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A Simple 3-Parameter Model for 
Cancer Incidences
Xiaoxiao Zhang1,2,3, Holger Fröhlich   1,4, Dima Grigoriev5, Sergey Vakulenko6,7,  
Jörg Zimmermann   1 & Andreas Günter Weber   8

We propose a simple 3-parameter model that provides very good fits for incidence curves of 18 common 
solid cancers even when variations due to different locations, races, or periods are taken into account. 
From a data perspective, we use model selection (Akaike information criterion) to show that this 
model, which is based on the Weibull distribution, outperforms other simple models like the Gamma 
distribution. From a modeling perspective, the Weibull distribution can be justified as modeling the 
accumulation of driver events, which establishes a link to stem cell division based cancer development 
models and a connection to a recursion formula for intrinsic cancer risk published by Wu et al. For 
the recursion formula a closed form solution is given, which will help to simplify future analyses. 
Additionally, we perform a sensitivity analysis for the parameters, showing that two of the three 
parameters can vary over several orders of magnitude. However, the shape parameter of the Weibull 
distribution, which corresponds to the number of driver mutations required for cancer onset, can be 
robustly estimated from epidemiological data.

Cancers arise after accumulating epigenetic and genetic aberrations1–3. Earlier studies established a power law 
model on the basis of multi-stage somatic mutation theory to explain age-dependent incidences4–6 for several cancer 
types. As noted by Hornsby et al.7 in the context of classical epidemiological studies most cancers occur with the 
same characteristic pattern of incidence, and the simplicity of this pattern is in contrast to the perceived complexity 
of carcinogenesis. Orthogonal to these age stratification of different cancer types, Tomasetti and Vogelstein8 (with 
follow-ups9,10) reported a significant association between life time caner risk and stem cell divisions and concluded 
the latter substantially contributes to the former. Challenging the conclusion of Tomasetti and Vogelstein8 of a 
high-intrinsic cancer risk Wu et al.11 subdivided cancer risk into extrinsic and intrinsic risk, arguing extrinsic factors 
contribute more to cancer risks than intrinsic factors do. Based on a mechanistic model of accumulated mutations, 
these authors provided a recursion formula for theoretical life time intrinsic risk (tLIR) parameterized by age a. This 
recursion formula has the closed form solution = − − − − + ⋅a rtLIR( ) 1 (1 (1 (1 ) ) )S d a k Slog2 , where S can be 
interpreted as the numbers of stem cell, d as the stem cell division rate, k as number of driver events required for 
cancer onset and r as the mutation rate per division. They reported that tLIR goes outside of the plausible range of 
empirical cancer risks by studying several pairs of values for two parameters (mutation rate and driver gene muta-
tions) concluding that there is a substantial contribution of extrinsic risk factors to cancer development. However, 
this conclusion only holds in the studied parameter space and when parameters for all cancer types are treated 
uniformly. By performing a systematic grid search in the space of biologically plausible parameter values we showed 
that tLIR can be close to empirical risk for different cancer types (R2 > 0.85). If the extrinsic risk factor is computed 
by simply setting it to a complement of 1 for the intrinsic risk factor as performed by Wu et al. it will be concluded 
that there is a possibility of high intrinsic risk, so that one of the presented arguments by Wu et al.11 is fallacious.

On a pure mathematical side, we show that a scaled Weibull function with 3 parameters approximates the 
4-parameter mechanistic tLIR model. On an epidemiological data analytical side, this simple 3-parameter model 
excellently agrees with age-dependent cancer incidence curves among 18 common solid cancers even when 
variations due to different locations, races, or periods are taken into account. With this model, we study the 
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relationship between cancer risk and stem cell divisions, the high correlation between the two entities reported by 
previous studies8,10 breaks down when considering age stratified data.

Results
Approximation of tLIR model by a scaled Weibull function.  As is derived in the Materials and 
Methods the 4-parameter mechanistic tLIR model can be approximated by a scaled Weibull function with 3 
parameters:

λ≈ ⋅a P k atLIR( ) Weibull( , )( ), (1)

assuming that λ is defined by

λ= .−S rd P( ) (2)k k

Here λ = − λ−k a eWeibull( , )( ) 1 a( / )k
 is the cumulative distribution function of the Weibull distribution, and 

P is the number of independent parallel processes, which e.g. can be interpreted as cell population at risk12. 
Whether the total tissue cells or only a fraction of stem cells are susceptible for cancer risk is unclear13,14. If one 
sets P = S then rd = λ−1. However, other possible choices for P allow to account for other factors such as the 
selection of mutations15,16, the stem cell microenvironment17,18, and tissue architecture19–22, or effects of clonal 
expansion23–25. Models incorporating clonal expansion have additional parameters such as the number of clonal 
copies. Reducing the dimensions of such complexed models results in tLIR, in which S is interpreted as number 
of independent clusters after clonal expansion rather than the number of stem cells, r and d denote “net” mutation 
and division rate of independent clusters at average level rather than those of single cells. Whereas a precise anal-
ysis of models for clonal expansion will be the topic of future work, these considerations show that when using the 
scaled Weibull distribution, prior knowledge on the parameter ranges is not necessary. This is indeed one benefit 
of scaled Weibull function comparing to tLIR model which requires a biologically reasonable guessing on stem 
cell numbers, mutation rate, cell division rate and number of driver mutations. The Weibull distribution is a spe-
cial case of the generalized extreme value distribution (GEV)26. The GEV distribution plays the same role within 
extreme value statistics as the normal distribution does in average value statistics. It results in the limit distribu-
tion being maximized over many independent and identically distributed random variables, thus becoming the 
default model for the accumulation of micro events which finally leads to a macro event. The GEV is the limit 
distribution when one takes the maximum (and not the sum) of many independent and identically distributed 
random variables, thus being the default model for the accumulation of micro events which finally lead to a macro 
event. Accordingly, the Weibull distribution is not just a distribution providing a good empirical fit, but can be 
seen as justifiable for use in a plausible causative model of cancer genesis.

Fitting empirical incidence rates with scaled Weibull function.  We performed extensive simulations 
and parameter fittings for the empirical incidence cumincc(a) of cancer type c at age a using the scaled Weibull 
function: cumincc(a) ≈ Pc ⋅ Weibull(λc, kc)(a). The model agrees excellently with age-dependent age incidences of 
18 common solid cancers (R2 > 0.99, Fig. 1).

Goodness of fit maintains when parameters Pc and λc, varying roughly two orders of magnitudes (Fig. 2). This 
finding suggests that many parameter combinations provide similar dynamics that are consistent with empirical 
data. So any interpretations of Pc and λc have to take into account this considerable uncertainty. Nevertheless, 
the estimates for Pc are several orders of magnitude smaller than the realistic number of stem cells provided by 
Tomasetti and Vogelstein8, yielding evidence supporting the above statement that the number of independent 
local processes is not equal to the number of stem cells.

Figure 1.  Empirical cumulative cancer incidence data are consistent with the Weibull cumulative probability 
function in 18 cancers (data for ages up to 85 years old). Empirical (blue line) and Weibull function-fitted 
(red line) cancer cumulative incidence curves for 18 tissues, goodness of fit is reported in each subplot. The 18 
cancers exhibit a good goodness of fit when using R2 between model-reported age incidence and the empirical 
cumulative cancer incidence are used as metrics.
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The estimates of parameter kc, which corresponds to the number of driver events in the mechanistic model, 
are robust against variations of parameters Pc and λc (Fig. 2). Moreover, the estimates of kc are robust against race, 
sex, period and location (Fig. 3). In Supplemental Fig. 2 the best fits of shape parameters are plotted against the 
best fits of scale parameters for 694 time series.

Relationship between cancer incidence and stem cell divisions.  Tomasetti and Vogelstein8 sug-
gested that the variation in cancer risk among tissues can be explained by the number of stem cell divisions. 
They reported that the tissue-specific cancer risk is strongly correlated (0.81) with life-time stem cell divisions 
(LSCD). These authors stated that the total number of stem cell divisions is a causative factor of cancer risk. This 
assumption yields a prediction on age structured data: for tissue type c the number of stem cell divisions up to 
age a, which we will denote by LCSDc(a), should then be strongly correlated with cumincc(a). However, using age 
incidence data obtained from the SEER-database27 we found that the regression lines for most tissue types c for 
age data of 40, 50, 60, 70, and 80 years of cumincc(a) plotted against LCSDc(a) in a log-log-scale are much steeper 
than the ones of the regression lines for different c and cumincc(80)—using 80 as average life span as was done by 
Tomasetti and Vogelstein8 (see Fig. 4).

Figure 2.  Sensitivity analysis of parameter estimates using the scaled Weibull function for exemplary 14 cancer 
types. Whereas the estimates Pc for the cell population at risk and the scale parameter λc can vary over two order 
of magnitude, the estimates of the shape parameter kc are within about ±1. Notice that the shape parameter 
allows interpretation as the number of limiting events.

Figure 3.  Shape parameters estimated by fitting empirical cancer incidence data using the Weibull function 
(data with ages for up to 85 years). Cancer patients are grouped by year of diagnosis, race and registry. Cancers 
are ordered by median values of shape. Shapes are uniform regardless of risk factors, which is consistent with 
intuitive expectations: race and environmental changes are less likely to alter the number of driver events for 
cancer onsets.
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This “life time cancer risk” moderately associates with age-dependent stem cell divisions, if one takes a 
life-time a that is less than 70 years (Fig. 5).

Overall, age-dependent stem cell divisions (using ages 40–80 years) is modestly correlated to age-dependent 
cancer risk for the 31 cancer types considered by Tomasetti and Vogelstein8 using the SEER database and the 
estimates of stem cell divisions given therein (Pearson correlation coefficient ρ = 0.51).

Hence, the strong correlation for (life-time) tissue-specific cancer risk with life-time stem cell divisions 
(LSCD) cannot be explained by the simple causative factor (involving the product of the number of stem cells 
and the number of divisions of each stem cell) suggested by Tomasetti and Vogelstein8. A causal explanation on 
cancer risk should at least shows that the association between cancer risk and risk factor observed at overall level 
is reproducible on age stratified data. However, one caveat to such explanation, co-factors of risk factors might 
not be appreciated.

In our 3-parameter model, which gives good fits for age dependent cancer risks, several relations between 
the model parameters and cancer risks at a certain age can be observed. For instance in our parameter estimates 
good fits are possible when taking the inverse of the lifetime cancer risk Pc ≈ 1/cumincc(85). However, we will 
not suggest that the number Pc of cell population at risk is an explanation for the variation of cancer risks among 
tissues: as the range of Pc yielding good fits varies by two orders of magnitude and independently determining this 
number is difficult to achieve, a corresponding hypothesis is difficult to verify or to falsify.

As the sensitivity analysis for the scale parameter λc (Fig. 2) shows that this parameter varies over several order 
of magnitudes, still yielding very good fits (R2 > 0.99), the corresponding estimates for the mutation rate r in the 
tLIR model using the approximation (1) and relation (2) are also very uncertain, even when fixing values of S 
and d and leaving out the considerable uncertainty of these. Nevertheless, when using estimates of S and d taken 
from the literature8 the obtained ranges of values of r using relation (2) for several cancer types do not intersect 
the range [10−10, 10−6] of “plausible values” of r suggested by Wu et al.11. If we extend the analysis to allow “good 
fits” by setting a threshold R2 > 0.85, then good fit of the tLIR model with r ∈ [10−10, 10−6] are possible to achieve 
(Table 1).

Testing performance of our 3-parameter against other simpler model.  For testing the perfor-
mance of our 3-parameter model against other simpler models, we compared the fitting performance of the 
scaled Weibull function to that of 2-parameter power law model arising as the simplest instance from multistage 
theory5,7,12,13. The empirical time series for different locations, periods and races were fitted (694 time series all 
together) using both models, the power law model had a goodness of fit of R2 < 0.90 for 90 time series (13.0%),  
R2 < 0.95 for 257 time series (37.0%), and R2 < 0.98 for 366 time series (52.7%). In contrast, our 3-parameter 
scaled Weibull model resulted in R2 > 0.9 for all time series, R2 > 0.98 for 686 (=98.8%) of the time series, and  
R2 > 0.99 for 679 (=97.8%) of them (Fig. 6(a)).

We compare the fitting performance of the scaled Weibull function against that of the scaled Gamma func-
tion. Although both functions fit data equivalently well in most cases, the scaled Weibull function outperforms 
the scaled Gamma function in several time series. (Fig. 6(b)) displays R2 reporting goodness of fit for the two 
functions. We also calculate the Akaike information ciriterion(AIC)28, a likelihood based measurement. A lower 
AIC value indicates a better fit. Table 2 reports the AIC for 18 cancer types, the AIC values for Weibull function 
are lower than those of Gamma function in 15 cancer types.

Figure 4.  Relationship between cancer incidence and stem cell divisions among 30 cancer types. The lifetime 
cancer risk regression line is conceptually the same as that used by Wu et al.11.
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Estimating the Number of Driver Mutations for Cancer Onset.  In our model the shape parameter kc 
reflects the number of mutations required for cancer onset. The values of this parameter are, however, higher than 
the number of mutations estimated from sequencing data by Vogelstein et al.29. Vogelstein et al. suggested tech-
nical issues as an explanation for the inconsistency between estimates from epidemiological data and sequencing 
data. Notably, our kc estimates and the number of driver mutations estimated from a classical power law model 
are roughly in the same numerical range (Fig. 7). Since we obtain better and more robust fits than the power law 
model, we believe that our estimated driver mutation numbers are more trustworthy.

Discussion
In this study we connected the mechanism-based cancer development tLIR model to the Weibull distribution 
function. We tested its validity by fitting a 3-parameter Weibull function to data from 18 common solid cancer 
types, consisting of more than 600 time series. The scaled Weibull function fits well with age dependent incidence 
curves of all studied cancers and outperforms other models, such as the commonly used 2-parameter power law 
model and a 3-parameter scaled Gamma function model. With the scaled Weibull function, we can estimate the 
number of driver mutations required for cancer onset in individual cancer types. To our knowledge, this is the 

Figure 5.  Relationship between cumulative cancer incidences up to age 40, 50, 60, 70, 80 years old and life time 
stem cell divisions.
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first work matching pan-cancer incidence curves with a statistical distribution function that is partially biologi-
cally informative.

Compared to the tLIR model developed by Wu et al.11 we see two technical benefits of our suggested approach: 
First, the scaled Weibull function involves less parameters than tLIR, but it remains to be biologically interpreta-
ble. The tLIR model includes several details of the multi-staged process of cancer development, e.g. the number of 
steps required for transforming a normal cell to malignancy, the number of stem cells in a tissue and division rate 
of stem cells. Although the tLIR model indeed provides useful insights into linking age-dependent somatic muta-
tions to cancer risk, it has also limitations. For example, it ignores the effects of clonal expansion25. Another issue 
is that most parameters in the tLIR model are difficult to measure accurately in practice. Following Tomasetti 
and Vogelstein8 the number of stem cell divisions can be estimated, but the accuracy has been criticized30. In 
contrast, our suggested model requires less specific assumptions about the parameters to be measured in practice. 

Cancer k r R2 Stem cell Division rate Generation1 Risk

AML 4.8 1.000e − 06 1.00 1.35e + 08 12.000 1047.01 4.651e − 03

BCC 4.5 1.000e − 06 0.98 5.82e + 09 7.600 678.44 2.181e − 04

CLL 4.9 1.000e − 06 0.99 1.35e + 08 12.000 1047.01 6.925e − 03

COAD 5.5 5.012e − 07 1.00 2.00e + 08 73.000 6232.58 5.677e − 02

DUAD 5.3 1.000e − 06 1.00 4.00e + 06 24.000 2061.93 3.714e − 04

ESCA 4.5 5.012e − 07 0.99 8.64e + 05 17.400 1498.72 3.106e − 03

GBNPAD 3.5 1.000e − 06 0.85 1.60e + 06 0.584 70.25 1.896e − 03

GBM* 1.35e + 08 0.000 27.01 3.825e − 03

HNSC 3.8 1.995e − 07 0.99 1.85e + 07 21.500 1851.64 1.730e − 02

LHCA 3.6 1.000e − 06 0.94 3.01e + 09 0.912 109.05 7.079e − 03

LUAD 2.8 7.943e − 08 0.83 1.22e + 09 0.070 36.13 2.304e − 02

MBM* 1.36e + 08 0.000 27.02 1.414e − 04

SKCM 3.8 1.000e − 06 1.00 3.80e + 09 2.480 242.62 3.038e − 02

OSARC 1.0 1.585e − 08 0.96 4.18e + 06 0.067 27.69 2.696e − 04

OSARCA 1.0 6.310e − 07 0.96 6.50e + 05 0.067 25.01 2.527e − 05

OSARCH 3.0 1.000e − 06 0.99 8.60e + 05 0.067 25.41 1.660e − 05

OSARCL 1.0 3.981e − 07 0.96 1.59e + 06 0.067 26.30 1.312e − 04

OSARCP 3.1 1.000e − 06 0.91 4.50e + 05 0.067 24.47 3.229e − 05

OVGC* 1.10e + 07 0.000 23.39 7.638e − 05

PDAD 3.8 1.000e − 06 0.92 4.18e + 09 1.000 116.96 1.016e − 02

PECA 3.6 1.000e − 06 0.99 7.40e + 07 1.000 111.14 1.498e − 04

SIAD 5.0 5.012e − 07 1.00 1.00e + 08 36.000 3086.58 8.013e − 04

TGCC 1.9 7.943e − 07 0.96 7.20e + 06 5.800 515.78 2.244e − 03

TPFC 3.1 1.000e − 06 0.98 6.50e + 07 0.087 33.35 6.922e − 03

TMCA 3.1 7.943e − 07 0.93 6.50e + 06 0.087 30.03 8.707e − 05

Table 1.  One possible combination of parameters with which the tLIR model of11 fits empirical data well. We 
are restricting r to be in the range [10−10, 10−6] as was done by11. 1Assuming lifetime is 85 years old, stem cells go 
through + ⋅S dlog 852  generations. *Cancers of which parameter estimates are impossible because division 
rate is 0.

Figure 6.  Goodness of fit for scaled Weibull function versus that of power law function (a), and scaled Gamma 
function (b). Each dot represents R2 for one cancer subtype defined by the combination of cancer type and one 
factor such as diagnosis year, race, location and sex. Cancer types are color coded.
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Moreover, the Weibull distribution is a special case of the generalized extreme value distribution (GEV) which is 
well connected to classical statistical approaches to describe rare events26.

Our analysis results mostly agree with those provided by Wu et al.11. They defined intrinsic cancer risk as the 
probability that one tissue transforms from normal to tumor because of accumulated mutations, and extrinsic 
cancer risk as 1–intrinsic cancer risk. They quantified upper bounds to intrinsic cancer risk by tLIR but did 
not properly fit tLIR to epidemiological data, concluding intrinsic factor insignificantly contributes to cancer. 
According to our understanding their argument mainly results from insufficient exploration of parameter space 
and implicitly assumes that all tissues require the same number of driver mutation to initiate cancer. Our results 
suggest that the contribution of extrinsic factors to cancer is overestimated by Wu et al.11. However, one should 
note that the excellent agreement between the scaled Weibull distribution function and empirical data does not 
necessarily exclude that in addition to intrinsic there are further extrinsic and unknown risk factors. In that con-
text it is worthwhile to mention that our estimated number of driver mutations required for cancer onset differs 
from tissue to tissue. Although the exact number is not validated by biological experiment, this observation is 
consistent with findings in genetic studies29.

One interesting observation is that all non-reproductive tissues have a similar cancer risk accumulation pat-
tern. Cancer incidence rates increase dramatically at about 40–50 years, peaking at about 55–70 years and then 
decrease. This pattern matches findings reported by Podolskiy et al.31. A question for future work is whether muta-
tion load agrees with the scaled Weibull function or age-specific mutational signatures32–34. Another interesting 
observation is that testicular germ cell cancer incidence peaks at younger age compared to other cancer types, 
which might be explained by accelerated aging of testis31. Altogether we believe that our suggested approach 
provides insights into cancer development by providing a link between empirical data and a mechanism-based 
model.

Cancer Gamma Weibull

LUSC lung squamous cell carcinoma 2467641.74 2439830.08

LUAD lung adenocarcinoma 1773103.18 1757914.86

KIPAN pan − kidney cohort (kich + kirc + kirp) 1086052.13 1074221.46

BLCA bladder urothelial carcinoma 1397493.34 1364300.97

THCA thyroid carcinoma 970479.60 966651.56

PAAD pancreatic adenocarcinoma 684511.50 680353.75

ESCA esophageal carcinoma 426913.10 424019.74

OV ovarian serous cystadenocarcinoma 249900.19 248282.96

SKCM skin cutaneous melanoma 3200014.23 3147559.74

STAD stomach adenocarcinoma 438574.51 431801.81

PRAD prostate adenocarcinoma 5411659.76 5425983.72

COADREAD colorectal adenocarcinoma 3498130.92 3467772.58

GBMLGG glioma 433655.37 413968.25

BRCA breast invasive carcinoma 6654036.96 6705665.03

SARC sarcoma 248310.46 238833.58

TGCT testicular germ cell tumors 128517.41 128593.83

HNSC head and neck squamous cell carcinoma 627828.32 626670.00

LIHC liver hepatocellular carcinoma 510889.67 505268.40

Table 2.  AIC of the scaled Gamma function and the scaled Weibull function.

Figure 7.  Number of driver mutations required for cancer onset estimated by classical power law model (red) 
and our scaled Weibull model (blue).
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Methods
Fitting cumulative cancer incidence with a model for theoretical intrinsic cancer risk (tLIR).  Wu 
et al.11 provided the following recursion formula to compute the chance that a single stem cell acquires k mutation 
hits after g divisions given a mutation rate r.

∑

∑

∑
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given the initial cell state at generation 0:

= = = = … = = .P X P X P X k( 0) 1; ( 1) 0; ; ( ) 00 0 0

Here Xg is accumulated driver mutations at generation g, i and j represents accumulated driver mutations at 
generation g and g + 1, respectively. A fully developed tissue with S stem cells must go through = + ⋅n S d alog2  
rounds of divisions, assuming division rate is d and age a. With this transition probability (3), the theoretical 
lifetime intrinsic cancer risk (tLIR) is formulated as

= − − =P X ktLIR 1 (1 ( )) (4)n
S

Although the recursion formula being dependent on more than one parameter cannot directly be solved in 
closed form by standard algorithmic techniques, it has nevertheless a simple closed form solution, which was 
derived by hand computations and verified by standard symbolic computations (using the computer algebra 
system Maple 2015.2):

− − r(1 (1 ) )g k

The formula for the age-parameterized theoretical lifetime intrinsic cancer risk (tLIR) hence has the following 
simple closed form solution, which allows much faster and hence more extensive computations and extends the 
range of admissible values of k from the positive integers to the positive real numbers:

= − − − − .+ ⋅a rtLIR( ) 1 (1 (1 (1 ) ) ) (5)S d a k Slog2

Notice that our result basically coincides with the one obtained by Calabrese and Shibata35 that was obtained 
by a direct probabilistic reasoning.

Relating the tLIR model to a scaled Weibull function.  We found a connection between

= − − − − + ⋅a rtLIR( ) 1 (1 (1 (1 ) ) ) , (6)S d a k Slog2

and the scaled Weibull function

λ− − k a1 (1 Weibull( , )( )) , (7)P

where P is the cell population at risk.
To see this connection, we assume that r 1. Then

= − − = − − + ⋅+ ⋅f r r S d a(1 (1 ) ) (1 exp(log(1 )(log ))) ,S d a k k
0

log
2

2

and using the Taylor series for log and exp, we obtain

≈ + .−f rd d S a( ) ( log ) (8)
k k

0
1

2

We have

= − − .a ftLIR( ) 1 (1 ) (9)
S

0

Comparing (7) and (9) we observe that these relations coincide if

λ
λ

− = − =


 −



 .f k a a(1 ) (1 Weibull( , )( )) exp( ( ) )S P k
P

0

Since for small f0 > 0 we have 1 − f0 = exp(−f0), the last equation can rewritten as
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λ
=







f aS
kP

0

Using that relation and (8) one finds

λ
+ ≈







 .rd S d a a( ) (log / )k kS
kP

2

So we have obtained a shifted Weibull distribution. However, if we remove −d Slog1
2  from the left hand side of 

the last equality assuming that

⋅ d a Slog2

we obtain an unshifted one. This condition admits a transparent interpretation, namely, the number of stem cell 
divisions (for a fixed cell) should be more than the logarithm of stem cell number. Then we have that the tLIR 
incidence approximately equals to the scaled Weibull incidence if the parameters satisfy

λ= .−S rd P( ) (10)k k

Cancer Abbr. Primary site1 Histology2

Acute myeloid leukemia AML 9840, 9861, 9865–9867, 9869, 9871–9874, 9895–9897, 
9898, 9910–9911, 9920

Basal cell carcinoma BCC 8090–8095, 8097–8098

Chronic lymphocytic leukemia CLL 9823

Colorectal adenocarcinoma COAD C180-C189, C199, 
C209-C212, C218, C260

8140–8141, 8143, 8145, 8147, 8210–8211, 8220–8221, 
8570–8576

Duodenum adenocarcinoma DUAD ICD9 1520 8140–8141, 8143, 8145, 8147, 8210–8211, 8220–8221, 
8570–8576

Esophageal squamous cell 
carcinoma ESCA C150-C155, C158-C159 8070–8076, 8078

Gallbladder non papillary 
adenocarcinoma GBNPAD C239

8000–8005, 8010–8015, 8020–8022, 8041, 8043, 
8050–8052, 8070–8076, 8078, 8140–8141, 8143, 8147, 
8160–8162, 8255, 8480–8481, 8490, 8500–8501, 
8503–8504, 8507–8508 8560, 8562, 8570–8576, 8896, 
8900–8902, 8980–8982 9590–9591, 9596, 9650–9655, 
9659, 9661–9665, 9667, 9670–9671, 9673, 9675, 9680, 
9684, 9687–9688, 9690–9691, 9695, 9698–9699, 9701–
9702, 9705, 9712, 9714, 9716, 9719, 9724, 9727–9729, 
9731, 9734–9735, 9737–9738, 9740–9741, 9750–9751, 
9754–9759, 9811–9818, 9823, 9831, 9837, 9965, 9967, 
9971, 9975

Glioblastoma GBM C710-C725, C753 9440–9441, 9442, 9444

Head and neck squamous cell 
carcinoma HNSC ICD9 1400–1419, 

1430–1499, 1600–1619 8070–8076, 8078

Hepatocellular carcinoma LHCA C220-C221

Lung adenocarcinoma LUAD C340-C343, C348-C349 8140–8141, 8143, 8147, 8570–8576

Medulloblastoma MBM C710-C725, C753 9470–9474

Melanoma SKCM C440-C449 8720–8790

Osteosarcoma OSARC ICD9 1700–1709 9180–9189

Osteosarcoma of the arms OSARCA ICD9 1704–1705 9180–9189

Osteosarcoma of the head OSARCH ICD9 1700 9180–9189

Osteosarcoma of the legs OSARCL ICD9 1707–1708 9180–9189

Osteosarcoma of the pelvis OSARCP ICD9 1706 9180–9189

Pancreatic ductal 
adenocarcinoma PDAD C250-C259 8140–8141, 8143, 8147, 8210–8211, 8255, 8260–8263, 

8310, 8480–8481, 8570–8576

Pancreatic endocrine (islet cell) 
carcinoma PECA C250-C259 8150–8157

Small intestine 
adenocarcinoma SIAD C170-C173, C178-C179 8140–8141, 8143, 8145, 8147, 8255, 8260–8263, 

8480–8481, 8570–8576

Thyroid papillary or follicular 
carcinoma TPFC C739 8050, 8260–8263, 8330–8333, 8335, 8337, 8340–8347, 8450

Thyroid medullary carcinoma TMCA C739 8510

Ovarian germ cell OVGC C569 9060–9065

Testicular germ cell cancer TGCC C620-C621, C629 9060–9065

Table 3.  Manually curated cancer definitions. 1Either ICD-O-3 site code or ICD9 code describing tumor 
primary site is provided. 2ICD-O-3 histology code.
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Notice that using a Poisson approximation [12, p. 104] we finally obtain

λ λ− − ≈ .k a P k a1 (1 Weibull( , )( )) Weibull( , )( )) (11)P

Stem cell data.  Tomasetti and Vogelstein8 collected stem cell information for 31 cancer types, including stem 
cell division rate, stem cell number, tissue total cell number. We excluded 6 from 31 cancer types due to lack of 
age incidence data: colorectal adenocarcinoma in familial adenomatous polyposis (FAP) patients, colorectal ade-
nocarcinoma in patients with hereditary non-polyposis colorectal cancer (HNPCC, also called lynch syndrome), 
duodenal adenocarcinoma in FAP patients, head and neck squamous cell carcinoma with human papillomavi-
rus (HPV), hepatocellular carcinoma with hepatitis C virus infection (HCV), lung adenocarcinoma in smokers. 
Among the 25 remaining cancer types, stem cell information were obtained from supplementary materials of 
Tomasetti and Vogelstein8. We discuss life time stem cell division (LSCD) hypothesis and extrinsic risk factor 
hypothesis for 25 remained cancers: AML, acute myeloid leukemia; BCC, basal cell carcinoma; CLL, chronic lym-
phocytic leukemia; COAD, colorectal adenocarcinoma; DUAD, duodenum adenocarcinoma; ESCA, esophageal 
squamous cell carcinoma; GBNPAD, gallbladder non papillary adenocarcinoma; GBM, glioblastoma; HNSC, 
head and neck squamous cell carcinoma; LHCA, hepatocellular carcinoma; LUAD, lung adenocarcinoma; MBM, 
medulloblastoma; SKCM, melanoma; OSARC, osteosarcoma; OSARCA, osteosarcoma of the arms; OSARCH, 
osteosarcoma of the head; OSARCL, osteosarcoma of the legs; OSARCP, osteosarcoma of the pelvis; OVGC, 
ovarian germ cell; PDAD, pancreatic ductal adenocarcinoma; PECA, pancreatic endocrine (islet cell) carcinoma; 
SIAD, small intestine adenocarcinoma; TGCC, testicular germ cell cancer; TPFC, thyroid papillary or follicular 
carcinoma; TMCA, thyroid medullary carcinoma.

Cancer incidence data.  SEER-9 registries (1973–2013), SEER-4 registries (1992–2013), SEER-5 registries 
(2000–2013) data were downloaded from Surveillance, Epidemiology, and End Results Program (SEER) data-
base27. SEER database covers about 28% USA population, involving more than 100 features such as race, sex, 

Cancer Abbreviation Primary site Histology

Bladder urothelial carcinoma BLCA C670-C676, C679 8010, 8070, 8120, 8130, 8260

Breast invasive carcinoma BRCA C502-C505, C508-C509
8010, 8013, 8022, 8050, 8090, 8200–8201, 
8211, 8401, 8480, 8500, 8502–8503, 8507, 
8510, 8520, 8522–8524, 8541, 8575, 9020

Colorectal adenocarcinoma COADREAD C180, C182-C189, C199, C209, C494, 
C809

8010, 8140, 8211, 8255, 8260, 8263, 8480, 
8560, 8574

Esophageal carcinoma ESCA C151, C153-C155, C159-C160 8070–8071, 8083, 8140, 8211, 8480

Glioma GBMLGG C710-C714, C718-C719 9382, 9400–9401, 9440, 9450–9451

Head and neck squamous cell 
carcinoma HNSC

C009, C019, C021-C022, C029-C031, 
C039-C040, C049-C050, C059-C060, 
C062, C069, C099, C103, C109, C139, 
C148, C321, C329, C411

8070–8072, 8074, 8083

Pan-kidney cohort 
(KICH + KIRC + KIRP)* KIPAN C649 8260, 8310, 8312, 8317

Liver hepatocellular carcinoma LIHC C220 8170–8171, 8173–8174, 8180, 8310

Lung adenocarcinoma LUAD C340-C343, C348-C349 8140, 8230, 8250, 8252–8253, 8255, 8260, 
8310, 8480, 8490, 8507, 8550

Lung squamous cell carcinoma LUSC C340-C343, C348-C349 8052, 8070–8073, 8083, 8140

Ovarian serous 
cystadenocarcinoma OV C480-C482, C569 8440–8441, 8460

Pancreatic adenocarcinoma PAAD C250-C252, C258-C259 8020, 8140, 8246, 8255, 8480, 8500

Prostate adenocarcinoma PRAD C619 8140, 8255, 8480, 8490, 8500, 8550

Sarcoma SARC
C029, C169, C186, C402-C403, C471, 
C480-C481, C490-C496, C498-C499, 
C540, C542, C549, C559, C569, C631, 
C649, C701

8800, 8802, 8805, 8811, 8821–8822, 8830, 
8850–8851, 8854, 8858, 8890, 8896, 
9040–9041, 9043, 9540

Skin cutaneous melanoma SKCM

C079, C179, C189, C218, C220, C300, 
C341, C343, C349, C410, C442-C447, 
C449, C482, C490-C499, C509, C519, 
C529, C541, C711, C713, C719-C720, 
C749, C761-C763, C770, C772-C775, 
C779

8720–8721, 8730, 8742–8744, 8770–8772

Stomach adenocarcinoma STAD C160-C163, C165, C169 8140, 8144–8145, 8211, 8255, 8260, 8480, 
8490

Testicular germ cell tumors TGCT C629 9061, 9070–9071, 9080–9081, 9085

Thyroid carcinoma THCA C739 8050, 8260, 8290, 8330, 8340, 8342, 8344, 
8350

Table 4.  TCGA cancer definitions for 18 cancer types. *KICH, kidney chromophobe; KIRC, kidney renal clear 
cell carcinoma; KIRP, kidney renal papillary cell carcinoma.
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period, location, histology and ICD (international classification of disease) code. These data were stored in ASCII 
file, we used the SEERaBomb R package to parse them into sqlite file facilitating data manipulation.

Cancer names provided by Tomasetti and Vogelstein8 can not be directly mapped into those in SEER database. 
We addressed this difficulty by two steps: first, annotate tumor primary site to (international classification of 
disease-oncology 3) ICD-O-3 code based on the literal sense of site in Tomasetti and Vogelstein8; second, anno-
tate histology to ICD-O-3 code based on the literal sense of cancer histology by Tomasetti and Vogelstein8. For 
instance, primary site of lung adenocarcinoma is lung, corresponding to ICD-O-3 site code: C340, C341, C342, 
C343, C348, C349; adenocarcinoma of lung cancer corresponds to ICD-O-3 histology code 8140, 8141, 8143, 
8147, 8570, 8571, 8572, 8573, 8574, 8575, 8576. The dictionary needed for mapping step (we call it ICD dictionary)  
can be found in http://seer.cancer.gov/icd-o-3/. Osteosarcoma definition can be found in ICD dictionary, it is a 
subtype of malignant bone neoplasm, corresponding ICD-O-3 histology code: 9180–9189. However, the ICD 
dictionary does not differentiate between osteosarcoma detected in the head, leg, or arm. The ICD9Data database 
(http://www.icd9data.com/) defines bone cancer using ICD9 code 1700–1709, bone cancer in head, arms, legs, 
pelvis using ICD9 code 1700, 1704–1705, 1707–1708, 1706 respectively. Head and neck squamous cell carci-
noma involves tumors located in many sites, ICD dictionary fails to provide its definition. Liao et al.36 provided 
ICD9 site code: 1400–1419, 1430–1499, 1600–1619, we then used ICD-O-3 histology code: 8070–8076, 8078 to 
select squamous cell carcinoma. More detailed cancer definitions using ICD code can be found in Table 3. Two 
hematopoietic cancers: acute myeloid leukemia and chronic lymphocytic leukemia, are defined using site recode 
ICD-O-3/WHO 2008 definition (http://seer.cancer.gov/siterecode/icdo3_dwhoheme/index.html).

Although we carefully annotated 25 cancer definitions using ICD code, we can not avoid misclassifications. 
because annotation needs several data sources of which information confidential levels differ from each other. 
The Cancer Genome Atlas (TCGA) program37 is a flag project of cancer research hosted by National Institutes of 
Health, it provides comprehensive, high-quality molecular and clinical data. Cancer definitions are well anno-
tated using ICD code in TCGA clinic documents. We therefore assume TCGA cancer definitions are precise and 
extracted definitions of 18 solid tumors (Table 4). With 18 cancer definitions, we selected patients who were diag-
nosed with cancer after 2000 from SEER-9 registries, SEER-4 registries, SEER-5 registries data to form SEER-18 
registries data. As the highest time resolution of SEER data is 1 year, for each year, we took middle age for fitting 
models, for example, 0 year-old is modified as 0.5 years-old.

For robustness analysis of parameter estimates we classified each cancer into subgroups based on location, 
period and race, data of subgroups were separately fitted to the mathematical models.

Fitting the models to empirical cancer incidence data.  As was done in previous work38, empirical 
cancer incidence I(a) was calculated by

∏= − −
=

I a p( ) 1 (1 ),
(12)i

a

i
0

where pi is frequency of people diagnosed with caner at age i.

We performed grid search on an extensive parameter space to fit the tLIR model using =










∑ − −

∑ − ∑ −
R

x x y y

x x y y

2 ( )( )

( ) ( )

2
i i
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2 2

 

as the metrics for goodness of fit, where xi and yi is empirical and model-derived cancer incidence respectively, x  and 
y  respectively denotes mean value of x and y. Results of fits are given in Table 1 showing that there are biologically 
reasonable parameter combinations that can yield good fits of the tLIR model for most cancer types.

Data availability.  All data used in this study are publicly available. The sources are detailed in the section 
on methods.
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