqvist, Herman, Warden, Brincat, &

Miller, 2018). In the current study, we would therefore expect a

gamma power increase over the course of the sentence and a drop at

the final embedding position. This should be more pronounced for

sentences with double embedding. This effect should also be localized

in certain language-specific areas as hypothesized above. The alpha

(8–12 Hz), beta (13–30 Hz), and theta (4–7 Hz) bands are assumed to

reflect cognitive demands such as working memory (Bonhage, Meyer,

Gruber, Friederici, & Mueller, 2017; Jensen & Tesche, 2002; Onton,

Delorme, & Makeig, 2005; Proskovec, Wiesman, Heinrichs-Graham,

et al., 2018; Prystauka & Lewis, 2019; Weiss & Mueller, 2012). Yet,

these effects are less consistent during sentence processing (for

reviews, Weiss & Mueller, 2012; Prystauka & Lewis, 2019). As a

result, we included the following five frequency bands in our analyses:

alpha (8–12 Hz), beta (13–30 Hz), and theta (4–7 Hz), which are sup-

posed to reflect working memory processes, and high/low gamma

(55–95 Hz, 31–45 Hz), which are related to syntactic structure build-

ing (also involving syntactical working memory).

In summary, we sought to characterize functional brain plasticity

of healthy participants during L1 training of complex syntax

processing. Specifically, we investigated the following questions.

(1) Can we identify a sentence-complexity-dependent training effect

in behavior? (2) In which frequency bands and in which parts of the

extended neural language network is this sentence-complexity-

dependent training effect observed, with regard to within-area and

inter-area synchronization? (3) Which interconnections between

regions, measured as performance change, are related to training
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success? Answers to these questions may be useful to constrain

mechanistic models of information processing in the brain (Kunze,

Haueisen, & Knösche, 2019; Schmidt, Hahn, Deco, & Knösche, 2020;

Wang & Knösche, 2013), which in turn are expected to deliver deeper

insights into how aspects of language processing are implemented in

the brain.

2 | METHODS

2.1 | Participants

Thirty, native German speakers (15 females) participated in this study.

The mean age was 27 years, ranging from 20 to 34. All participants

were right-handed according to the Edinburgh handedness test: mean

89, range from 40 to 100 (Oldfield, 1971). The mean reading span

was 3.7 with a standard deviation of 0.9. Participants reported no

neurological diseases or hearing impairment and were naïve to the

purposes of the experiment. Participants gave written informed con-

sent prior to the experiment and were paid 9 Euros per hour for par-

ticipation. The study was approved by ethics committee of the

University of Leipzig.

2.2 | Stimulus materials and procedure

Participants were presented with two types of German sentences

with single (Figure 1(a)) and double hierarchical center embedding

(Figure 1(b)). All sentences started with an introductory phrase

followed by a relative clause. For each sentence, nouns and verbs

were randomly drawn from a pool, ensuring that there were no

semantic cues for thematic role assignment. The same noun or verb

was not permitted to reappear in the sequence of presentation within

the following five stimuli, irrespective of condition. In order to avoid

surprising or implausible semantic relationships or unknown vocabu-

lary, the material was rated in a pre-experiment by 21 raters on a

Likert scale ranging from 1-to-6 along the following dimensions:

vocabulary comprehensibility (very incomprehensible to very compre-

hensible), emotionality of content (emotionally very unexciting to

emotionally very exciting), and semantic plausibility (very implausible

to very plausible). Sentences were removed from the material if the

ratings were beyond pre-defined thresholds. Sentences were required

to be comprehensible (score of 3.5 or higher), rather nonemotional

(score of 3.5 or lower), and semantically plausible (score of 3.5 or

higher). The beginning of each relative clause (brace, marking the

boundary of embedding) was marked with bxon while the final verb of

it was marked with bxoff. The x was 1, 2, or 3 for double embedding

sentences, and 1 or 2 for single embedding sentences.

The experiment included four sessions carried out on four of the

five working days (Monday–Friday) within 1 week. Stimulus presenta-

tion was controlled by the software “Presentation” (www.neurobs.

com). Participants listened to 33 single and 33 double embedded sen-

tences each day. In total, each participant listened to 264 different

sentences during the 4 days. The 132 sentences per condition were

drawn without repetition from a reservoir of 140 single embedded

and 190 double embedded sentences. Each participant received an

individual randomization of 264 sentences. None of the sentences

were presented twice to the same participant. All sentences were spo-

ken at a natural speed. Sentence duration varied between 3.0 and

10.5 s. Mean (±SD) sentence length was 6.3 s (±1.1) for the double

embedded and 4.5 s (±0.8) for the single embedded sentences. Mean

length of the first embedding (b1off – b1on) was 3.8 s (±0.7) for the

double embedding and 2.1 s (±0.5) for the single embedding sen-

tences. Each trial began with the participant pressing a button, after

which a fixation star was presented. After 500 ms, the auditory pre-

sentation of a sentence started. The fixation star was replaced by a

fixation cross 1,000 ms after the sentence ending. A content question

was then presented auditorily, probing the understanding of the the-

matic role assignments. Thereafter, the button assignment was dis-

played on the screen for a maximum of 3,000 ms or until the

participant responded. It consisted of two pictures presented side-by-

side: one showed a green circle with a white check mark (“yes”), the
other a red circle with a white cross (“no”). For each answer, partici-

pants received feedback (correct, incorrect, or too slow). In the case

of an incorrect answer, the same sentence was repeated and addition-

ally displayed on the screen and thereafter a second content question

was asked. This question was also followed by the button-assignment

screen and the corresponding feedback to the participant. The next

F IGURE 1 Examples of presented
sentences in German (English
translations in italics): (a) with single
and (b) with double center embedding.
We used the data segment starting at
b1on as a reference to compute the
relative spectral power change for all
other marked time points. The marker
b1on represented the beginning of the
relative clause containing all
hierarchical embedding. Q: Probing
questions for the presented examples
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trial was started by a button press (see above). Overall, the average

block length was less than 7 min. MEG data analysis and behavioral

analysis were restricted to the first, auditory only, presentation of the

sentences.

2.3 | Language processing-related regions of
interest (ROIs) definition

We employed a surface-based cortical brain atlas published recently

by the human connectome project (Glasser et al., 2016) using the indi-

vidual cortex surfaces as segmented and labeled by Freesurfer 6.0.0.

Thirty-one language-relevant regions (ROIs) were selected from the

complete set of 180 left hemispheric ROIs of the atlas (Figure 2), com-

prising the core left language network. Among the selected ROIs were

regions important for processing hierarchical embeddings, such as BA

44 and the pSTG/pSTS (Friederici, 2017a, Friederici, 2017b), regions

relevant for the verbal working memory system, such as the IPC

(Gruber & von Cramon, 2003), and regions relevant for the syntactic

working memory system, such as the IFS (Makuuchi et al., 2009;

Makuuchi & Friederici, 2013).

2.4 | Behavioral data analysis

Accuracy and reaction time of the participants' responses to the first

question were analyzed.

2.5 | MEG data acquisition and analyses

2.5.1 | MEG data acquisition, preprocessing, and
power analysis

During the training sessions, we recorded MEG with a 306-channel

Elekta Neuromag Vectorview device at a sampling rate of 1,000 Hz

and within a frequency band from DC to 330 Hz. Subjects were

seated under the MEG helmet with their heads positioned as much

inside in the helmet as possible. The raw data was first spatially fil-

tered using signal space separation (SSS) via maxfilter© v2.2.15 utiliz-

ing spherical functions up to eleventh order for the head field model

and up to the second order for the environmental field model. The

SSS-filter was applied to suppress environmental interferences, to

interpolate the manually identified broken channels, and to transform

all data of 1 day to the head position at the beginning of the first block

of that day. Further data analysis was conducted using the MNE-

Python package Version 0.16 (Gramfort et al., 2013, 2014). The raw

data were filtered offline with a 120 Hz low-pass and a 0.3 Hz high-

pass filter. Both filters were single pass FIR type, utilizing a Hann-

Window and a transition band of 10 Hz or 0.3 Hz, respectively. In the

next step, we used independent component analysis (ICA) to remove

eye-blink and heartbeat artifacts. Thereafter, we defined epochs of

0.5 s length starting with the event triggers at b1on, b1off, b2on, b2off,

b3on, and b3off (see Figure 1). The length of the analysis window was

defined by the minimum distance between the b1off position and the

end of the sentences (seoff ). The mean values over the entire epochs

were subtracted to remove the DC background. Artifact rejection led

to an average dropout rate of 0.6% (max: 6%) over all participants and

days. The number of trials stayed the same between conditions

(median difference: 0/95th-percentil: ±1.

Within this paper, we decided to exclusively report the estimated

brain activity and not to conduct sensor space analysis. This was

because our hypotheses were related to brain regions and not to

groups of sensors. For the localization, we constructed individual, sin-

gle shell volume conductor and source models based on the individual

T1-weighted MR data. To this end, we utilized Freesurfer 6.0.0 for

segmenting the inner skull surface and the cortical surface. Finally,

Freesurfer also labeled the cortical surface according to Glasser

et al. (2016), introducing the regions of interest we refer to below.

We used the LCMV beamformer (Van Veen, Van Drongelen,

Yuchtman, & Suzuki, 1997) to compute the source activity on the

brain surface. The reconstructed current density was restricted to

being perpendicular to the cortical surface, and was described by a

single activity time course per spatial location. As a noise covariance

F IGURE 2 Regions of interest (ROI)
comprising the language system in the left
hemispheric cortex: Broca's area (BA 44,
BA 45), inferior frontal gyrus (IFSa, IFSp,
IFJa, IFJP), inferior parietal gyrus (PF,
PFm, PGi), tempo-pro-parieto-occipital
junction (STV, PSL, TPOJ1-3), superior
temporal gyrus (TA2, STSGa, A4, A5),
superior temporal sulcus (STSda, STSva,
STSdp, STSdv), middle temporal gyrus
(TE1a, TE1m, TE1p, PHT), inferior
temporal gyrus (TE2a, TE2p, TF) and
temporal pole (TGd, TGv). ROIs were
labeled according to Glasser et al., 2016
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matrix we utilized the mean noise covariance from the empty room

measurements obtained before and after each recording session. In

contrast, the data covariance matrices were computed separately for

each day as common filters for all conditions and time points based

on the whole sentence data. The power spectrum density (PSD) for

each source was estimated using the multi-taper method (4 Hz multi-

taper windowing, data zero-padding to 2 s), separately for each sub-

ject, ROI, sentence type, and day as an average over all presented sen-

tences. In a next step the 1/f pink noise background was estimated

and subtracted from each average PSD separately. Total spectral pow-

ers for theta (4–7 Hz), alpha (8–12 Hz), beta (13–30 Hz), low gamma

(31–45 Hz), and gamma (55–95 Hz) bands were estimated by averag-

ing all frequency bins within the corresponding spectral window.

Finally, relative power values were calculated by normalizing to the

respective b1on power value separately for each subject, ROI, sen-

tence type, and day. Hence, all subsequently reported spectral power

values are relative powers.

2.5.2 | Functional connectivity analyses

For the connectivity analysis, we focused on the time point b1off

(Figure 1) and bidirectional interactions between BA 44 and a set of

16 target ROIs from the inferior frontal cortex following the arcuate

fasciculus towards the temporo-parietal cortex (Friederici, 2011;

Makuuchi & Friederici, 2013). Epochs were defined as 0–0.55 s rela-

tive to b1off, and padded to �0.3 – 1.0 s with recorded data to

avoid edge effects. The data were downsampled to 500 Hz and pro-

jected into target brain regions using the LCMV beamformer (see

above). For each source inside a target ROI, we computed the time-

frequency representation (TFR) using Morlet-wavelet transform and

averaged them to obtain the TFR of the entire ROI. For each time

point of the TFR, 1/f pink noise background was estimated and

subtracted.

We used 250 samples (time window from 0 to 0.5 s) to compute

the Granger influence (see below) between pairs of ROIs. Conse-

quently, we obtained 16 Granger influences per training day and sen-

tence type. Additionally, we computed the ImCoh in the gamma

spectral window of 55–95 Hz, for each source pair between two

selected ROIs. Values of all included frequency bins and sources

within the two ROIs were averaged. Since the ImCoh is either positive

(phase difference between 0 and π) or negative (phase difference

between -π and 0), we averaged the positive and negative values sep-

arately. Thus, for each pair of target ROIs, we had two phase-phase

synchrony values, reflecting either phase lead and phase lag of the

first ROI compared to the second. Hence, we obtained 16 positive

and 16 negative ImCoh values for each day and each sentence type,

representing the phase-coupling relationship between BA 44 and the

other 16 dorsal pathway ROIs. We display positive ImCoh values if

BA 44 is leading other ROIs and negative ImCoh values if BA 44 is lag-

ging behind other ROIs. We decided to compute both Granger influ-

ence and ImCoh values because the two measures differ in the type

of coupling they reflect. Imaginary coherence indicates phase-phase

coupling (or phase synchrony), which arises from rather tight coupling

between the circuits. In contrast, the Granger influence measures

amplitude-amplitude coupling, arising from a looser coupling between

the circuits. The two methods also differ in how they suppress trivial

connectivity due to volume conduction. Imaginary coherence fully

excludes phase angles close to zero, while this is not the case for the

Granger influence. See below for more details.

Granger influence as connectivity estimate

Granger “causality” analysis (Geweke, 1982; Granger, 1969) is an

asymmetric measure of the coupling relationship between two time

series. The central idea behind this is the notion that if the prediction

of one time series could be improved by using the knowledge of a sec-

ond one, then the second time series is said to have a causal influence

on the first (Wiener, 1956). Later, Wiener's idea was formalized in the

context of linear regression models (Geweke, 1982; Granger, 1969).

Briefly, we compare the prediction errors (also called residuals or

innovations) of two autoregressive models of the current value of a

time series X(t): Model 1 using only samples of the past of X(t), and

Model 2 additionally taking into account the past of the second signal

Y(t). If the additional information from Y(t) significantly reduces the

prediction error, then it is said that Y(t) is Granger causal of X(t). If Σ1

and Σ2 are the variances of the errors of Models 1 and 2, respectively,

then the Granger causality is:

F Y!Xð Þ¼ ln
Σ1

Σ2

Likewise, we can also compute the reverse Granger causality F

(X ! Y) and their difference ΔF (Roebroeck et al., 2005; Kayser

et al., 2009):

ΔF X,Yð Þ¼ F X!Yð Þ�F Y!Xð Þ,

which measures the major influence direction, concerning which time

series has more influence over the other one. In this paper we refer to

this term as Granger Influence.

The best model order n (i.e., how many past samples of the

respective signals are used in the models), which represents the

required amount of knowledge of past history, can be estimated

through the Bayesian information criterion (BIC) when estimating the

prediction error of the multivariate auto-regressive model.

Imaginary coherence as connectivity estimate

Imaginary coherence (ImCoh; Nolte et al., 2004) measures the time-

lagged phase synchrony between two time series. It is the imaginary

part of the complex-valued coherency, which represents the normal-

ized cross-spectrum of two time series in frequency. By neglecting

the real part, the measure avoids bias due to volume conduction

effects (Nolte et al., 2004), but may also miss a true interaction if it is

not time lagged. While the absolute value of ImCoh between two sig-

nals X(t) and of Y(t) is symmetric, its sign is reversed, indicating which

of the two signals is leading and which is lagging.
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2.5.3 | Statistical tests

We conducted a two-factor analysis of the spectral power at the clo-

sure of the outer embedding (b1off ) in all selected ROIs and frequency

bands. The factors were sentence complexity (two levels: single or dou-

ble embedding) and training day (four levels: day1–day4). We tested

three hypotheses:

H01: The power difference due to sentence complexity is indepen-

dent of changes due to training days (interaction effect).

H02: Syntactic complexity has no influence on the spectral power

at b1off (sentence complexity effect).

H03: Training has no influence on the spectral power at b1off

(training day effect).

We used nonparametric tests since power, accuracy, and correla-

tion are not normally distributed. Specifically, we applied the Wilcoxon

signed-rank method if not stated otherwise. For each selected ROI and

frequency band, we performed three tests for H01 (day1 vs. day2, day1

vs. day3, day1 vs. day4), one test for H02 (double vs. single), and three

test for H03 (day1 vs. day2, day1 vs. day3, day1 vs. day4). To account

for multiple testing (7 tests � 31 ROIs � 5 power bands = 108 tests),

we applied false-discovery-rate-correction (FDR-correction, Benjamini &

Hochberg, 1995) with a significance level of 0.05.

Subsequently, we computed the Spearman's correlation between

the Granger influence change and the performance change for all

16 BA 44-related ROI pairs, and reported the FDR-corrected p-values.

The auto-regressive model and the multivariate auto-regressive model

were computed using the Statsmodels (v0.11) software.

Additionally, we computed the Spearman's correlation between

ImCoh change and performance change for all 16 BA 44-related ROI

pairs and both directions from BA 44 (positive ImCoh values) and to

BA 44 (negative ImCoh values), and reported FDR-corrected p-values.

3 | RESULTS

All reported effects have FDR-corrected p-values below 0.05.

3.1 | Behavioral data analysis results

Considering the sentences with single embedding alone, accuracy was

generally higher: 85%, 88%, 88%, and 93% (day1 to day4, see

Figure 3). A significant change was only detected when comparing

day1 with day4 (pairwise Wilcoxon signed-rank test). Considering sen-

tences with double embedding only, accuracy was lower at: 73%,

76%, 79%, and 77% (day1 to day4, Figure 3). Significant differences

were observed for all days in comparison to day1 (pairwise Wilcoxon

signed-rank test). Moreover, the participants always scored higher for

single compared to double embedded sentences on each day. Even on

the last day, accuracy for double embedding was still lower than for

single embedding on the first day (five pairwise Wilcoxon signed-rank

tests for single versus double embedding on each day as well as single

embedding on day1 versus double embedding on day4, FDR-

corrected p-values <0.005).

3.2 | Spectral power as function of training days
and sentence complexity

We examined the normalized power for the five power bands in the

31 ROIs at b1off (final closure of the relative clause of the hierarchi-

cally center embedded structures). Results of the two-factor analysis

are summarized in Figure 4 for the interaction effect, in Figure 5 for

main effect of sentence complexity, and in Figure 6 for main effect of

training day.

3.2.1 | Interaction between training day and
sentence complexity

No significant interaction was found in any other band than the gamma

band. A reduction of gamma power in BA 44 over training was observed

for double but not for single embedding. We found a significant interac-

tion of sentence complexity and training day for gamma power in BA

44 (orange ROI in Figure 4(a)) between day1 and day4 (Figure 4(b)). A

post-hoc test showed that on day1, gamma power of double versus sin-

gle embedding was significantly higher (Wilcoxon signed-rank test,

p = 0.0087) (Figure 4(c)), but there was no difference on day4 (p = 0.14).

A further post-hoc test of the normalized power at b1off of single

embedding over all four training days (day1 vs. day2; day1 vs. day3;

day1 vs. day4) showed no significant differences between days. How-

ever, testing the b1off power of the double embedding, we found that

the power on day1 was higher than on day3 and day4 (p = 0.012 and

p = 0.018, respectively; Figure 4(d)).

We further examined whether the individual accuracy correlated

with the gamma power change in BA 44 (Figure 4(e)). We calculated

the Spearman's correlation between the gamma power change and

performance change for double embeddings and the training day pair:

F IGURE 3 Participants' performance during the four training
days. Accuracy of single embedded sentences significantly increased
from day1 to day4. Accuracy of double embedded sentences
increased significantly for days 2, 3, and 4 compared to day 1. The
boxes show the interquartile range that stretches from the first
quartile (25th percentile) to the third quartile (75th percentile) with
the black line marking the median (50th percentile). The maximal
whisker range is 1.5 times the interquartile range. Note, that the
displayed whisker length depends on values within whisker range.
Diamonds represent outliers, that is, values outside the whisker range
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day1 and day4. No significant correlation between individual perfor-

mance improvement was observed as well as a reduction of gamma

power in BA 44 (p > 0.05).

3.2.2 | Main effect of sentence complexity

Testing the main effect of sentence complexity at b1off looks at

power differences between single and double embedding, for all five

frequency bands and 31 ROIs averaged over the training days. First,

we found a significant decrease of both alpha and beta power for

double versus single embedding in the inferior parietal cortex (PF,

PFm, and PGi), temporo-parieto-occipital junction (PSL, STV, and

TPOJ1-3), and parts of the posterior superior temporal gyrus (A4 &

A5), see Figure 5(a) and (b). Additionally, we found a significant

decrease of beta power for double versus single embedded sentences

in Broca's area (BA 45), the adjacent inferior frontal sulcus (IFSa &

IFSp), as well as the temporal pole (TGd & TGv), see Figure 5(c), (d).

Furthermore, a significant decrease of gamma power for double ver-

sus single embedding was found in the ventral part of the temporal

pole (TGv), see Figure 5(e), (f ).

3.2.3 | Main effect of training day

A main effect of training day showed that the normalized spectral

power at the final closure (b1off ) changed over the four training days.

We found significant power changes between the first and the last

F IGURE 4 Interaction between sentence complexity and training day. (a) ROIs (orange, BA 44) showing the interaction effect on gamma
power. (b) BA 44 gamma power difference between double and single embedded sentences at b1off on the four training days. On day1, the
difference was significantly larger than on day4 (FDR corrected p < 0.05). (c) Interaction of sentence complexity and training day for gamma
power in BA 44 at b1off. On day1, the gamma power of double vs. single embedded sentences was significantly higher, however, no significant
difference was observed for day4. (d) Boxplot showing BA 44 gamma power of all four training days for both single and double embedded
sentences. Note that gamma power decreased with training days for double but not for single embedded sentences. (e) Scatter plot of correlation
between the change of performance and the change of gamma power in BA 44b at b1off for both single (discs) and double (triangles) embedded
sentences. Changes were computed as the difference between day4 and day1 and for each participant separately
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training day. First, we found a significant decrease in alpha power in

parts of the posterior superior temporal gyrus (A5) and in parts of the

middle temporal gyrus (TE1m), see Figure 6(a), (b). Second, we found a

significant decrease in beta power in parts of the temporo-parieto-

occipital junction (TPOJ1), in parts of the posterior middle temporal

gyrus (TE1m), and in parts of the inferior temporal gyrus/sulcus

(TE2p & TE2a), see Figure 6(c), (d).

Furthermore, we examined the correlation of these power

changes with the improvement of the performance between day1 and

day4 (scores averaged across single and double embedding). None of

F IGURE 5 Main effect of sentence complexity at b1off. (a) The green area consists of ROIs whose alpha power significantly decreased with
increasing complexity. (b) Separate alpha power of all ROIs within the green area. Alpha power differences were statistically significant in each of
these ROIs. (c) The blue area consists of ROIs whose beta power significantly decreased with sentence complexity. (d) Separate beta power of all
ROIs within the blue area. Beta power differences were statistically significant in each of the ROIs. (e) The orange area consists of ROIs whose
gamma power significantly decreased with complexity. (f) Gamma power of all ROIs within the orange area. Gamma power differences were
statistically significant in each of the ROIs. In (b), (d), and (f), ROIs were labeled according to Glasser et al. (2016)
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these power changes were correlated with performance improvement

(Spearman's correlation test, 6 multiple tests, FDR-corrected

p > 0.05).

3.3 | Correlation between performance change
and functional connectivity

3.3.1 | Correlation between change of
performance (training) and change of Granger
connectivity

Between the training days 1 and 4, we observed a performance

improvement as well as a decrease of gamma power in BA44, which

was dependent on sentence complexity (see above). Therefore, we

examined the Spearman's correlation between the performance

improvements of the double embedded sentences with the Granger

influence change (ΔF, see Section 2) for the training day1 versus

day4. A significant interaction was found (performance improved and

gamma power was reduced for double but not for single). Granger

influence was computed between BA 44 and the 16 ROIs along the

dorsal pathway, comprising parts of the IFS (IFSp, IFJa, and IFJp) adja-

cent to BA 44 in inferior frontal cortex, parts of the parietal cortex

(PF, PFm, and PGi), and parts of the posterior temporal cortex (PSL,

STV, TPOJ1, A4, A5, STSdp, STSvp, TE1m, TE1p, and PHT; see

Figure 2). It has been proposed that the IFS is related to working

memory functions supporting the processing of embedded structure

(Makuuchi et al., 2009; Makuuchi & Friederici, 2013) and parietal cor-

tex has been linked to semantic working memory (Gruber & von

Cramon, 2003). Posterior temporal cortex is another core region for

processing sentences (Friederici, 2011; Friederici, 2017a;

Friederici, 2017b; Hickok & Poeppel, 2007).

We found that performance improvement was negatively corre-

lated with Granger influence changes between BA 44 and the IFJp in

the posterior part of the inferior frontal sulcus (IFS) (r = �0.54, FDR-

corrected p = 0.035; Figure 7). Negative correlation between Granger

influence changes and performance improvement means that the

Granger influence flow shifted towards BA 44, thus BA 44 was

becoming more influenced by the other brain regions when perfor-

mance improved. However, we found no such correlation for single

embedding.

3.3.2 | Correlation between change in
performance (training) and change in imaginary
coherence

We computed the Spearman's correlation between the performance

improvements from day 1 to day 4 for double embedding with the

imaginary coherence change over the same days between BA 44 and

the 16 pre-selected ROIs related to the dorsal pathway (see Figure 2,

the same ROIs are used in the previous section).

F IGURE 6 Main effect for training
days. (a) The green areas comprise all ROIs
showing a main effect for training days in
alpha power between day1 and day4.
(b) Separate alpha power of all four
training days and the ROIs within the
green area in A. The alpha power differed
significantly between day1 and day4.
(c) The blue areas comprise all ROIs

showing a main effect for training days in
beta power between day1 and day4.
(d) Separate beta power of all four training
days and the ROIs within the blue area in
C. beta power differed significantly
between day 1 and day 4. All ROIs were
labeled according to Glasser et al., 2016
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We found that the magnitude change in the imaginary coherence

between BA 44 and the PGi in the inferior parietal cortex

(BA 44 phase lag to PGi) correlated with performance improvement

(r = �0.59, FDR-corrected p = 0.021, Figure 8). However, we found

no such correlation for single embedding.

4 | DISCUSSION

The present study investigated changes in behavioral performance

and neural activity as reflected by MEG data in adult native German

speakers. Participants underwent 4 days of intensive longitudinal

training of German sentence processing with different syntactic com-

plexities. We aimed to link the performance improvement to underly-

ing functional changes in regions within the language network. As

expected, participants' performance improved during the training

period for both single and double relative clause center embedded

sentences. Over the entire training period, participants made more

errors for the syntactically more complex double embedded sen-

tences. The neural basis of this performance improvement was related

to changes of oscillatory activity in the fronto-temporal language

network.

With respect to brain activity, we first analyzed regional specific

spectral power in different frequency bands to identify changes in local

neural synchronization with respect to two factors: sentence complexity

(single vs. double embedded sentences) and training day (day 1–day 4).

We expected local synchronization in the language ROIs to change over

the training period. For theta power, we did not observe any significant

change, neither between sentences of different complexity nor during

the course of training. For alpha and beta power, a significant reduction

was observed for double as compared to single embeddings, which was

independent of the training stage. This seems to reflect the higher cog-

nitive load in the double embedding condition as these sentences were

systematically longer, which raises the demands to cognitive load and

working memory. Since beta power was observed to decrease with

increasing cognitive load (Bastiaansen et al., 2015; Weiss &

Mueller, 2012), the significant reduction of beta power for double

embedding sentences compared to single ones might be explained that

way. Another interpretation would be that sentences with double

embeddings cause an increased level of attention when entering into

the second embedding, which may lead to reduced levels of alpha and

beta power at the end of the outermost (first) embedding.

An interaction between sentence complexity and training day was

found exclusively for the gamma power in BA 44, such that gamma

F IGURE 7 Correlation between
performance and Granger influence for a
pair of ROIs (BA44 & IFJp). The left panel
shows the two ROIs marked in dark
magenta and blue on the inflated cortical
surface. The right panel shows the
performance change (day 4–day 1) for the
double embedded sentences plotted
against the Granger influence change

F IGURE 8 Correlation between
performance and imaginary coherence
between BA44 and the inferior parietal
cortex. ROIs are labeled according to
Glasser et al., 2016
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power was reduced over training only for double embedded sen-

tences (Figure 4). In addition, main effects for both factors were iden-

tified in various ROIs (Figures 5 and 6). In the TGv (s. Figure 2, part of

the anterior temporal lobe, ATL), the gamma power for single embed-

ded sentences was higher than for double embedded sentences

(Figure 5(e), (f)) and did not change over training days. This training-

independent higher gamma power for single embedded sentences in

the ATL may reflect that access to the sentence's meaning is easier in

syntactically less complex sentences (Fedorenko et al., 2016;

Nieuwland & Martin, 2017; Rommers, Dijkstra, & Bastiaansen, 2013).

Therefore, an increased gamma power might be elicited in the ATL

region, which is involved in processes related to semantic combinator-

ics (e.g., Bemis & Pylkkänen, 2011, 2013; Matchin, Brodbeck,

Hammerly, & Lau, 2019; Matchin, Hammerly, & Lau, 2017; Pallier,

Devauchelle, & Dehaene, 2011; Pylkkänen, 2019). On the other hand,

BA 44 is considered a core language processor for syntactic

processing (e.g., Hagoort & Indefrey, 2014; Wu, Zaccarella, &

Friederici, 2019; Zaccarella et al., 2017; see Friederici, 2017a,

Friederici, 2017b for a systematic review). This is confirmed by our

finding that activity in BA 44 varied with training for the most com-

plex, double embedded sentences.

Our analysis was focused on the closure of the outermost embed-

ded structure (b1off; Figure 1), where the whole embedded syntactic

structure is finally complete and all syntactic processing culminates.

The higher gamma power in BA 44 for the syntactically more complex

sentences on the first day might represent the higher task demands

(syntactic structure building and working memory) for participants

when processing the rather uncommon double embedded structures

(Nelson et al., 2017). During training, the participants adapted to the

task and BA 44, as a central hub in the syntactic network, became bet-

ter connected and more effective when building the syntactical struc-

tures. This led to a reduction of the overall neuronal recruitment,

bringing the gamma power down to the level of the single embedded

sentences. The increased level of gamma power with higher cognitive

demands in sentence processing is in agreement with the observa-

tions of Nelson et al. (2017) and Skeide and Friederici (2016).

Because the interaction effect of local gamma band synchroniza-

tion at BA 44 is very interesting, we analyzed distant neural synchro-

nization and information flow in the gamma band between BA 44 and

other areas of the language network that might cooperate with BA

44. In particular, we looked at areas belonging to the dorsal pathway

proposed to support processing of sentences with complex syntax

such as center embedded structures (Friederici et al., 2006; Makuuchi

et al., 2009; Makuuchi & Friederici, 2013). The coupling between dis-

tant areas was studied by inspecting two different phenomena. First,

we looked at the temporal development of gamma power and com-

puted the Granger causality. We thereby established to what extent

the present gamma power in one area depended on the past gamma

power in another area. No phase synchronization between the areas

was taken into account. Thus, we rather focused on modulatory influ-

ences between brain areas with potentially independent dynamics,

which may be described as functional networks. Second, we studied

coherence between the gamma band oscillations in different brain

areas. Because zero-lag correlation and zero-phase-lag coherence are

very vulnerable to artifacts created by volume conduction (Palva &

Palva, 2012), we specifically analyzed the imaginary coherence, which

reflects a tight, but phase shifted, synchronization between active

brain areas. This method is therefore suitable for investigating

whether brain areas join together in coherent networks.

We established that the change in Granger influence from BA

44 to the posterior inferior frontal junction (IFJp) was negatively cor-

related to performance (Figure 7). This indicates that better training

performance was associated with a change in the inflow-outflow bal-

ance of information at BA 44, such that it is tuned to be in favor of

the information flow towards BA 44. Moreover, the IFJp, as part

of the inferior frontal sulcus, has been proposed as a syntactic work-

ing memory processor, also necessarily supporting the processing of

embedded sentence structures (e.g., Makuuchi et al., 2009;

Makuuchi & Friederici, 2013). The engagement of both regions in the

same task is further corroborated by their strong mutual correlation

across subjects. Therefore, these data converge on the idea that even

during L1 training, processing complex syntactic structures engages

not only the core syntactic processor, that is, left BA 44, but also sub-

sidiary components such as the left IFS, which serves syntactic work-

ing memory.

Apart from these modulatory interactions between brain areas,

we also found phase-phase coupling between BA 44 and the PGi (part

of IPC, inferior parietal cortex), as indicated by imaginary coherence

that was correlated to training performance. This may indicate that

both areas form, to some extent, an integrated network and may be

engaged in the same task. The IPC has been described as part of the

working memory system with special focus on verbal working memory

(Awh et al., 1996; D'Esposito, Postle, Ballard, & Lease, 1999;

Makuuchi et al., 2009; Makuuchi & Friederici, 2013; Meyer, Obleser,

Anwander, & Friederici, 2012). Therefore, by integrating both correla-

tion results, BA 44 might distinctively interact with different types of

working memory systems (see also Makuuchi & Friederici, 2013).

Finally, it is important to note that the complex and challenging

nature of the experiment inevitably limited the available statistical

power. We tested 132 sentences distributed equally over the four

training days, that is, we had just 33 trials per condition and training

day. Hence, it is likely that the training has caused even more changes

to the language network than we had the sensitivity to measure.

The experiment investigates the cognitive dynamics when

processing natural speech in a setup which has an as-large-as-possible

lexical variance while still allowing to classify sentences into two con-

ditions of syntactic complexity. In such a setup a large variety of brain

processes may become active. When comparing the two conditions –

double versus single embedded sentences – we cannot guarantee that

all the other brain processes are perfectly balanced. However, the

training effect was prominently detected in the left BA 44, a region

previously reported as a syntactic hub by numerous neurolinguistic

studies. Furthermore, since the functional connectivity between BA

44 and other areas was significantly correlated with the performance

improvements, we propose that the syntactic aspect (possibly

together with working memory) compose an essential part of the cog-

nitive dynamics. To what extent other aspects less related to syntax

were also relevant needs a further investigation by future studies.
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In summary, we showed that L1 training of syntactically complex

sentences leads to changes in neural oscillation in critical language

regions, such as left BA 44, in healthy adult native speakers. More-

over, the connections between BA 44 and both the IFS and PGi might

serve as a “core language region – working memory network” neces-

sary for comprehending syntactically complex sentences. These

changes are also prominently associated with the increase of behav-

ioral L1 performance. Taken together, the current study provides

novel insights for the exploration of adult functional brain plasticity

even during training in one's native language.
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