The complete mitochondrial genome of Anas penelope (Anatidae: Anas)

Xiaoping Sun ${ }^{\text {a,b }}$, Chaochao Hu^{c}, Shuang Lid ${ }^{\text {d }}$, Mengfan Zhai ${ }^{\text {c }}$, Wei Liu ${ }^{\mathrm{c}, \mathrm{d}}$ and Yinlong Zhang ${ }^{\text {a }}$
${ }^{\text {a Collaborative Innovation Center of Sustainable Forestry in Southern China of Jiangsu Province, Nanjing Forestry University, Nanjing, China; }}$
${ }^{b}$ Jiangsu Environmental Monitoring Center, Nanjing, China; ${ }^{\text {}}$ Nanjing Normal University, Nanjing, China; ${ }^{d}$ Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Nanjing, China

Abstract

The complete mitochondrial DNA genome of the Eurasian Wigeon, Anas penelope, was mapped by the next-generation sequencing and Mega 7.0. The circular mitogenome ($16,596 \mathrm{bp}$ in length) contains 13 protein-coding genes, 2 rRNA genes (12 S ribosomal RNA and 16 S ribosomal RNA), 22 tRNA genes and a control region. The content of four base pairs of the complete mitochondrial DNA is 28.9% of A, 22.3% of $T, 32.7 \%$ of C and 16.1% of G. To validate the phylogenetic relationship, 25 published complete mitochondrial genomes of Anseriformesalong with the genome of Terek sandpiper were used to construct the phylogenetic tree.

ARTICLE HISTORY

Received 8 April 2020
Accepted 9 May 2020

KEYWORDS

Anas penelope; mitochondrial DNA; phylogeny

The Eurasian Wigeon (Anas penelope) is a widespread duckspecies estimated to number 2,800,000-3,300,000 individuals (IUCN 2016). The overall population trend of A. penelope is decreasing due to recreational impacts, dams, water management, and prion-induced diseases (Lei et al. 2008). Except for some behavioral and habitat research, A. penelope is less well studied in literature (Guillemain et al. 2002; Mayhew and Houston 2008). Mitochondrial DNA (mtDNA) is regarded as a useful tool in population conservation, phylogeographic, and phylogenetic studies. The mitochondrial DNA control region of A. penelope was examined to assess the genetic differentiation (Kulikova \& Zhuravlev 2010). Hence, it is necessary to obtain the complete mitochondrial DNA by the next-generation sequencing. The muscle specimen of A. penelope was collected from the coast of Rudong Country, Jiangsu Province, China ($32^{\circ} 32^{\prime} 43.42^{\prime \prime} \mathrm{N}, 121^{\circ} 06^{\prime} 09.02^{\prime \prime} \mathrm{E}$). A voucher specimen was stored in Nanjing Normal University (NJNU: ANPE20191005), Nanjing, China. The complete genome sequence was aligned by Mega 7.0 and deposited in GenBank (Accession Number: MT304825).

The complete mitochondrial genome of A. penelope is circular molecular and $16,596 \mathrm{bp}$ in length. The genome contains 37 genes, including 13 protein-coding genes, 2 ribosomal RNAs, 22 tRNA genes, and a control region (Dloop). Most of the genes were encoded on the H-strand, while ND6 and 8tRNA were encoded on the L-strand. For the 13 PCGs, the most common start codon is ATG, followed
byGTG. The termination codon (TAA) is most common and two protein-coding genes (COIII and ND4) use single T as their stop codons, which were presumably completed as TAA by post transcriptional polyadenylation . The base composition of mtDNA is $\mathrm{A}(28.9 \%), \mathrm{G}(16.1 \%), \mathrm{C}(32.7 \%)$ and $\mathrm{T}(22.3 \%)$, and thus the percentage of G and C (48.8\%) was slightly lower than A and T (51.2\%).

To confirm the phylogenetic position of A. penelope among Anseriformes species, a Bayesian analysis was conducted on the complete mitogenome. It is shown that the phylogenetic relationship of A. penelope is very close to the A. falcatein the family Anatidae (Figure 1). We hope this study will provide more information for the phylogenetic analyses of Anseriformes in future research.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Funding

National Key R\&D Program of China [No. 2016YFC0502704; 2017YFC050380604; 2018YFC0507202], Major Science and Technology Project of Water Pollution Control and Management [Grant 2018ZX07208-002], the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), the Doctorate Fellowship Foundation of Nanjing Forestry University, and Postgraduate Research \& Practice Innovation Program of Jiangsu Province.

[^0]

Figure 1. Phylogenetic relationship of Anas peneope and the other 25 species based on the Bayesian method. The bootstrap values are shown at the nodes.

Data availability statement

The data that support the findings of this study are openly availablein NCBI at www.ncbi.nlm.nih.gov, reference number (MT304825).

References

Guillemain M, Martin GR, Fritz H. 2002. Feeding methods, visual fields and vigilance in dabbling ducks (Anatidae). Funct Ecol. 16(4): 522-529.

IUCN 2016. IUCN Red List of Threatened Species (ver. 2016.1); [Accessed 2016 July 31]. http://www.iucnredlist.org.
Kulikova IV, Zhuravlev YN. 2010. Genetic structure of the Far Eastern population of Eurasian wigeon Anas penelope inferred from sequencing of the mitochondrial DNA control region. Russ J Genet. 46(8): 976-981.
Lei C, Mark B, Gang L. 2008. New Anatidae population estimates for eastern China: implications for current flyway estimates. Biol Conserv. 141(9):2301-2309.
Mayhew P, Houston D. 2008. Feeding site selection by Wigeon Anas penelope in relation to water. IBIS. 131(1):1-8.

[^0]: CONTACT Wei Liu $\otimes 916377811 @ q q . c o m$ Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Nanjing, China
 © 2020 The Author(s). Published by Informa UK Limited, trading as Taylor \& Francis Group.
 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

