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The utility of a handheld visible-short wave near infrared spectrophotometer utilising an interactance optical geometry was assessed
in context of the noninvasive determination of intact tomato dry matter content, as an index of final ripe soluble solids content,
and colouration, as an index of maturation to guide a decision to harvest. Partial least squares regression model robustness was
demonstrated through the use of populations of different harvest dates or growing conditions for calibration and prediction. Dry
matter predictions of independent populations of fruit achieved 𝑅2 ranging from 0.86 to 0.92 and bias from −0.14 to 0.03%. For a
CIE 𝑎∗ colour model, prediction 𝑅2 ranged from 0.85 to 0.96 and bias from −1.18 to −0.08. Updating the calibration model with
new samples to extend range in the attribute of interest and in sample matrix is key to better prediction performance.The handheld
spectrometry system is recommended for practical implementation in tomato cultivation.

1. Introduction

Tomato fruit quality is assessed in terms of dry matter
content (DM, also known as total solids content), soluble
solids content (SSC), and external colour, and less commonly
in terms of firmness and titratable acidity [1, 2]. There is
also interest in the level of lycopene, given suggested health
benefits [3].

Starch is stored in immature fruit, with conversion to
reducing sugars (e.g., glucose and fructose) around 40 days
after anthesis [4]. In fruit near maturity, the DM of tomato
pulp consists of soluble sugars (50% w/w), insoluble solids
(25%), organic acids (13%), minerals (8%), and others (4%)
[5]. In the tomato processing industry, grower payments may
be linked to DM content of pulp, as processing to products
such as ketchup involves concentration of soluble solids con-
tent. Maximisation of fruit solids content is a matter of
maximising carbohydrate import to the fruit, through use of
appropriate genetic material (varieties), growing conditions,
and agronomic practices [2]. For example, the assessment
of fruit for DM and soluble solids content is practiced in
varietal screening programs [6]. It is also well established that
fruit of plants exposed to moderate salinity will accumulate

a higher level of solids [7]. Gauging the appropriate time of
harvest is a key agronomic decision, balancing the need to
leave the fruit on vine to maximise solids content, and the
need to harvest fruit before ripening proceeds to the point
where loss of firmness means that the fruit will be damaged
during harvest, transport, and processing.

Near infrared spectroscopy (NIRS) is a potential tool for
nondestructive measurement of several fruit attributes. NIRS
assessment of intact fruit (vegetable) DM content was first
reported for onion [8]. Numerous reports have subsequently
been produced for use of this technology with a range of fruit
commodities; however many studies are compromised either
in terms of matching the optically sampled volume to the
volume of tissue sampled for reference analysis, or in terms of
overfitting of a multivariate model, without testing on a truly
independent population. Nonetheless, the technology is in
commercial use, both for in-line sorting of fruit operating on
conveyor systems moving at up to 1m/sec and for assessment
of fruit on tree, based on use of handheld near infrared
spectrometers, for example, in noninvasive assessment of
DM of mango fruit on tree [9]. Such noninvasive data is of
use in decision support systems around assessment of fruit
maturation or ripening (e.g., Jordan and Loeffen [10]).
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The first consideration of the use of NIRS to assess intact
tomato soluble solids content (SSC) was made by Slaughter
et al. [11] using a laboratory bench top system (NIR System
6500) using fibre optics in an interactance geometry. Spectra
were acquired at four equatorial positions and at the acropetal
end of fruit. Partial least squares regression (PLSR) models
based on spectra from the equatorial region were better than
that from acropetal end in terms of correlation coefficient and
root mean square of errors in calibration (RMSEC). Based on
a 800–1000 nm spectral window and use of 12 PLS factors (𝑓),
𝑅2 of 0.85 and RMSEC on SSC of 0.27% were achieved, with
validation statistics of 𝑅2 = 0.79, root mean square of error of
prediction (RMSEP) of 0.33%, and bias of 0.05%. However,
the validation set was not independent of the calibration
population (of 400 spectra initially taken, 300 were used as
training and 100 as prediction set).

Subsequently, a number of researchers have considered
use of NIR/IR spectroscopy for assessment of quality param-
eters of tomato juice, puree, or intact fruit [12–14]. These
studies have involved a range of equipment, varying in wave-
length range, wavelength dispersion mechanism, and opti-
cal geometry employed (reflectance, diffusive reflectance,
transmittance, or interactance), in data preprocessing (first
derivative, second derivative, and multiplicative scatter cor-
rection, MSC), and in the calibration model development
method (principal component regression, PCR; multiple
linear regression, MLR; PLSR1; PLSR2; and modified partial
linear square, MPLSR). For example, for a set of transmission
spectra of intact fruit acquired with a MMS1 NIR spectrome-
ter, Khuriyati and Matsuoka [15] reported that PLSR models
of SSC were better when based on second derivative spectra
(𝑅2𝑐 = 0.92, RMSEC = 0.36%) than smoothed log (1/𝑇) spec-
tra. However, this study lacks documentation of regression
coefficients (the smoothness of which allows a judgement
of likely model robustness), and again the validation and
calibration sets were selected from the one population (i.e.,
the validation set is not independent of the calibration set).

In general there has been a shift from use of reflectance
to interactance or partial transmittance geometries. Indeed,
Clement et al. [16] severely criticised use of reflectance spectra
for SSC estimation of intact fruit, due to poor validation
performance.

A number of workers have used a spectral range of
900 nm and above for PLSR calibration models of tomato
juice and puree SSC [13, 14, 17], but Shao and He [18]
attempted use for intact fruit. As the longer wavelengths have
high absorbance bywater, the effective depth of optical assess-
ment is low (1-2mm) and thus effectively only the skin will be
assessed. It is expected that this model will lack robustness;
that is, it will perform relatively poorly in prediction of inde-
pendent populations of intact fruit that vary in skin proper-
ties.

The Herschel wavelength region (720–1100 nm, also
known as the short wave NIR or SWNIR) is typically
employed due to greater effective penetration through bio-
logical tissue and thus optical sampling volume than for
longer wavelengths. The miniature Zeiss MMS1 Si photodi-
ode array spectrometer operates over the wavelength range
300–1100 nm and has seen used in several studies involving

tomato. For example, in common with Khuriyati and Mat-
suoka [15] and Walsh et al. [19], Khuriyati et al. [12] used
this spectrometer in development of a dry matter PLS model
on tomato DM, based on interactance spectra. A coefficient
of determination (𝑅2) of 0.88 was achieved, but again the
model was not tested on independent fruit populations. Most
recently, Radzevicius et al. [20] reported the use of the lugga-
ble NIR Case NCS001A (Sacmi Imola S.C., Italy) for esti-
mation of tomato DM, SSC, and firmness, but calibration
statistics were not presented.

Other limitations of past studies include a low standard
deviation (SD) in the attribute of interest in the training or
validation set, as a low range in the populationwill necessarily
be associated with an apparently low RMSEC and a low 𝑅2.
For example, poor SSC model performance for a data set
based on interactance SWNIR spectra of intact tomato fruit
was due to a population SD of only 0.3% [19].

Themeasurement of tomato colour using portable SWNIR
instrumentation (FQA-NIRGUN, interactance optics, 623–
1052 nm) was reported by Kusumiyati et al. [21] for tomato
both on and off vine, with better results achieved using a
PLSR than a PCR model. For the PLSR model of CIE 𝑎∗,
calibration (𝑅2 = 0.92; RMSEC = 3.31; 𝑓 = 4) and prediction
statistics of 𝑅2 = 0.92, SEP = 3.19, and RPD (ratio of bias
corrected SEP to standard deviation) of 4.76 were reported.
Clement et al. [16] assessed tomato colour (Hunter a)
based on reflectance spectra (400–1500 nm) of intact tomato
acquired using a Varian Cary 500UV-Vis-NIR spectropho-
tometer (Varian Inc., Palo Alto, CA). PLSR model statistics
for Hunter a were 𝑅2 = 0.981, RMSECV = 1.126, and standard
deviation ratio (SDR, a ratio of RMSECV to SD) = 7.32. The
spectral window of 400–1000 nm produced a better result
than the 900–1500 nm window, as expected for this attribute.
More recently, Camps [22] reported the use of a handheld
diffuse reflectance NIR spectrometer using the 900–1700 nm
region (Phazir; Analyticon Instruments, Germany) to assess
CIE 𝐿∗ and 𝑎∗ values of tomato, reporting a calibration𝑅2𝑐 of
0.903 and 0.846 andRMSECVof 2.26 and 3.02, respectively. It
would have been interesting to see comparative results based
on the visible-SWNIR region, and prediction of independent
test sets.

Thus previous reports indicate the potential of SWNIRS
in a reflectance geometry for assessment of intact tomato
colour, and interactance or transmission geometries for DM
and SSC assessment. A number of studies refer to the poten-
tial for field portable instruments, allowing application to the
agronomy of the crop. However, a consistent criticism of all
previous studies is the use of one population divided into
a calibration and a “validation” set, with validation samples
often deliberately chosen to be representative of the calibra-
tion set (i.e., samemean and SD). Such validation sets are not
independent of the calibration set and the validation statistics
can be expected to be optimistic in terms of the performance
of the model in prediction of future predictions, as must
occur in practical use. The current study is undertaken to
evaluate the use of portable SWNIRS for field assessment
of colour and DM of intact tomato, involving a rigorous
verification study across truly independent validation sets.
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2. Materials and Methods

2.1. Plant Culture. One hundred four-week old tomato (Ly-
copersicum esculentum L., var. Roma) seedlings were trans-
planted to a hydroponic system consisting of 10 L plastic
containers (single plant per container), connected to an irri-
gation system to supply nutrient solution. The base nutrient
solution consisted of a solution of electrical conductivity of
1.36mS cm−1 and pH 6.0. Temperature of the solution varied
between 25 and 31∘C throughout the trial period. To induce a
range in fruit dry matter and colour, several treatments were
imposed.

At fruit bearing stage, plants were assigned into five
treatment groups, each group with four replicates (i.e., 20
plants per treatment) in a randomized complete block design.
The five treatments were (i) plants on normal hydroponic
solution (base), (ii) base with added KNO3 (198mg L−1; final
solution conductivity of 1.6mS cm−1), (iii) base with added
NaCl (2 g L−1 final solution conductivity of 5.5mS cm−1), (iv)
base with leaf removal (to one leaf/truss), and (v) base with
fruit removal (to four fruit/truss). For the KNO3 and NaCl
treatments, salt was added to the base solution once the plant
started producing flowers, and the leaf and fruit removal
treatments were started when fruitlets were visible. Four
weeks after flowering, the strength of the normal hydroponic
solutionwas increased to 1.63mS cm−1 whileNaCl andKNO3
treated solution were increased to 6.1 and 1.93mS cm−1,
respectively.

2.2. Fruit Measurement. Visible-SWNIR spectra of intact
fruit were acquired with a “Nirvana” SWNIR spectrometer
(no longer produced, but equivalent to the F750, Felix
Instruments, WA, USA). This unit employs an interactance
geometry, a halogen lamp, and a Zeiss MMS1 Si photodiode
array with approximately 3.3 nm pixel spacing and 10 nm
wavelength resolution. The interactance probe involves a
receiving optical probe placed in front of a collimated light
source, such that the probe casts a shadow onto the sample
and the probe views the cast shadow on the sample [23].Thus
detected light has passed through part of the fruit.

Five sets of tomato fruit (termed populations 1 to 5) were
harvested at intervals of 10 days from the seventh week after
planting from all five growing condition treatments. On each
harvest date, two plants were chosen at random from each
treatment and all fruit were harvested from first to fourth
trusses (resulting in between 50 and 215 fruit in each harvest,
Table 1). These fruit were numbered in the field, brought into
the laboratory (at 22∘C), and marked at a location on the
fruit equatorial region. The SWNIR spectrometer was used
to collect interactance spectra, in duplicate, at each marked
spot. A spot colour reading in CIE1976 𝐿∗𝑎∗𝑏∗ space was
made at the same position with a Minolta colorimeter (CR-
400, D65 illuminant, 2∘ angle of observer). Following these
measurements, a one centimetre sided cube of fruit flesh from
the point of scanning was collected, diced, and placed in a
forced air oven at 65∘C for 48 hour for dry matter estimation.

To emulate field use of the handheld spectrometer in
monitoring of fruit maturation, five plants were randomly
selected from each of the five treatments (total 𝑛 = 25) and

four fruit per plant (at least one fruit from each of second to
fourth truss) were tagged (total 𝑛 = 100 fruit). The tagged
fruits were scanned with the handheld spectrometer at a
position on the fruit equator. Scanning was repeated each
week of the same location on each fruit, from sixth week after
planting until most of the fruit were fully red ripe (11 weeks
after planting).

2.3. Data Preparation and Analysis. The absorbance spectral
data acquired from handheld spectrometer were transformed
to (3 nm) interpolated second derivative (Savitzky-Golay
second-order, 7 point window) spectra (referred to as “second
derivative” spectra). Partial least squares regression models
were developed using the multivariate data analysis software
(The Unscrambler V 10.2, Camo Inc., Norway). Models were
developed using the NIPALS (nonlinear iterative partial least
squares) algorithm and were cross validated with random
subsets of four samples.

DM and CIE 𝑎∗models were developed using population
1 and “updated” by sequential expansion of the calibration set
with populations 2 to 5. These PLSR models were tested on
separate fruit populations (i.e., model based on population
1 used in prediction of population 2, and model based on
populations 1 and 2 used in prediction of population 3, etc.,
with themodel based on populations 1 to 5 used in prediction
of the populations of fruit from the five growing conditions).

3. Results and Discussion

3.1. Spectral Features. Fruit absorbance spectra were charac-
terised by a peak at 675 nm ascribed to chlorophyll, a peak
ascribed to lycopene at 575 nm, and peaks ascribed to O-H
vibrations of water at 840 and 960 nm (Figures 1(a) and 1(b)).
As fruit matured, absorbance spectra were characterised by a
decrease in the positive peak at 675 nm related to chlorophyll
and an increase in a peak related to lycopene at 575 nm.
Similar trends in peak changes related to pigment and water
features were also reported by Clement et al. [16].

3.2. CalibrationModel. Drymatterwas bettermodelled using
second derivative than absorbance spectra (data not shown),
with a resulting cross validation coefficient of determination
(𝑅2cv) ranging from 0.90 to 0.93 and a RMSECV < 0.5%
and a ratio of RMSECV to population SD > 3.0 (Table 1,
Figure 2). The intact tomato DM models were superior to
that reported by Walsh et al. [19] due to the poor standard
deviation (SD) of the population employed in that study
(0.30, compared to more than 1.5% in the current study). The
results were also superior to that reported by Khuriyati and
Matsuoka [15] although that study employed a population
with SD = 1.84% for DM and used short wave NIR in an
interactance geometry. As expected, the result was inferior
to that for tomato puree DM model from mid-infrared
reflectance spectra as reported by Ścibisz et al. [14], given the
influence of fruit skin on intact fruit spectra.The PLSRmodel
𝑏-coefficientweightingswere consistent acrossmodels (based
on different treatments/populations), with weighting around
830, 880, and 910 nm (Figure 4), similar to that reported
by Walsh et al. [19], and consistent with involvement of the
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Figure 1: (a) Absorbance spectra and (b) second derivative of absorbance spectra of fruit from five growing conditions (average of 10 fruit)
at 7 weeks after planting. Inset shows magnification of 660–740 nm range.
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Figure 2: Scatter plot of PLSR model (cross validation) predicted
and actual values for DM (𝑅2cv = 0.902, RMSECV = 0.512, and 𝑛 =
1585) for the combined population set.

second overtone of O-H, fourth overtone C-H, and the third
overtone feature of C-H, respectively [24, 25].The presence of
relatively “smooth” 𝑏-coefficients, consistent across models,
bodes well for the robustness of the model in prediction of
independent sets.

The colour (CIE 𝑎∗) model based on second derivative
spectra was poor for a data set involving population 1 only,
due to the low attribute range in immature, green fruit
(Table 1). Subsequent populations modelled well for CIE
𝑎∗, with 𝑅2 > 0.9, RMSECV∼3.5, and SDR > 4 (Figure 3),
although for one population (Pop 2) an excessive number
of factors was adopted. The colour PLSR model possessed
a negative weighting at 500–600 nm and positive weighting
between 600 and 720 nm (Figure 5). As for DM models, the
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Figure 3: Scatter plot of PLSR model (cross validation) predicted
and actual values for colour CIE 𝑎∗ (𝑅2cv = 0.956, RMSECV = 3.35,
and 𝑛 = 1567) for the combined population set.

CIE 𝑎∗ model 𝑏-coefficients were consistent across models
based on different populations.

3.3. Robustness of Calibration Model. Previous research
reports have separated a subset of a given population for use
in validation of a prediction model developed on the remain-
der of the population. In commercial practice, an existing
model must be used in prediction of an incoming popula-
tion, not included in the calibration set. Samples from the
new population may be used to update the model, in prep-
aration for prediction of new sets. To emulate this practice, a
model was developed and used in prediction of an indepen-
dent set, and then this combined data set was used to create
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Figure 5: PLSR model 𝑏-coefficients for CIE 𝑎∗, for models based
on individual and combined treatment populations.

a new model which was used in prediction of another set of
fruit.

A single population (Pop 1) DM model was relatively
robust, with 𝑅2 = 0.84, RMSEP = 0.86, and bias = −0.26% in
prediction of fruit from a subsequent harvest week (Table 2);
however, a DM model based on combined populations
(Figure 2) was more effective. For example, population 5 was
predicted well by a model based on populations 1 to 4, with
𝑅2 = 0.92, RMSEP = 0.5, and bias = 0.03. A model used to
predict DM of fruit from a given agronomic treatment
achieved a lower 𝑅2 than for the time series predictions, due
to the lower SD of these validation sets. In general, prediction
accuracy (RMSEP) of 0.5%was achieved, with a bias less than
0.2% (Table 2).

Tomato colour is determined by the content of pigments,
that is, chlorophyll and lycopene, in the fruitmesocarp. Given
the thin skin of a tomato, the colour measurements made
using the diffuse reflectance optics of theMinolta colorimeter
will gather information from a depth of several millimetres
into the fruit, while the interactance optics of the SWNIR
spectrometer will collect information to a greater depth (ca.
10–20mm). However, given the good performance of the
SWNIR instrument based models created using reference
data from the Minolta unit, the tissue volumes sampled by
the two instruments must have similar pigmentation. CIE 𝑎∗
models based on a single or few populationswere poor in pre-
diction performance as these populations include a narrow
colour range in the calibration set (Table 2). With addition of
fruit of all colour stages in the calibration set, the prediction
results were acceptable. For example, prediction statistics for
a model based on populations 1 to 4 used in prediction
of population 5 and of fruit subject to various agronomic
treatments included 𝑅2 values from 0.82 to 0.95 and a bias
of −1.18 to 0.67.

As an example of practical implementation, PLSRmodels
on DM and CIE 𝑎∗ (based on fruit grown under a range
of growing conditions) were used in prediction of these
attributes given spectra collected nondestructively each week
from fruit of the various agronomic treatments (Figure 6).
This emulates how the handheld spectrometry system could
be used on farm to monitor fruit maturation.

4. Conclusion

A handheld interactance geometry visible-SWNIR spec-
trophotometer suitable for field practice was used to judge
maturity of tomato fruit based on pigmentation as indexed by
CIE 𝑎∗ and eating quality, as indexed by DM, both on and off
vine. PLSR models based on visible wavelengths were robust
in prediction of new data sets, with low bias, 𝑅2 > 0.75 and
0.82, and RMSEP < 0.84 and 6.88 on the attributes of DM (%)
andCIE 𝑎∗, respectively.The range ofDM in fruit fromplants
under a given growing condition was relatively limited, so
use of a range of growing conditions to achieve a wide range
of fruit DM is recommended for DM model development.
Fruit of different maturities from a given growing condition
is adequate for providing a range of colour. “Updating” a
calibration model by addition of current samples to the
training population to extend the range of the attribute of
interest and the range of chemical and physical matrices to
be found associated with tomato fruit is recommended to
achieve robust practical use. This technology should have
value in tomato breeding programs as a selection tool, to
hydroponic producers wishing to increase eating quality by
manipulation of solution conductivity, and as a quantitative
tool in estimating time to harvest. Time courses of attribute
development (Figure 6) can be used to inform crop manage-
ment.

Additional Points

Highlights. (i) Application of a handheld visible-NIR spec-
trometer using an interactance geometry to judge maturity
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Table 2: Prediction statistics of hydroponic tomato fruit DM (729–975 nm) and colour (CIE 𝑎∗) (500–720 nm), based on interactance spectra.

Populations DM CIE 𝑎∗

Calibration set Prediction set Bias 𝑅2𝑝 RMSEP SDR Bias 𝑅2𝑝 RMSEP SDR
Pop 1 Pop 2 −0.26 0.84 0.86 2.32 −5.2 0.17 13.07 0.97
Pop 1-2 Pop 3 0.07 0.86 0.62 2.70 −2.7 0.73 8.87 1.82
Pop 1–3 Pop 4 −0.14 0.87 0.56 2.64 −0.48 0.85 5.00 2.5
Pop 1–4 Pop 5 0.03 0.92 0.53 3.56 −1.18 0.95 3.80 4.09
Pop 1–5 N added 0.19 0.76 0.55 1.83 0.67 0.82 6.88 2.26
Pop 1–5 Salt added −0.19 0.76 0.84 2.00 −0.29 0.95 4.13 4.45
Pop 1–5 Fruit removed 0.03 0.77 0.46 2.07 −0.08 0.95 3.02 5.18
Pop 1–5 Leaf removed −0.03 0.88 0.51 2.88 0.11 0.86 6.01 2.72
Pop 1–5 Control −0.18 0.83 0.49 2.29 −0.54 0.78 7.64 2.11
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Figure 6: Change in PLSRmodel predicted (a) DM (%) and (b) colour (CIE 𝑎∗) over a growing period (𝑛 = 20, error bar represents standard
error of mean).

and quality of tomato fruit based on colour (CIE 𝑎∗) and
DM, both on and off vine, is demonstrated. (ii) Dry matter
predictions achieved 𝑅2 ranging from 0.86 to 0.92 and bias
from −0.14 to 0.03%. For CIE 𝑎∗, prediction 𝑅2 ranged from
0.85 to 0.96 and bias from −1.18 to −0.08.
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