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Abstract: Zoonotic-origin infectious diseases are one of the major concerns of human and veterinary
health systems. Ticks, as vectors of several zoonotic diseases, are ranked second only to mosquitoes
as vectors. Many ticks’ transmitted infections are still endemic in the Americas, Europe, and Africa
and represent approximately 17% of their infectious diseases population. Although our scientific
capacity to identify and diagnose diseases is increasing, it remains a challenge in the case of tick-borne
conditions. For example, in 2017, 160 cases of the Brazilian Spotted Fever (BSF, a tick-borne illness)
were confirmed, alarming the notifiable diseases information system. Conversely, Brazilian borreliosis
and ehrlichiosis do not require notification. Still, an increasing number of cases in humans and dogs
have been reported in southeast and northeastern Brazil. Immunological methods applied to human
and dog tick-borne diseases (TBD) show low sensitivity and specificity, cross-reactions, and false
IgM positivity. Thus, the diagnosis and management of TBD are hampered by the personal tools
and indirect markers used. Therefore, specific and rapid methods urgently need to be developed to
diagnose the various types of tick-borne bacterial diseases. This review presents a brief historical
perspective on the evolution of serological assays and recent advances in diagnostic tests for TBD
(ehrlichiosis, BSF, and borreliosis) in humans and dogs, mainly applied in Brazil. Additionally, this
review covers the emerging technologies available in diagnosing TBD, including biosensors, and
discusses their potential for future use as gold standards in diagnosing these diseases.

Keywords: tick-borne diseases; ehrlichiosis; borreliosis; Brazilian Spotted Fever; Lyme disease;
immunologic diagnosis; serological diagnosis; biosensors

1. Introduction

The arthropod vectors include many tiny organisms such as mosquitoes, sandflies,
aquatic snails, blackflies, triatome, lice, tsetse, tick, and fleas, transmitting pathogens [1].
Vector-borne diseases (VBDs) significantly impact human health and veterinary health
systems [2]. In 2020, the World Health Organization [WHO] reported that around 17% of
infectious diseases causing more than 700,000 deaths are related to VBDs [1].

Ticks, as vectors of several zoonotic diseases, are ranked second only to mosquitoes as
vectors. Among tick-borne conditions, Lyme disease (LD) has a higher incidence [3,4]. Tick-
borne zoonoses have a high magnitude in North America [5,6], Europe (several countries),
and Asia [7]. In addition, climate change can alter the entire ecosystem, influencing the
increase in the population of ticks and their geographic distribution [8,9].

Brazil is typically a tropical region with a very diverse biome and fauna, which favors
the diversity of tick species. In this scenario, the capybara, the largest rodent in the world,
is considered the amplifying host of rickettsiae [10]. The ticks A. nitens and A. cajennense
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are ectoparasites of horses, and A. cajennense has a preponderant role in transmitting
rickettsiae to humans in Brazil. A study conducted in the south of the country detected
anti-B. burgdorferi in 4/87 (4.6%) humans, 26/83 (31.3%) dogs and 7/18 (38.9%) horses by
RIFI [11]. Another study demonstrated the existence of different activity peaks for the
larval (April to July), nymph (August to September), and adult (September to March) stages
in horses throughout the year in Brazil [12].

In Figure 1, the tick life cycle is schematically presented, associated with seasons and
climate variation in the natural environment, showing wild and domestic animals as maintainers
of the tick population, such as capybara, horse, dog, and man as an accidental host [13].
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Figure 1. Tick disease transmission life cycle (Rickettsia, Ehrlichia, Borrelia, and others) in Brazil.
Horses and capybara are part of the tick cycle in Brazil. However, it is essential to understand that
each tick may be associated with transmitting more than one pathogen.

Developing and emerging countries are expected to have higher densities of ticks,
which predisposes to a more significant occurrence of tick-associated diseases. This as-
sociation is evident not only in some regions of Brazil but also in other countries such as
China [14], India [15], and Russia [16], but it is not the predominant factor since several
developed countries also present an increase of incidence [1]. Instead, this may be explained
by social reasons (modifications in human behavior, duration and type of leisure activities,
increased tourism in high-risk areas) and ecological factors (e.g., effects of climate change
on the tick population and reservoir animals).

Currently, Brazil has a population of 213 million, data estimated by the government’s
statistics agency IBGE, of which 13.151 million live in inadequate housing. Environmental
change and socioeconomic factors may be associated with TBD transmission [17]. Addi-
tionally, the dog is the most popular pet animal. In Brazil, about 46.1% of households had
at least one dog in 2019 and many are known to be sentinels [18,19]. In a recent study
of the occurrence of Ehrlichia spp. in Xenarthra mammals from states in Brazil (São Paulo,
Mato Grosso do Sul, Rondônia, and Pará), 24.54% (81/330) were positive in PCR screening
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assays [20]. In another study, the significant prevalence of E. canis canine in Seropedica,
Rio de Janeiro, was 31.1% (n = 47/150) [21]. A serological analysis conducted in 2013–2015
demonstrated that 8 to 11 % of domestic dogs were seropositive for Rickettsia rickettsii,
9 to 37 % for R. amblyommatis, and 61 to 75 % for E. canis, and 0–5% for Coxiella burnetii [13].
In 2013, 69.4% (n = 108) of dogs were seropositive to E. canis [22]. These last two investiga-
tions were reported in northeastern Brazil.

Another recent study using genotypic mapping of tandem repeat proteins demon-
strated the existence of a wide distribution of E. canis genotypes in Brazil. The most
prevalent are the American and Brazilian genotypes [23].

On the other hand, the presence of different pathogens (E. canis, A. platys, B. vogeli, H. canis,
and several Rickettsia of the spotted fever group) transmitted by ticks (to horses, dogs, and men)
in the State of Espirito Santo were demonstrated by IFA and/or real-time PCR [24,25].

Among the most prevalent TBDs, the only one that has a record for humans is Brazilian
Spotted Fever (BSF), caused by R. rickettsii and R. parkeri strain Atlantic Forest [25,26].
According to Valente et al., there is a great diversity of ticks and hosts in Brazil, which
reinforces the need for greater epidemiological monitoring of ticks in the country, mainly
due to the increase in the number of reports of spotted fever [27]. Figure 2 shows the
evolution of spotted fever notifications in Brazil.
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Even though Brazilian Borrelia disease (BBD) is not notified, many cases have in-
creased. The prevalence of IgG antibodies to Borrelia was 3.5% (16 samples) [28]. Bonoldi
et al. showed that BBD patients with clinical symptoms presented 50% (14/28) positive
serology in the acute phase (<3 months) and 45% (10/22) positive serology in the later
phase (>3 months) [29]. In addition, ticks can transmit more than one pathogen. Multiple
infections can generate similar signs and symptoms, but different diseases [30,31]. Tick
diseases can demonstrate the asymptomatic subclinical phase in humans and dogs [32]. In
symptomatic dogs, clinical signs (fever, pale mucous membranes, apathy, anorexia, lymph
node enlargement, and weight loss) are described for canine ehrlichiosis and BSF. However,
most canines with BBD are asymptomatic [33,34], but humans have acute symptoms, which
should be dissociated from flu-like symptoms (fever, headache, vomiting, muscle aches,
and pain) [35,36].

The greatest challenge to clinicians is not therapy but the difficult diagnosis during
the early phase of infections [37]. The diagnosis of TBD may be masked due to these initial
non-specific clinical presentations and the absence of confirmation by specific laboratory
testing [38]. In addition, serological diagnosis is usually retrospective; antibody increase
takes 15–26 days, thus limiting the clinical impact of diagnosis [39].

Although molecular tests already exist to diagnose some TBDs, the similarity of signs
and symptoms with a non-absolute specificity of the molecular methods [40] leads to
the need for more precise identification of pathogens in humans and animals. In this
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way, refined immunological diagnostic tests, which are cheaper, reassume relevant impor-
tance in controlling outbreaks before they become epidemic [41,42] and directing the best
medical treatment.

Microscopy, serological and molecular methods have been applied to detect pathogen
TBDs in Brazil [43,44]. The criteria recommended by the CDC and considered the gold
standard are two-layer diagnostic tests, consisting of an immunofluorescence assay (IFA)
and enzyme linked-immunoassay (ELISA), which, when positive, must be confirmed by
a second-step immunoblot [43,45]. The diagnostic test for BSF and ehrlichiosis recom-
mended in Brazil is a dual test for LD [42,46], even though the condition has different
immunological and epidemiological aspects than LD. Thus, the analysis of the second
stage of the test, western blot, needs a certain number of bands present to be considered
positive [38,44]. However, even following this strict criterion, a larger study conducted in
Brazil demonstrated a significant number of false positives (16%) [46].

So new immunological methods have been developed regarding immune response.
When infection with a pathogen occurs, innate and acquired immunity play a role in establishing
and eradicating it [47,48]. The IgM antibodies appear in the first week of infection in the
humoral immune response, and IgG is second [49,50]. The quantity and affinity of these
antibodies influence the tests. Immunoassays detect antibodies or antigens from pathogens,
presenting the capacity to show if the patient has an ongoing infection. The applicability of
these immunodiagnostic tools helps determine immune reactivity antibody-antigen.

Many immunological assays present performance that varies widely, such as ELISA,
IFA, western blot (WB), and hemagglutination used in BSF [49–51], Lyme disease [43],
and ehrlichiosis [50] diagnostic. A short overview of the methodology applied for those
diseases is shown in Table 1.

In recent years, biosensor devices have attracted scientists’ attention. The biosensor
uses a target analyte attached to the transducer to generate an output signal [52]. Its
integration with antibodies or antigens has contributed to the development of the im-
munosensor. This paper aimed to review some immunodiagnostic assays used to detect
TBDs, specifically borreliosis, ehrlichiosis, and BSF disease (Table 2).

Table 1. Diagnosis test for tick-borne diseases.

Disease Pathogen Test Method % Sens % Sp % PS Country Ref.

VlsE1/pepC10 ELISA IgM/IgG 59.5–80.9 86.9–93.0 USA [53]
LD B. burgdorferi MarBlot® WB IgM/IgG 84.7/87.3 USA [54]

VIDAS®Lyme EIA IgM/IgG 83–85 85–88 USA [55]

ATBF R. africae Focus Diagnostics IFA IgM/IgG 95 USA [56]
RMSF R. rickettsii Tulip Diagnostics WF IgM/IgG 49 96 India [57]
MSF R.conorii Vircell ELISA IgM/IgG 94/85 95/100 Spain [58]

E. chaffeensis Fuller Laboratories IFA IgM/IgG 1.8/7.0 USA [59]
HME E. canis Fuller Laboratories IFA IgG 19 USA [60]

E. canis ImmunoComb ELISA IgG 4.33 Spain [17]

PS, positive sample; Sp, specificity; Sens, sensitivity; ELISA, enzyme-linked immunosorbent assay; WFT, Weil-Felix
test; IFA, Indirect fluorescent antibody assay; MSF, Mediterranean spotted fever; LD, Lyme disease; ATBF, African
tick bite fever; RMSF, Rocky Mountain spotted fever; HME, Human Monocytotropic Ehrlichiosis.
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Table 2. Serology-based methods with advantages and disadvantages used for Lyme, ehrlichiosis,
and rickettsiosis diseases.

Serology-Based Methods Disease Sample Advantages Disadvantages Reference

ELISA ehrlichiosis/LD 100 mL ↑ specificity ↓ sensitivity [61]

Immunoblotting borreliosis (LD) 0.5 mL ↑ specificity heterogeneity,
↓ sensitivity [62]

IFA rickettsiosis/ehrlichiosis 25 µL ↑ sensitivity subjective [45]

WFT rickettsiosis 0.1 mL ↓ sensitivity/specificity [63]

Electrochemical rickettsiosis 20 µL ↑ sensitivity/specificity,
fast response [64]

ELISA, enzyme-linked immunosorbent assay; LD, Lyme disease; WFT, Weil-Felix test; IFA, Indirect fluorescent
antibody assay; ↑ High; ↓ Low.

1.1. Humoral Immunity

When a bacterial infection occurs, during the innate immune response cells recognize
highly conserved pathogen structures, known as pathogen-associated molecular patterns,
through pattern recognition receptors, which are expressed on the cell surface or secreted
in body fluids [65,66].

B cells produce different isotypes of immunoglobulins, but the main subclasses of
diagnostic importance have been IgM (early phase) and IgG (later phase). However, IgA
has recently shown considerable diagnostic value for tick-borne spotted fever rickettsial in
the early phase [16,60].

Figure 3 shows the immune response kinetics for Rickettsia, Ehrlichia, and Borrelia
diseases. However, temporal variations of Ig subclasses have been described.
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IgM is evident within the first three weeks of all infections [67]. However, in both
LD and RMSF, the IgM level declines after the first week of illness, whereas ehrlichiosis
remains high [66]. In addition, Ehrlichia and Borrelia can suppress or delay the onset of a
germinal center’s response [68], which is vital in generating high-affinity antibodies [69].

IgG begins to be produced within 3–6 weeks of BBD, although IgM and IgG may persist
for months and years [65,70]. On the other hand, in Rickettsia and Ehrlichia infections, IgG
increases at around the second week and can continue for many years [65,67].
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1.1.1. Agglutination Tests

First described in 1916, the Weil-Felix reaction (WFT) is a test used to diagnose rick-
ettsial infections. This test is based on specific serotypes of Proteus bacteria displaying
antigenic cross-reactivity with Rickettsia species. Although at the same time, it has largely
been replaced with new serological techniques, the WFT remains important in resource-
limited areas where more advanced methods are unavailable [71]. However, due to its low
sensitivity and specificity, the WFT has fallen out of favor in most clinical settings, and its
use is no longer recommended in routine practice.

An indirect hemagglutination assay for immunodiagnosis of Rocky Mountain spotted
fever (RMSF), using an erythrocyte-sensitizing substance from R. rickettsii adsorbed to
latex particles, has been noticed. The test was evaluated with 123 single and 118 paired
human sera submitted for RMSF testing. Its efficiency, relative to the reference micro-
immunofluorescence test, was 95.1% for single sera and approached 100% for paired
sera [72]. Furthermore, another latex agglutination assay was designed using a soni-
cate of Borrelia microtti flagella and showed 98% sensitivity and 95% specificity [73]. In
addition, a latex agglutination capture antibodies test for R. conorii was compared with the
micro-immunofluorescence, showing the same sensitivity and specificity [74]. However, both
demonstrated low specificity and sensitivity (33%) in the acute phase of rickettsial infections [75].

The agglutination tests can form clumps of the particular material, and antibodies
from patient sera can be captured by the antigen and detected in the pellet [61]. A variety
of agglutination tests have been developed over the last four decades. Although simple
and easy to create, they lack specificity, sensitivity, and reproducibility, which prevents
their development on a large scale.

1.1.2. Immunoblotting (Western Blotting)

Western blotting (WB) is a semi-quantitative or quantitative valuable method for iden-
tifying antigenic protein bands and is sometimes also employed in diagnosis to recognize
specific antigens [76,77]. Among the TBD infections mentioned previously, LD is the only
one yet to perform this type of assay for confirmatory diagnosis. In Brazil, it has been used
to clarify ambiguous results of the first molecular analysis and uses the diagnostic criteria
recommended and adopted by the CDC/U.S.A.

A study also conducted in Brazil to confirm the acute phase of the disease concluded
that the test shows low specificity. Of 82 patients’ sera screened for IgM-Lyme, 50 were
false positives (27.5%, 95% CI: 21.1–34.6) [78]. In another study, in 212 cases evaluated,
113 (53.3%) were false positives for IgM [35]. Likewise, a meta-analysis study comparing
different assays detected heterogeneity, low sensitivity, and high specificity, which may be
related to the type of sample, stage of disease, and subjectivity in interpreting results [79].

1.1.3. Indirect Immunofluorescent Assay

The indirect immunofluorescence assay (IFA) is a simple test with low specificity
and high rates of false-negative results [80]. Likewise, extensive cross-reactions between
E. canis and Ehrlichia spp. have been described [81,82]. Despite these contradictions, such
as lack of sensitivity, imprecision, and time consumption, a fluorescence microscope is
needed, which prevents it from being available in many endemic regions. Today, the IFA
is the serological diagnostic method is considered the gold standard to confirm Rickettsia
and Ehrlichia infection [44,75]. The test requires two paired serum samples taken within
2–3 weeks post-infection, and the result is considered positive if the antibody titer is
≥64 [76]. However, it should not be used to diagnose the acute phase (IgM) because, in the
first two weeks of infection, it has low sensitivity and cross-reactions to various bacterial
antigens [83–85].

1.1.4. Enzyme-Linked Immunosorbent Assay (ELISA)

The ELISA is one of the most common assays used under different formats for diag-
nosis. This selection is simple and efficient and can be developed in two or three steps
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(capture of antibodies or circulant antigen) [51]. However, to increase the sensitivity and
specificity of the assays, it is necessary to identify previously robust and specific antigens,
which has been a challenge up to now.

Recombinant proteins [69,83] and peptides selected by phage display [86] have usu-
ally been employed to diagnose TBD, but the results were generally not encouraging.
One study using peptide-based ELISAs to diagnose anaplasmosis and Ehrlichiosis in
dogs obtained higher sensitivity but lacked specificity [87]. Another work analyzed three
ELISA-recombinant proteins for detecting anti-Ehrlichia canis IgG antibodies, but the results
demonstrated a low sensitivity [87]. A third ELISA has been licensed by the FDA to see
anti-IgM R. typhi, but has a sensitivity of 45% and a specificity of 98.3% [88].

1.1.5. Immunosensors

Electrochemical sensors are powerful tools in analytical chemistry. They are com-
posed of electrical transducers that measure the environment’s chemical changes, mainly
potentiometric, amperometric, and conductometric. Commercial electrochemical sensors
lead the market, and they are applied in essential fields of industrial, environmental, agri-
culture, and clinical analysis [71]. For the latter, an annual growth of 7.4% is expected
for the 2021–2027 period [86,89]. Moreover, this tool catches the eye for its remarkable
detectability, experimental simplicity, low cost, fast response, production scalability in the
case of screen-printed technology, and it is conducive to miniaturization [89]. Furthermore,
the emerging two-dimensional layered materials incorporated into biosensor devices have
improved sensitivity [90,91].

Our group developed a simple and elegant electrochemical biosensor using a com-
mercial screen-printed electrode for Spotted fever diagnosis [64]. The working electrode
was modified with glutaraldehyde to allow epitopes of peptides’ covalent bond followed
for the specific and sensitive detection of IgG. Based on detailed microarray analysis of
outer membrane protein-A of R. rickettsia, an epitope available to the immune system and
recognizable by B cells was chosen to serve as a binding site for IgG. In this way, concerns
related to the immunofluorescence golden standard test such as lack of sensitivity at the
acute phase, requirements for the analysis of paired sera collected over 2–3 weeks, and
the highly controlled environment to establish the quality of the antigen. Furthermore,
a low-cost, portable, and faster detection than ELISA, which requires a small volume of
samples, was developed using sec-IgG labeled with alkaline phosphatase.

Recently, another dispositive that was developed was the bioconjugation of silver
nanoparticles (AgNPs) with the sec-IgG for signaling markers to quantify IgG anti-tick-
borne encephalitis (TBE) virus (TBEV) [92]. The immunosensor comprised a carbon com-
posite electrode modified with gold nanoparticles produced electrochemically and via cys-
teamine and glutaraldehyde. TBEV antigen was covalently conjugated as an IgG-binding
site. AgNPs, dissolved in HNO3 solution, recognized the captured IgGs, and the resulting
free Ag ions were quantified successfully by cathodic linear sweep. Thus, they produced a
cheaper and more stable marker than others based on enzymes.

More recently, another rapid, cheap, and simple detection method of TBEV using cyclic
voltammetry (CV) was established [93]. A supervised neural network model CV response
of the eutectic gallium indium alloy/agar hydrogel modified with TBE antibody was fed to
detect the virus indirectly. The antigen/antibody interaction was detected by changing the
gel composition, and the supervised method identified the CV response patterns. The work
showed proof-of-concept results and demonstrated a high potential to develop machine
learning detection.

1.2. Immune Disorder and Diagnostic Implication

Great variations are observed in the antibody response to B. burgdorferi infections.
Some patients maintain a detectable antibody titer for years, for others titers decline over
time, and some never present antibodies [65]. This phenomenon has also been observed
in animals, leading to a hypothesis of a general dysregulation of adaptive immunity [37].
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Ultimately, the antibody response mounted by infected individuals is mostly ineffective
in completely eradicating spirochetes and/or establishing long-term immunity [94–96]. A
B. burgdorferi infection can redirect the adaptive immune system from a long-term protective
antibody response toward a less efficacious short-lived antibody response that can be both
rapid and strong [97].

Throughout a B. burgdorefi infection, multiple changes in lymph nodes have been
observed that can be divided into four phases. Initially, B cells accumulate in lymph nodes,
inducing antibody production independent of T-cells. The typical architecture is altered
by changes in the organization of B cell follicles and T cell zones [98]. The appearance of
spirochetes between 5–10 days post-infection further varies B cell follicles [99]. In addition,
B cells began accumulating in large numbers that can reach greater than 70%, which skews
its ratio to T cells [100]. The germinal centers’ formation around 2–3 weeks later marks the
second phase. Short-lived centers generate low numbers of antibody-producing plasma
cells within the bone marrow. The third phase covers the slow accumulation of plasma
cells. In the final phase, lymph node germinal centers begin to disappear around week four,
even in the presence of bacteria. The timing of B cell accumulation before the changes in
lymph node morphology suggests that the appearance of bacteria is responsible for the
atrophy of lymph nodes [101].

The CDC recommends a two-tiered testing program for suspected cases of LD to
detect B. burgdorferi-specific antibodies and an algorithm to diagnose an infection [100].
The first-tier test is an ELISA. Positive and borderline results are retested in the second
tier, which consists of a Western Blot on bacterial proteins. In theory, both IgM and IgG
antibodies are evaluated, and this test can identify active infections [101]. However, this
approach may generate misleading diagnoses due to the duration of the IgM response.
In a cohort of individuals with resolved LD, 13% (10 of 79) presented IgM antibody in
the two-tiered test 10–20 years after the infection [102]. Nearly half (34 of 79) continued
to display IgG reactivity. In shorter time intervals between testing and the disease, these
percentages were slightly higher; 15% (6 of 39) with IgM and 62% (24 of 39) with IgG. Similar
results have been observed in mice, where IgM antibodies do not decrease even as the IgG
levels rise [99]. The persistence of IgM, even after recovery, could interfere with healthcare
decisions and result from the described alterations in lymph node architecture [99,100].
Additional studies are needed to understand the IgM response’s duration and the absence
of long-lived plasma and memory cells.

For LD diagnosis, it is important to differentiate between active and inactive infections
in a format that can dispense with the current two-tier approach. Therefore, an active
area of research is to focus on identifying antigens that are expressed very early in LD
(e.g., VlsE1 and pepC10) [101,102], which have enhanced the performance of the diagnostic
assays. Additional areas include nucleic acid and antigen detection [100]. In this regard, a
multiplexed test employing three antigens (VlsE, PepVF, and OspC) combined with a microflu-
idic chip technology platform (mChip-Ld) showed high sensitivity and efficacy for use in the
identification of the early stage of LD [103]. Likewise, surface-amplified Raman spectroscopy
was used in combination with aptamers to identify the OspA protein (present during active LD
infection) in human serum at an extremely low concentration (10–4 ng OspA/mL serum) [104].

PCR assays have been developed to detect B. burgdorferi DNA [105]. Directly seeing
spirochetal components can be an accurate method to identify active infections, such as
antigens for OspC [105] and peptidoglycan [106]. OspC is present on spirochetes originating
from the tick to the mammalian host [103]. It can detect peptidoglycan in patients after
antibiotic treatment and is the cure for active infection [107]. Since metabolically active
spirochetes only produce peptidoglycan, there is a possibility that a B. burgdorferi could
transition to a persistent infection.

2. Conclusions

Brazil is the most populated country in Latin America, with high diversity in ecosys-
tems. Therefore, environmental change and animal locomotion contribute to an increased
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tick population. In addition, the number of dogs in households has increased in recent
decades. Consequently, the risk of diseases transmitted by ticks has also increased. How-
ever, BSF is the only one of the TBDs with mandatory notification diseases, which directly
influences the questioning of the clinical diagnosis of BSF, ehrlichiosis, and BBD. In the
initial phase, the clinical symptoms are flu-like, and the immunologic method demonstrates
variation in both specificity and sensitivity, especially low specificity resulting in cross-
reaction. These limitations indicate an urgent need to find and validate direct molecular
markers derived from the pathogen to improve new, more specific, and fast immunologic
methods. Strategies for these methods should also encompass high sensitivity and speci-
ficity, simple and intuitive handling, low sample volume, and quick results. In addition,
it is necessary to better understand the mechanisms of dysregulated antibody response
described for Lyme disease patients since this is critical in determining the sensitivity for
developing improved diagnostic tests for this TBD [42].

Tests using immunosensors are being presented as promising for detecting TBDs at
an early stage with high sensitivity and precision. However, they still need to be available
in commercial devices to be applied on a large scale. Therefore, different tests using
ELISA or immunochromatography are the most practical to be developed. In this respect,
recombinant proteins carrying multiple specific epitopes [108] are a diagnostic strategy that
can improve the specificity and sensitivity required for tick-borne diseases diagnosis and
may also contribute to the epidemiology of E. canis E. chaffeensis and B. burgdorferi. Finally,
this may progress in diagnosing and treating borreliosis, Ehrlichiosis, and BSF to monitor
animal and human health.
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