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Abstract 

Biomedical optics is a rapidly emerging field for medical imaging and diagnostics. This paper 

reviews several biomedical optical technologies that have been developed and translated for 

either clinical or pre-clinical applications. Specifically, we focus on the following 

technologies: 1) near-infrared spectroscopy and tomography, 2) optical coherence 

tomography, 3) fluorescence spectroscopy and imaging, and 4) optical molecular imaging. 

There representative biomedical applications are also discussed here. 
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1. Introduction 

 

Optical technologies are currently emerging as promising tools for medical imaging and 

diagnostics. Optics has several advantages, including non-ionizing radiation, low-cost, 

portable, and high molecular and biochemical specificity. These advantages enable functional 

imaging using light and open up new opportunities for light-based applications in clinical 

medicine. 

This paper reviews several optical technologies that have been developed and 

translated for either clinical or pre-clinical applications. Specifically, we focus on the 

following technologies: 1) near-infrared spectroscopy and tomography, 2) optical coherence 

tomography, 3) fluorescence spectroscopy and imaging, and 4) optical molecular imaging. 

There representative biomedical applications are also discussed here. 

 

2. Review of Optical Technology 

2.1 Near-infrared (NIR) Spectroscopy and Tomography 

Historical Perspective and Technology Development 

Biological molecules have unique absorption spectra against a range of light wavelengths, 

thus can be detected with accurate concentration by spectroscopy. The spectroscopy system 

was pioneered in the Cambridge University [1, 2]. However, biological sample is usually 

opaque and therefore the light absorption spectra would be disrupted due to scattering. In 

1950, Britton Chance invented “double beam spectrometer” using two wavelengths in the 

visible region with a small spectral interval to eliminate the effect of scattering [3]. This 
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double beam concept was adapted to the optical spectroscopy used for biological systems 

even up to date for medical use. 

 Pulse oximeter may be the first use of optics for human in vivo, which utilizes near-

infrared light to monitor arterial hemoglobin oxygen saturation. It was first made by Takuo 

Aoyagi in a Japanese company, Nihon Kouden in 1972 [4]. Because arterial pulse induces 

changes in arterial blood volume between systolic and diastolic heart contraction, light 

intensity difference between these two conditions is only caused by arterial blood. Thus 

arterial blood oxygen saturation can be quantified with a simple linear equation [5], ignoring 

scattering effects of tissue. This concept is similar to the “double beam spectroscopy” dated 

back to 1940s, when Glenn Milliken tried to observe differences of light transmitting 

intensity through human tissues using green and red color filters to measure oxygenation in 

human tissue [6].  

 The first demonstration of NIR light on human tissue in vivo was reported by Franz 

Jobsis in 1977 [7]. Jobsis demonstrated that NIR light can carry information of not only 

hemoglobin but mitochondrial chromophore, cytochrome a,a3 in the neonatal brain measured 

non-invasively. Since then, many papers were published along the line of proving tissue 

oxygenation and mitochondrial redox states by means of those hemoglobin and cytochrome 

a,a3 signals in the NIR region in many animal models and human tissues.  Many researchers 

use continuous-wave (CW) technology as the system is simple, low-cost, and robust. Figure 1 

shows a representative CW near-infrared (NIR) imaging system [8] with three-wavelength 

light emitting diode (LED) at 760 nm, 805 nm, and 850 nm, and 8 silicon photodiode 

detectors. Many companies such as Somanetics have commercialized this technology to 

measure tissue hemoglobin saturation. Since only intensity attenuation is measured with CW 

system, it is difficult to separate scattering coefficient from absorption coefficient in the 

tissue. 
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Figure 1 
A photograph of the whole apparatus (a) illustrates the handheld puck or probe, the coupling 
to the circuit box which contains the drivers for the LED, the amplifiers for the detectors, the 
digitally controlled gain adjustment amplifier, the electronic switch which decodes the light 
pulses and stores the information in a memory capacitor, the second set of switches which 

sample the memory capacitor at a rate compatible with the computer analog-to-digital 
converter (ADC), and (b) Handheld puck. From Ref. [8], with permission. 

 

 Time-Resolved Spectroscopy (TRS) technology gave a solution for this problem of 

absolute quantification of chemical concentrations in the turbid media such as the in vivo 

human investigation in 1988-1989 by B. Chance [9, 10]. TRS machines are commercially 

available then in 1993 by Hamamatsu, and it has been made for many applications [11, 12]. 

Alternatively frequency-domain (FD) NIR spectroscopy (NIRS) can be also used for 

quantization [13-15]. FD technology is available commercially by ISS, Inc. These two 

technologies have been used for obtaining more accurate information from the turbid tissue, 

namely absorption and reduced scattering coefficients.   

NIRS can be extended to imaging mode by using multiple source-detector channels. 

One way to form an image is using back-projection and interpolation algorithms. This 

approach, sometimes referred to as diffuse optical topography, can provide a quick and good 

estimate of 2D spatial distribution of the optical properties of interested. The drawback of this 

relatively simpler approach is that the tissue optical properties are not reconstructed with 

good accuracy, and the spatial resolution is lower [16]. Another approach is to perform 3D 
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tomographic reconstruction, therefore, is referred to as diffuse optical tomography (DOT). In 

principle, DOT is similar to other tomographic schemes such as X-ray computerized 

tomography, and involves image reconstruction by solving  the inverse problem [17]. DOT 

can accurately reconstructed the spatially-resolved changes in optical properties in tissue. 

 

Clinical Applications of NIR 

NIR diffuse optical spectroscopy and imaging techniques have been applied to numerous 

clinical applications. Here we focus on three main application areas, namely: 1) breast cancer 

detection and characterization; 2) functional brain imaging; and 3) imaging the skeletal 

muscles. 

 

Breast Imaging 

Breast cancer is the most commonly diagnosed cancer among women in the United States 

and worldwide. Early detection through mammography and clinical breast exams is essential 

for effective breast cancer screening. For women between the ages of 50-69, regular 

mammograms can reduce the chance of death from breast cancer by approximately 30% [18]. 

X-ray mammography may miss up to 25% of breast tumors in women in their 40s, and about 

10% of women over age 50. Other imaging techniques, such as magnetic resonance imaging 

(MRI) and ultrasound (US), have been developed for breast cancer detection and staging 

without using X-rays [19, 20]. In general, mammography, MRI and US provide mostly 

anatomic information, rather than quantitative tissue function and composition [21]. Positron 

Emission Tomography (PET) could provide the metabolic information, but requires the 

injection of exogenous radionuclides [22]. 



Translational Medicine @ UniSa, - ISSN 2239-9747 2011, 1(1): 51-150 
 

56 
Università degli Studi di Salerno 

 Compared with those modalities, NIR diffuse optical imaging has its own merits of 

non-ionizing, economic and biochemical specificity. The use of light in breast cancer 

detection dates back to the 1920s [23]. In the past two decades, with the development of 

advanced light sources and detector, as well as modeling of light propagation in tissue, the 

application of diffuse optical imaging for breast imaging (often referred to as “optical 

mammography”) have been developing rapidly. The development of tumor is generally 

associated with increased vascularization (also called “angiogenesis”) [24, 25] and lower 

oxygen partial pressure (pO2) [26, 27]. NIR light is sensitive to intrinsic chromophores such 

as oxygenated and deoxygenated hemoglobin (HbO2 and Hb), water (H2O) and lipids [28, 

29]. Therefore, NIR diffuse optical spectroscopy and imaging can provide sensitive and 

specific physiological information for breast cancer diagnosis [30, 31]. Nioka et al introduced 

endogenous contrast NIR imaging of the human breast in 1994 [32]. Blood volume and 

oxygen saturation are two important parameters.  Studies indicate that there are two to four 

folds of contrast between normal and tumor regions for blood volume, and oxygen saturation 

in the tumor is generally lower than normal [21, 29, 31]. There exist variations in normal 

breast tissue optical properties. For example, Durduran et al reported the averaged blood 

volume and oxygen saturation on healthy female breast tissues are 34  9 M and 68  8 %, 

respectively [33]. These baseline values are important to assess the potential contrasts 

available for diffuse optical imaging to discriminate healthy and diseased tissues. The 

scattering properties of tissue also contain important information for lesion diagnosis. The 

scattering coefficients are related to the tissue structure properties and the concentration or 

size of organelles [34].  

 The clinical niche for NIR diffuse optical spectroscopy and imaging in breast cancer 

are tumor detection in pre-menopausal women and monitoring neoadjuvant chemotherapy 

[35-37]. CW systems are relatively inexpensive and compact. It can be interfaced with a 
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handheld probe to image the breast. Using the handheld puck shown in Figure 1, Chance et al 

reported a 6 year, two-site study on 116 patients of whom 44 patients had confirmed 

malignancy by biopsy and histopathology [8]. The absorbance increments of the cancerous 

regions are referred to the mirror image location on the contra-lateral breast. This technique 

was able to distinguish cancer from non-cancer breasts with 96% sensitivity and 93% 

specificity. In another pilot clinical trial of 48 patients, Xu et al used a portable handheld NIR 

imaging device, “P-Scan”, a pre-commercial prototype of ViOptix Inc. (Fremont, CA, USA), 

to image suspicious breast lesions identified on diagnostic clinical ultrasound (US) [38]. An 

external mechanical compression was applied to breast tissue to dynamically record the 

oxygen saturation and hemoglobin concentration. 

 Indocyanine Green (ICG) is an organic dye that has been approved by US Food and 

Drug Administration (FDA) for clinical use. ICG can be used to enhance the tumor-to-normal 

contrast to aid in the detection of lesions in the breast, as first demonstrated by Nioka et al 

[39]. Figure 2 shows an example of CW DOT system for imaging the uptake of ICG by 

breast tumors [40]. This instrument employs a circular configuration with 16 sources and 16 

detectors (Figure 2A) to collect light in parallel on the surface of the tumor-bearing breast. 

ICG was injected by bolus, and the absorption changes induced by ICG were recorded 

dynamically (Figure 2B). DOT successfully localized the tumor regions, which was in good 

agreement with a priori information (Figure 2C). A two-compartment model composed of 

plasma and extracellular-extravascular space was used to analyze the pharmacokinetics of 

ICG. Moreover, different dynamical features were observed for different pathologies. The 

malignant cases exhibited slower rate constants (uptake and outflow) compared to healthy 

tissue. Further studies enabled direct forming of the pharmacokinetics-rate image by DOT, 

and found statistically different rates from the tumor region compared to those outside the 

tumor region [41]. These results demonstrated that in vivo pharmacokinetics of ICG in breast 
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tumors could be a useful diagnostic tool for differentiation of benign and malignant 

pathologies. Schmitz et al developed a more sophisticate CW system for bi-lateral breast 

imaging, DYnamic Near-Infrared Optical Tomography (DYNOT) system (NIRx Medical 

Technologies) [42]. This system enables simultaneous imaging of hemodynamics within both 

breasts. 

(A) (B) (C)

 

Figure 2 
(A) CW imager configuration. The sources are sequentially shining upon the breast and so 

the configuration is equivalent to a fan-beam configuration. (B) The dashed curve represents 
the intensity drop associated to the ICG-uptake for source 6 and detector 3 (not capturing 

mass area). (C) Differential absorption reconstruction for the time selected in (B). From Ref. 
[40], with permission. 

 

Frequency-domain measurement can quantify the concentration of chromophores. 

Culver et al developed a hybrid CW/frequency-domain breast imaging system which 

combines the benefits of high-speed and low-cost of CW techniques with more accurate 

quantitative nature of frequency-domain techniques [43]. Using this system, Choe et al [44] 

found that malignant cancers (n=41) showed significantly higher total hemoglobin, oxy-

hemoglobin concentration, and scattering compared to normal tissue. Benign tumors (n=10) 

did not exhibit statistical significance in the tumor-to-normal ratios of any parameter. These 

results demonstrate that benign and malignant lesions can be distinguished by quantitative 

three-dimensional DOT. Such a system also has been applied to monitor neoadjuvant 
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chemotherapy [45]. DOT revealed tumor shrinkage and decrease in relative total hemoglobin 

concentration during the course of chemotherapy, therefore demonstrated the potential for 

monitoring physiological parameters of breast lesions during chemotherapy. Tromberg’s 

group at UC Irvine also developed a handheld NIR diffuse optical spectroscopic imaging 

(DOSI) system for breast cancer detection and monitoring neoadjucant chemotherapy [37]. 

 Time-domain DOT systems have been also developed for breast imaging. 

Ntziachristos et al developed a time-domain imaging system using time-correlated single 

photon counting (TCSPC) technique, and demonstrated concurrent MRI and DOT imaging of 

breast after contrast enhancement using ICG [11]. Other prototype instruments have been 

developed by groups at Politecnico di Milano, Italy [46-48] and Physikalisch-Technische-

Bundesanstalt of Berlin, Germany [12, 49-51], as part of Optimamm, a consortium funded by 

the European Union, and have acquired data from more than 300 clinical cases. They 

reported successful identification of 80%-85% mammographically identified lesions. A 

prototype time-domain DOT breast imaging system has been developed by Advanced 

Research Technologies (ART, Canada) [52]. Initial results suggested that optical imaging can 

discriminate benign and malignant tumors, therefore, held great clinical promise for breast 

cancer imaging.  

 One of the recent trends in NIR DOT is to combine with other imaging modalities 

such as X-ray CT, MRI or US, which can provide high spatial resolution map of tissue 

structures. Those maps can be used as a priori information to improve the reconstruction of 

DOT images [53, 54]. Representative multi-modality breast imaging systems include the 

combined DOT and X-ray mammography system developed at the Massachusetts General 

Hospital [55, 56], the combined DOT and MRI multi-modal imaging system developed at 

Dartmouth College [53, 57], and the combined ultrasound and frequency-domain diffuse 

optical imaging/tomography systems [58-61]. 
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Brain Imaging 

Since Seiji Ogawa’s discovery that deoxyhemoglobin signal changes in NMR can detect 

brain cognition in early 1990s [62], researchers are interested in using NIR light to detection 

brain function [63-65]. NIRS can quantify the concentration of both Hb and HbO2, thereby 

revealing the blood volume and oxygenation saturation changes associated with brain 

functions. 

 NIR diffuse optical imaging (DOI) has found widespread applications in clinical 

settings [66, 67]. One major research area is to understand how the brain functions. DOI 

offers unique capability to non-invasively monitor the functional activations in vivo without 

disturbing the organ. Various applications such as visual responses [68, 69], somatosensory 

responses [70], auditory responses [71], language stimuli [72, 73], and problem solving [74] 

have been explored. Another important area for DOI brain imaging is to diagnose and 

monitor the diseases such as stroke [75, 76], epilepsy [77], brain injury [78], and post-

traumatic stress disorder [79]. Optical techniques are well-suited for early detection of 

hemorrhage [80], and discrimination between ischemic and hemorrhagic stroke leading to a 

better management of the patient treatment [81]. 

 Commercial CW brain imaging systems have been developed by Hitachi Medical 

Corporation (Tokyo, Japan) [82, 83]. This optical topography system (ETG-100) uses 8 laser 

diodes at 780 nm and another 8 at 830 nm. 8 avalanche photodiodes (APDs) are used to 

detect the signals. Multiple channels are encoded by different frequencies from 1 to 6.5 kHz. 

The Hitachi system has been applied to investigate healthy brain functions such as language 

development [72], the emotional response to music [84], cognitive functions [73, 85], and 

brain development in newborn infants [86, 87], as well as pathological conditions such as 
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epilepsy [77], post-traumatic stress disorder [79], and cognitive function study in patients 

with motor neuron disease [88]. The clinical applications of the Hitachi system have been 

quite successful despite using a simple CW system and relatively simple image 

reconstruction method. Other companies such as Shimadzu Corporation (Japan) also 

developed optical topography system from brain imaging [89]. 

 Franceschini et al reported the development of the CW imaging system (CW4 and 

CW5) at the Massachusetts General Hospital [90, 91]. The newer system (CW5) employs 32 

sources and 32 detectors to cover most of the areas in the adult head, which enables 

simultaneous collection of optical signals from prefrontal, sensorimotor, and visual cortices 

in both hemispheres. Using this system, they investigated the spatiotemporal patterns of 

physiological signals during rest. This information will help to understand the physiological 

signals and develop signal processing algorithms to distinguish them from the functional 

activation signals [91]. White et al applied a high-performance, high-density CW DOT 

system [69] to map resting-state networks in the human brain [92], which enables studies of 

the functional connectivity of different cortical regions. These studies demonstrated that high-

density DOT has become a practical and powerful tool for mapping function in the human 

cortex. 

 ISS Inc. has developed a commercial frequency-domain brain imaging system 

(Imagent™). Frequency-domain DOI has been shown to measure the hemodynamic (slow) 

signals [93, 94] and neuronal (fast) signals [95, 96]. Especially, the fast signals are thought to 

be associated with the neuronal scattering changes, which will induce phase delay in the 

modulated diffuse photons. Therefore frequency-domain imaging system is required to 

measure the phase delay which indicates the event-related optical signals (EROS). Time-

domain imaging systems have been actively developed for brain imaging, especially for 

tomographic imaging of whole brain. Hintz et al reported the early development of time-
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domain optical tomographic system for neonatal brain imaging by reconstructing 

measurements of mean photon flight time [97]. More recently, the group at University 

College London (UCL) has developed a 32-channel time-resolved optical imaging system 

[98] for 3D neonatal brain imaging. This system has been successfully used to image the 

brain of a premature infant with a cerebral hemorrhage [99] and monitor the blood volume 

and oxygenation changes in the newborn infant brain during ventilation [100]. 

 

Muscle Imaging 

Non-invasive monitoring of muscle tissues using light can be dated back to the 1930s by 

Millikan [101]. Since then, optical imaging of muscles has received steadily increased 

interests. Optical methods can probe hemoglobin, myoglobin, blood flow, and metabolism, 

therefore provide an ideal means for monitoring muscle functions under different 

physiological or pathological conditions [102-106]. 

 Using CW imaging system similar to that shown in Figure 1, Lin et al demonstrated 

fast imaging of blood volume and oxygenation changes in peroneus and gastrocnemius 

muscles during exercise [107]. This 8-channel imager can differentiate the regions 

corresponding to extensors and flexors since they show different responses during exercise. 

Using a higher density (200-channel) CW imager which covers 45 cm  15 cm2 area, 

Hamaoka et al recently showed DOI of quadriceps muscles before, during, and after exercise 

(see Figure 3) [108]. These results demonstrated the spatial differences within muscles during 

exercise and recovery, which would be an important tool to study muscular physiology. 

 Maris et al used frequency-domain NIR optical topography system to map the 

differences in the hemoglobin concentration in finger extensor muscle during exercise [109]. 

Yu et al later demonstrated a hybrid frequency-domain diffuse reflectance spectroscopy 
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(DRS) and diffuse correlation spectroscopy (DCS) system for simultaneous monitoring of 

muscle hemodynamics and blood flow [110]. DRS can quantify the total hemoglobin 

concentration and oxygenation saturation, while DCS, an emerging extension of diffuse 

optical imaging techniques [111, 112], quantifies the relative blood flow in deep tissues. 

Together, this hybrid technique provides a method for evaluation of muscle microcirculation 

and metabolism in vivo. 

 

Figure 3 

NIR DOI images from the quadriceps muscles before, during, and after intermittent isometric 
knee-extension exercise. The top left image indicates the approximate location of specific 
muscles. Contractions 1, 3, and 5 indicate images obtained during a series of 3-s duration 

contractions at 50% of maximum voluntary contraction (MVC), with one second rest in 
between. The 15-s contraction shows data at the end of a continuous 15-s MVC. The recovery 

image was obtained 10 s after the last contraction. These images demonstrate the spatial 
differences seen within muscles during exercise and recovery. O2Hb: oxygenated hemoglobin 
and myoglobin; HHb: deoxygenated hemoglobin and myoglobin; tHb: total hemoglobin and 

myoglobin. From Ref. [108], with permission. 

 

Time-domain methods have also been extended into muscle imaging. Hillman et al 

have used the 32-channel time-domain DOT system to measure the absorption changes of 
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human forearm in response to finger flexion exercise [113]. Zhao et al also developed a time-

resolved (TR) DOT system and demonstrated the capability of imaging the forearm during 

hand-gripping test [114]. The group at Milan has developed a compact and fast multi-channel 

TR DOI system to image the calf muscle oxygenation and hemoglobin content during 

dynamic plantar flexion exercise [115]. These results strengthen the role of DOI as a 

powerful tool for investigating the spatial and temporal features of muscle physiology. These 

above results clearly demonstrated that NIR diffuse optical imaging has been widely used for 

imaging muscle functions and diseases. Although it is difficult to decouple the relative 

contributions from hemoglobin and myoglobin in the muscle [116, 117], DOI will continue to 

play an important role in imaging muscle functions for athletic training [118, 119] and 

disease diagnostics [120]. 

 

2.2 Optical Coherence Tomography (OCT) 

Principle and Instrumentation of OCT 

OCT is an emerging medical imaging technology which enables cross-sectional imaging of 

tissue microstructure in situ and in real time [121]. OCT can achieve 1-10 µm resolutions and 

1-2 mm penetration depths, approaching those of standard excisional biopsy and 

histopathology, but without the need to remove and process tissue specimens [122]. OCT is 

analogous to ultrasound imaging, except that imaging is performed by measuring the echo 

time delay and intensity of back-reflected or backscattered light rather than sound. OCT 

imaging can be performed fiber-optically using delivery devices such as handheld probes, 

endoscopes, catheters, laparoscopes, and needles which enable non-invasive or minimally 

invasive internal body imaging [123].   
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OCT measurements are performed using a Michelson interferometer with a low 

coherence length light source. One arm of the interferometer illuminates the light on the 

tissue and collects the backscattered light (typically referred to as “sample arm”). Another 

arm of the interferometer has a reference path delay which is scanned as a function of time 

(typically referred to as “reference arm”). Optical interference between the light from the 

sample and reference arms occurs only when the optical delays match to within the coherence 

length of the light source. This technique is generally referred to as “time-domain OCT”. 

Alternatively, OCT interference signals can be detected in frequency or Fourier domain. In 

Fourier-domain OCT, the reference mirror position is fixed, and echoes of light are obtained 

by Fourier transforming the interference spectrum. These techniques are somewhat analogous 

to Fourier transform spectroscopy and have a significant sensitivity and speed advantage 

compared to time-domain OCT because they measure the optical echo signals from different 

depths along the entire axial scan simultaneously rather than sequentially. Fourier-domain 

detection enables 10-100 folds improvement in detection sensitivity and speed over the time-

domain configuration [124-126]. These advances not only greatly improve the performance 

of OCT, but enables three-dimensional OCT (3D-OCT) imaging in vivo. Fourier-domain 

OCT can be performed using two complementary techniques, known as spectral / Fourier 

domain OCT and swept source / Fourier domain OCT (SS-OCT, also known as Optical 

Frequency Domain Imaging, OFDI).  Three-dimensional imaging of biological tissue in vivo 

enabled by Fourier-domain OCT promises to have a powerful impact in disease diagnosis 

[127, 128].   

To image internal organs, miniaturized catheter/endoscope imaging devices have been 

developed for intraluminal and intravascular imaging [129, 130]. Other imaging devices such 

as laparoscopes [131, 132] and needle imaging device have been developed to enable solid 

organ imaging [133, 134]. Nowadays, various OCT imaging probes have been developed for 



Translational Medicine @ UniSa, - ISSN 2239-9747 2011, 1(1): 51-150 
 

66 
Università degli Studi di Salerno 

different clinical applications. Development of such devices facilitates the translation of OCT 

to clinical applications and allows clinicians to use the enhanced imaging capabilities of this 

technique to benefit the patients. 

 

Clinical Applications of OCT 

OCT was first demonstrated in 1991 [121]. Since then, OCT has rapidly developed as a non-

invasive biomedical imaging modality that enables cross-sectional visualization of tissue 

microstructures in vivo [135-138]. The resolution of OCT is one to two orders of magnitude 

higher than conventional ultrasound, approaching that of histopathology, thereby allowing 

architectural morphology to be visualized in situ and in real time. OCT enables imaging of 

structures in which biopsy would be hazardous or impossible, and promise to reduce the 

sampling errors associated with excisional biopsy. OCT has been increasingly translated from 

bench to various clinical applications including ophthalmology [139-145], cardiology [146-

149], gastroenterology [150-156], dermatology [157], dentistry [158, 159], urology [160-

163], gynecology [164-166], among others. The most developed clinical OCT applications 

are those focusing on ophthalmic, cardiovascular, and oncologic imaging.  

 

Ophthalmic Imaging 

OCT was first applied for imaging in the eye [167, 168]. To date, OCT has made the largest 

and most significant clinical impact in ophthalmology.  OCT provides cross-sectional views 

of eye with high resolution, thereby allowing detailed structures to be discerned. The non-

contact and non-invasive nature of OCT enables a new way to image the structures in the 

anterior eye and retina, and reveal the information not available through standard 
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ophthalmoscopes [169, 170]. Ophthalmic OCT was first commercialized by Carl Zeiss 

Meditec, Inc., and is now considered superior to the current standard of care for the 

evaluation of many retinal diseases. Over 6000 units of Status OCTTM system has been sold 

to date, and it is estimated that more than 37,000 OCT scans are performed daily in the U.S. 

With the development of high-speed OCT using spectral/Fourier domain methods, several 

companies have introduced new OCT instruments into the ophthalmic market in the past few 

years. The increased availability of high performance OCT will enable a wide range of 

clinical studies. 

 The high axial resolution of OCT makes it an ideal imaging modality for the 

evaluation of fine features such as intra-retinal layers and the vitreal-retinal interface. OCT 

has been demonstrated for the detection and monitoring of a variety of macular diseases 

[171], including macular edema [172-175], macular holes [142, 143, 176], central serous 

chorioretinopathy [177], age-related macular degeneration  and choroidal neovascularization 

[178]. OCT can also image and quantify the retinal nerve fiber layer thickness, which is a 

predictor for early glaucoma. Quantitative nerve fiber layer thickness has been measured with 

OCT, and correlated with the optic nerve structure and function [179-184].  

 The increasing impact in clinical medicine promotes the rapid development in OCT 

imaging technologies, which dramatically enhance the imaging performance and clinical 

utilities of OCT.  A comprehensive review of the state-of-the-art ophthalmic OCT has been 

provided elsewhere [185]. Here we provide a concise overview of these technology advances 

and their translation into ophthalmic applications.  

One of the key parameters in OCT imaging is axial resolution. This is of particular 

interests in retinal imaging owing to the layered structures of the retina. Enhanced axial 

resolution enables better visualization of the intraretinal structural details and more accurate 
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diagnosis of diseases. The axial resolution of OCT is inverse proportional to the bandwidth of 

the low-coherence light source. Therefore, increasing the bandwidth of the light source 

enables the improvement in axial resolution [186, 187]. Ultrahigh resolution (UHR) OCT 

achieves superior axial image resolutions of 2-3 m as compared to ~ 10 m in standard 

OCT systems using superluminescent diode (SLD), thereby enabling the visualization of 

intraretinal structures [188]. UHR OCT is a key technology advance towards achieving non-

invasive optical biopsy of the human retina. UHR OCT technology has been investigated in 

clinical settings to assess its clinical utility. Cross-sectional studies in ~1,000 eyes with 

different pathologies demonstrated unprecedented visualization of all major intraretinal layers 

especially the photoreceptor layer [145, 189-193]. All intraretinal layers, especially the inner 

and outer photoreceptor segment, are significantly better visualized by UHR OCT (see Figure 

4). These studies demonstrated visualization of photoreceptor layer impairment in macular 

pathologies such as macular holes, central serous chorioretinopathy, age related macular 

degeneration, foveomacular dystrophies, Stargardt’s dystrophy and retinitis pigmentosa 

[185]. Therefore, UHR OCT holds strong potential to enhance early diagnosis by detecting 

subtle morphological changes in a wide range of retinal diseases.    
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Figure 4 

(A) Improved interpretation of intraretinal layers using ultrahigh-resolution OCT (UHR 
OCT). (B) Standard resolution OCT (10 m axial resolution performed with a commercial 

OCT system) versus (C) ultrahigh resolution OCT (UHR OCT) with 3 m axial resolution of 
a patient with macular hole. All intraretinal layers, including nerve fiber layer (NFL), 

ganglion cell layer (GCL), inner plexiform layer (IPL), inner nuclear layer (INL), outer 
plexiform layer (OPL), outer nuclear layer (ONL), eternal limiting membrane (ELM), 

junction of the inner and outer photoreceptor segment (IS/OS), and retinal pigment 
epithelium (RPE), are significantly better visualized by UHR OCT. From Ref. [191], with 

permission. 

 

Transverse resolution is also an important imaging parameter. The transverse 

resolution is determined by the numerical aperture (NA) of the focusing lens. For ophthalmic 

retinal imaging, the cornea and lens act as the “imaging objective”. In practice, ocular 

aberrations limit the minimum focused spot size on the retina. Adaptive optics (AO) is a 

promising approach to correct ocular aberrations in order to decrease the spot size on the 

retina to improve the OCT transverse resolution [194, 195]. Combining AO with UHR OCT 

provides isotropic high resolution in the 3D dataset, thereby enabling cellular resolution 

retinal imaging [196-199]. Ultrahigh transverse resolution imaging can also be achieved by 

using high NA objectives (also called optical coherence microscopy - OCM) [200]. Parallel 

detection using full-field OCM has been demonstrated on cellular-level imaging of cornea 

and retina tissues [201, 202]. This technology has shown strong promises in clinical 

translation for in vivo ophthalmic imaging.  

 Imaging speed is another critical parameter in clinical OCT imaging. High speed 

imaging not only reduces the motion artifacts, but enables comprehensive visualization of the 

three-dimensional structures. Fourier-domain OCT is a key enabling technology which 

dramatically increase the OCT imaging speed for three-dimensional (3D) imaging in vivo. 

Spectral OCT, commonly operates at 800 nm, has been rapidly developed and translated into 

retinal imaging. The first demonstration of retinal imaging using spectral OCT was 



Translational Medicine @ UniSa, - ISSN 2239-9747 2011, 1(1): 51-150 
 

70 
Università degli Studi di Salerno 

performed in 2002 [203], and high-speed video-rate imaging was achieved 2003 [204, 205]. 

Three-dimensional ultrahigh-resolution ophthalmic imaging in vivo has been demonstrated 

on numerous clinical studies [206-210]. Three-dimensional OCT provides quantitative 

measurement of intraretinal layers for early diagnosis of diseases such as glaucoma or 

diabetic retinopathy, and enables assessment of disease progression or response to therapy. 

Figure 5 shows an example of topographic information of optical disk similar to that obtained 

by scanning laser tomography system. In addition, spectral OCT systems working at 1000 nm 

range promise to improve the penetration depth for better visualization of choroidal tissues 

[211, 212].  

  

 

Figure 5 

Topography using three-dimensional, ultrahigh-resolution OCT. Quantitative topography 
using ultrahigh-resolution 3D-OCT (A) of a normal human optic disk, as compared to those 
performed by Heidelberg retinal tomography (Heidelberg Engineering, Germany) (B). From 

Ref. [213], with permission. 

 

 Other technological advancements have been applied to ophthalmic imaging as well. 

Doppler OCT [214-216] enables measuring of blood flow velocity in the tissue. 
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Spectral/Fourier domain OCT with Doppler flow imaging has been demonstrate [217-219]. 

Three-dimensional Doppler OCT enables visualization of 3D retinal vasculature (also called 

optical coherence angiography [220, 221]). Another functional OCT method, polarization-

sensitive (PS) OCT [222], enables detection of depth-resolved tissue birefringence and 

scattering properties. PS-OCT has been used for imaging the retinal nerve fiber layer (RNFL) 

changes in glaucoma patients [223]. This method has been applied to image both the anterior 

and posterior eye imaging [224-227]. Recently, significant advances has been made on 

detecting OCT scattering signals due to functional responses of the retina (also called 

optophysiology) [228]. Functional responses have been observed in vivo on human subjects 

[229]. This technique could detect functional impairment before morphological changes. 

Lastly, multi-modal technology combing OCT with other optical imaging modalities, such as 

scanning laser ophthalmoscopy (SLO) and fluorescence angiography promises to integrate 

the information from different methods and enhance the diagnostic capability [230].  

 

Cardiovascular Imaging 

Another major area for OCT clinical application is cardiology. The potential of OCT for 

cardiology imaging has been extensively investigated over the past decade [146-148, 231-

239]. Compared to intravascular ultrasound (IVUS), OCT has an order of magnitude higher 

resolution, therefore enables visualization of fine structures in the luminal wall (such as the 

differentiation of intimal, medial, and adventitial layers). Several technological advances, 

including catheter-based imaging probes and high-speed OCT imaging, have enabled the 

translation of OCT cardiovascular imaging from the bench to the bedside. Development of 

small-diameter fiber catheters facilitates the manual feeding of the imaging catheters through 

the vasculature. In intravascular OCT imaging, blood will significantly attenuate the signal, 
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which can be alleviated by saline flush or temporary vascular occlusion with balloon. To scan 

a long segment of an artery within a short interval of saline flush or blood occlusion, high-

speed imaging is critical. Recent advancement in high-speed Fourier domain OCT provides 

exciting new avenue to diagnose vascular diseases and guide the intravascular interventions 

in real time [240]. 

 OCT has unique ability to visualize atherosclerotic lesions in microscopic details, and 

in particular, to detect the vulnerable plaques which has high risks of rupture [148, 234, 236, 

241, 242]. OCT can distinguish the characteristic morphology of vulnerable plaques 

including a thin fibrous cap and a large lipid pool, and is able to quantity the increase of 

macrophage activity [137, 241]. The potential of OCT imaging of vulnerable plaques was 

first investigated on in vitro studies and demonstrated the capability of OCT in identifying 

clinically relevant architectural morphology including fibrous caps, lipid-laden pools, and 

calcifications [243]. The specific features of different types of atherosclerotic plaques 

(fibrous, lipid, and calcified) can be clearly identified with histological correlation [244]. 

OCT images of fibrous plaques were characterized by homogeneous, signal-rich regions; 

fibrocalcific plaques by well-delineated, signal-poor regions with sharp borders; and lipid-

rich plaques by signal-poor regions with diffuse borders. The detection sensitivity and 

specificity for different types of plaques are: 71-79% and 97-98% for fibrous plaques; 95-

96% and 97% for fibrocalcific plaques; and 90-94% and 90-92% for lipid-rich plaques. These 

results represent an important step in validating intravascular OCT imaging and provide a 

basis for interpretation of intracoronary OCT images obtained from patients. The first in vivo 

coronary imaging study in humans was performed using a 1-mm-diameter (3.0 F) catheter, 

demonstrating the ability of intravascular OCT to visualize the coronary plaques [234], 

followed by subsequent study to characterize different coronary atherosclerotic plaques in 

vivo [149]. Intravascular OCT imaging has been investigated extensively for in vivo 
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diagnostics of vulnerable plaques [245-248]. Identifying vulnerable plaques in situ could 

potentially allow cardiologists to develop therapeutic strategies, predict the vulnerability of 

plaques, and monitor structural changes after intervention.  

 OCT has also been demonstrated to be able to quantify the activated macrophage 

content in vivo [148]. It has been demonstrated that there was a high degree of positive 

correlation between OCT measurements and histological measurements of fibrous cap 

macrophage density. The unique capabilities of OCT for fibrous cap characterization suggest 

that this technology could be well suited for identifying vulnerable plaques in patients. Other 

quantitative analyses including the OCT signal attenuation and layer thickness changes has 

been undertaken for tissue characterization of OCT imaging of coronary arteries [249-251]. 

Recent study using both the attenuation and backscattering properties showed enhanced 

contrast and better tissue characterization [251]. These findings hold strong potentials for 

future computer-aided diagnosis of atherosclerotic plaques and better detection of thin-cap 

fibroatheroma (TCFA) [251]. 

 Another potential application for intravascular OCT is to monitor therapeutic 

interventions, such as stent deployment [147, 252-257]. OCT provides a clear view of the 

stent struts and their positions relative to the wall, thereby giving surgeons a real-time 

assessment of stent apposition, tissue prolapse, and wall dissections. It has been demonstrated 

that OCT can be used to visualize stent integrity, neointimal formation, and 

neovascularization [238, 253]. Recent developments in drug-eluting stents promises to 

prevent the in-stent restenosis. Intravascular OCT imaging enables evaluation of neointimal 

coverage and earlier detection of excessive regrowth of the inner layer of vessel [258, 259].  

 In addition to high-resolution and high-speed imaging of morphology, OCT can also 

provide functional information for improved understanding and assessment of disease. For 
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example, polarization-sensitive (PS) OCT has shown the potential to image intrinsic tissue 

birefringence changes, which can be used to differentiate fibrous and calcified plaques [260-

262]. PS-OCT will significantly improve our ability to evaluate plaque stability in patients. 

Optical coherence elastography (OCE), another functional extension of OCT for imaging 

tissue biomechanical properties, has been investigated to evaluate the mechanical properties 

of arterial walls and plaques [263, 264]. Furthermore, a dual-modality device that combines 

the anatomical imaging capabilities of OCT with the functional capabilities of laser-induced 

fluorescence (LIF) spectroscopy has been applied for imaging normal and atherosclerotic 

portions of aorta wall [265]. Such dual-modal approach is desirable in cardiac functional 

imaging [266], where the structural heterogeneities influence the arrhythmia induction, 

stabilization, and termination. The comprehensive information offered by both modalities 

promises to characterize the patterns of functional signals and their correlation with structures 

in great details, thereby providing new insights into the structure-function relationships. 

 

Oncology Imaging 

Cancer imaging is also a promising area of OCT application. Many cancers arise from the 

epithelial layers, and demonstrate disruption of normal architectural morphology of tissues. 

The resolution and imaging field-of-view of OCT is approaching those of standard biopsy 

and histopathology, therefore OCT represents a potential method for “optical biopsy” of the 

tissue in situ, which can guide the excision biopsy to improve the sampling accuracy. OCT 

has shown promises in detecting structural alterations associated with malignancies including 

those arising in the breast [267-271], bladder [163, 272-274], brain [275-277], 

gastrointestinal [154, 155, 278, 279], respiratory [280] and reproductive [281] tracts, skin 

[282], larynx [283, 284], and oral cavity [285, 286].   
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 Development of endoscopic OCT greatly facilitates imaging of cancers raised from 

internal organs in situ. OCT has been demonstrated for detection of specialized intestinal 

metaplasia in Barrett’s esophagus [150-152, 287] and transmural inflammation in 

inflammatory bowel disease (IBD) patients [288].  Recently, OCT has shown the promise for 

detection of high-grade dysplasia in Barrett’s esophagus. Evans et al reported 83% sensitivity 

and 75% specificity for detecting high-grade dysplasia and intramucosal carcinoma with 

blinded scoring of OCT images from 55 patients using a numeric scoring system based on the 

surface maturation and glandular architecture [155]. Isenberg et al reported 68% sensitivity 

and 82% specificity, with 78% accuracy for detection of dysplasia from 33 patients with 

Barrett's esophagus [154]. Using ultrahigh-resolution (UHR) endoscopic OCT imaging with 4 

m axial resolution, Chen et al demonstrated in vivo clinical imaging in a cross-sectional 

study of 50 patients [156].  Real-time endoscopic OCT imaging was performed using a 1.8 

mm diameter OCT catheter probe introduced into the accessory channel of a standard 

endoscope.  Figure 6 A-B shows a representative UHR OCT image of normal esophagus 

which exhibits a characteristic layered architecture and its corresponding histology.  C-D 

shows a representative UHR OCT image of Barrett's esophagus and the associated histology.  

The layered architecture in normal esophagus is replaced by glandular structures. Low-

backscattering Barrett's glands are frequently observed within the mucosa, with interlaced 

regions of high-backscattering connective tissue corresponding to the lamina propria. E-F 

shows an example UHR OCT image of high-grade dysplasia and the corresponding 

histology. OCT images of high-grade dysplasia are characterized by irregular, distorted, and 

cribriform or villiform glandular architecture and are more heterogeneous than those of non-

dysplastic Barrett's epithelium. G-H shows an example UHR OCT image of adenocarcinoma 

and the representative histology. Irregular infiltrating glandular morphology can be visualized 

with OCT. Ultrahigh resolution OCT images showed good correlation of architectural 
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morphology with histological findings. Enhanced image resolution and reduced speckle size 

enable ultrahigh resolution OCT to visualize tissue architectural heterogeneity more clearly 

than standard resolution OCT. Future clinical studies are needed to investigate the role of 

ultrahigh resolution OCT in detection of early neoplastic lesions. 

 

Figure 6 

In vivo ultrahigh resolution endoscopic OCT image (top row) and the corresponding 
histology (bottom row). A-B: normal esophagus; C-D: Barrett’s esophagus; E-F: High-grade 

dysplasia; G-H: Adenocarcinoma. From Ref.  [156], with permission. 

 

Using Fourier-domain methods, endoscopic 3D-OCT imaging in vivo has recently 

been demonstrated [127, 289-291]. 3D OCT enables comprehensive assessment of early 

structural changes associated with diseases.  With further technology refinement, higher 

resolution and imaging speed will be available in the near future. The unique capability of 

high-resolution imaging with large field of view promises to enable more complete 

characterization of tissue microscopic features and open new possibilities for improving 

identification of early neoplastic changes. 

Bladder cancer is another promising candidate for endoscopic OCT imaging. 

Recently, a 32 patient study showed OCT has high detection accuracy for real-time imaging 

and staging of bladder cancer adjunct to white light cystoscopy (90% sensitivity and 89% 
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specificity for tumor confined to the mucosa, and 100% sensitivity and 90% specificity for 

muscle-invasive tumors) [274]. Another clinical study with 24 patients reported an overall 

sensitivity of 100%, specificity of 89%, and diagnostic accuracy of 92% for OCT imaging of 

superficial bladder transitional-cell carcinoma (TCC) [163]. Computer-aided recognition of 

bladder cancer using OCT and texture analysis is under investigation to improve the clinical 

utility of OCT [273]. 

OCT also holds promises for detection of cancers in the solid organ such as breast. In 

a pathological laboratory study, ultrahigh resolution OCT imaging of human breast 

specimens was performed in 119 freshly excised specimens from 35 women with 3.5 m 

axial resolution [268]. Microstructures of normal breast parenchyma, including glands, 

lobules, and ducts, as well as stromal changes associated with infiltrating cancer were visible 

from OCT images. Furthermore, fibrocystic changes and benign fibroadenomas were 

identified. Imaging of ductal carcinoma in situ (DCIS) revealed microcalcifications. Figure 7 

shows an example of OCT images of the human breast. Figure 7 A shows an OCT image of 

normal fibroadipose tissue with the corresponding histology shown in B. Fibrous stroma 

appears heterogeneous and highly scattering, whereas adipocytes appear low scattering, with 

individual, well-circumscribed scattering borders. Figure 7 C shows an OCT image of DCIS 

lesions in lobules. Tumor cells within lobules appear uniformly low scattering. Dilatation and 

architectural distortion of the lobules is visible. A microcalcification (C) within the lobules 

appears highly scattering with pronounced shadowing. D shows the corresponding histology. 

E-F shows an OCT image of infiltrating ductal carcinoma and the corresponding histology. 

Highly scattering regions corresponding to tongues of invasive cancer are visible. G-H shows 

an OCT image of a solid variant infiltrative lobular carcinoma with histology. Regions with 

densely infiltrating tumor cells appear low scattering and homogeneous, with isolated regions 

of entrapped fat. Using quantitative signal analyses including slope, standard deviation, and 
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spatial frequency, high sensitive tissue classification has been shown with normal and tumor 

tissues [269, 292]. A recent 37 patient study used OCT to image surgical margins of 

lumpectomy specimens, yielding a sensitivity of 100% and specificity of 82% [270]. These 

results clearly demonstrated that OCT is a strong candidate for future clinical adoption for 

image-guided interventions of breast cancer including guiding breast biopsy and intra-

operative margin assessment in breast-conserving surgeries. The potential of OCT in 

detecting cancers in other solid organs such as prostate cancer [161] and kidney cancer [293, 

294] are also under investigation.  

250 m

A C E G

B D F H

 

Figure 7 

Ultrahigh resolution OCT image (top row) and the corresponding histology (Hematoxylin-

eosin stain, bottom row) of human breast tissues ex vivo. (A) OCT image of normal 

fibroadipose tissue. (B) Histologic specimen corresponding to OCT image. (C) OCT image of 

DCIS lesions in lobules. (D) Histologic specimen corresponding to OCT image. (E) OCT 

image of infiltrating ductal carcinoma. (F) Histologic specimen corresponding to OCT 

image. (G) OCT image of a solid variant infiltrative lobular carcinoma. (H) Histologic 

specimen corresponding to OCT image. From Ref. [268], with permission. 
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 Multi-modal imaging combining OCT with other imaging techniques such as 

fluorescence has been actively investigated to improve the sensitivity and specificity for 

cancer detection. Previous studies combining OCT and laser-induced fluorescence (LIF) 

spectroscopy showed improved identification of tumor boundaries in the cervix [295, 296]. 

Tumlinson et al developed a combined OCT and LIF imaging catheter for in vivo imaging of 

mouse colon [297, 298]. This miniaturized 2-mm-in-diameter catheter has been applied to 

longitudinally monitor disease progression in the mouse colon, and is able to identify 

colorectal adenomas in murine models [299]. In an ex vivo study of murine GI tracts, Hariri 

et al showed that OCT and LIF provided complementary information for the detection of 

dysplasia and inflammatory bowel disease (IBD) of the intestines [300]. Pan et al showed that 

fluorescence-guided endoscopic OCT could enhance the efficiency and sensitivity of early 

bladder cancer diagnosis [301]. In a rat model study, they demonstrated that the specificity of 

fluorescence detection of transitional cell carcinoma was significantly enhanced by 

fluorescence-guided OCT (53% vs. 93%), and the sensitivity of fluorescence detection also 

improved by combination with OCT (79% vs. 100%) [302]. A recent clinical study involving 

138 volunteers and 10 patients with lung cancer has been performed to investigate the 

feasibility of OCT characterization of preneoplastic changes in the bronchial epithelium 

identified by autofluorescence bronchoscopy [280]. The preliminary data suggested that 

autofluorescence bronchoscopy-guided OCT imaging of bronchial lesions is promising for in 

vivo imaging of preneoplastic bronchial lesions. 

 

Other Applications 

In addition to ophthalmology, cardiology, and cancer imaging, which are the most developed 

fields in OCT, novel applications are constantly being explored. OCT has shown promises in 
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imaging cartilage diseases [303-306]. Dental OCT has also been developed extensively [159, 

307-313]. Neurosurgical guidance using OCT represents another exciting new application 

[314]. Non-destructive evaluation of transplant kidney status using OCT [315, 316] is 

actively under investigation.  Further research is needed to evaluate the role of OCT in a 

variety of clinical areas.  

 

2.3 Fluorescent Techniques: Spectroscopy and Tomography 

Principle and Instrumentation  

Fluorescence techniques use fluorescence from either endogenous molecules (i.e., 

autofluorescence) or exogenous dyes to probe the biochemical and pathological status of the 

tissue [317, 318].  Typical fluorescence system illuminates the tissue with light, which excites 

fluorescent molecules (fluorophores) within the tissue. The emitted fluorescence light, 

typically at longer wavelengths than the excitation light, is collected and analyzed [319, 320]. 

Common endogenous fluorophores include connective tissues (collagen, elastin), cellular 

metabolism related coenzymes (reduced nicotinamide adenine dinucleotide (NADH), flavin 

adenine dinucleotide (FAD), and flavin mononucleotide (FMN)), by-products of heme 

biosynthesis (porphyrins), among others [321].  Several exogenous dyes also have been 

approved for clinical use, such as ICG [11, 40, 230, 322, 323], fluorescein [175, 324], 5-

aminolevulinic acid (5-ALA) [325-327], among others. Table 1 lists the optical properties of 

some commonly-used fluorophores [328]. 

Table 1. Optical Properties of Representative Fluorophores. 

Fluorophore Excitation (nm) Emission (nm) 
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NADH 

 

290-370 

 

340-460 

FAD 430-460 460-520 

Collagen & Elastin 300-370 400, 440 

Protoporphyrin IX 410 635 

Fluorescein 494 521 

ICG 805 835 

 

 There are three types of fluorescence systems: point-probe spectroscopy, 

wide-field imaging, and tomography. Point-probe spectroscopy system is designed to obtain 

the wavelength-dependant optical properties of tissue at a single spatial location. A typical 

point-probe spectroscopy instrument consists of a light source, a fiber-optic delivery probe 

containing both the excitation and collection fibers, and a spectrometer as the detector. The 

excitation fiber illuminates the tissue volume and the closely spaced detection fibers collect 

the scattered and fluorescence light. The detected fluorescence light (after long-pass emission 

filter) is dispersed in wavelength by a spectrograph, and the spectrum is recorded and 

analyzed. The separation between the illumination and detection fibers is usually on the order 

of millimeters, with the total diameter of the optical probe being small enough to pass 

through the accessory channel of a standard endoscope. The tissue sampled in point-probe 

spectroscopy system is usually restricted to a small area comparable to the extent of 

conventional excisional biopsy.Fluorescence spectroscopy systems can be extended into 

wide-field imaging mode.  Wide-field techniques can image over a larger surface area.  The 

light source provides a wide-field illumination on the tissue sample and a CCD camera is 

used as the detector to generate high-quality images [329]. A series of emission filters can be 

used to acquire wavelength dependent fluorescence signals. Wide-field planar imaging 
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typically does not contain depth-resolved information. In addition, the detected fluorescence 

intensities are non-linearly attenuated from different imaging depths [330-332], which could 

lead to a surface weighted images (in other words, signals are bias towards the surface 

lesions). In contrast, fluorescence tomography can reconstruct spatially-resolved fluorophore 

distribution, using similar approaches as diffuse optical tomography (DOT). The excitation 

light is illuminated from multiple source positions (through either fiber-optic coupling or 

scanning beam spot), and multiple detectors (such as CCD cameras) collect the fluorescence 

light propagating through different paths. Using image reconstruction similar to computerized 

tomography (CT) or DOT, the fluorophore distribution inside the tissue can be reconstructed. 

 

Clinical Applications  

One of the major clinical applications for fluorescence systems is early cancer detection. 

Several biochemical and morphologic factors may correlate with fluorescence signal  changes 

in neoplastic lesions, including increased absorption of hemoglobin and loss of spectral 

contributions from submucosal connective tissues [333]. Abnormal thickening of epithelial 

tissue may cause attenuation of the excitation light, leading to further decreases in the 

fluorescence intensity. Therefore, the peak wavelength and intensity of the fluorescence 

spectra can be used to differentiate normal versus diseased tissues due to the changes in the 

concentration and distribution of metabolically related fluorophores and alterations of the 

tissue microstructures [317, 334, 335]. Here we focus on the applications in cancers in the 

gastrointestinal (GI) tracts, brain, and breast. 

 

Point-Probe Fluorescence Spectroscopy 
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Point-probe fluorescence spectroscopy instruments can be integrated into a fiber-optic 

catheter device for endoscopic applications. Previous studies have shown that fluorescence 

spectroscopy can increase the detection rate of high-grade dysplasia (HGD) in Barrett’s 

esophagus [317, 334].  Using 330 nm excitation, Bourg-Heckly et al found 86% sensitivity 

and 95% specificity for differentiating neoplastic tissue (HGD and intramucosal carcinoma) 

from normal and Barrett’s mucosa in 24 patients by analyzing the fluorescence intensity ratio 

at 390 nm and 550 nm [334]. Panjehpour et al proposed another method called differential 

normalized fluorescence (DNF), where the measured fluorescence spectrum is subtracted by 

a baseline value (obtained by averaging the total-intensity-normalized spectra from the 

normal tissues) [317]. Based on the DNF intensity at 480 nm, a sensitivity of 90% and a 

specificity 96% for detection of HGD in non-dysplastic BE mucosa was reported from 36 

patients [317]. Using the intensity ratio of green (500-549nm) to red (667-700nm) 

fluorescence and the intensity of blue excitation (477 nm) as two parameters for tissue 

classification, Mayinger et al found 97% sensitivity and 95% specificity for diagnosis of 

esophageal carcinoma on 9 patients [336].  Using a similar approach, they reported 84% 

sensitivity and 87% specificity for the diagnosis of gastric adenocarcinoma on 15 patients 

[337]. Fluorescence spectroscopy can also accurately identify dysplasia associated with 

adenomatous polyps in the colon [318, 338]. Using the probability distribution of the 

fluorescence intensity at 460nm and the intensity ratio of I680nm/I660nm as the diagnostic 

parameters, Cothren et al reported 90% sensitivity, 95% specificity, and 90% positive 

predictive value (PPV) for detection of colonic dysplasia in a study with 57 patients [318]. 

Mayinger et al also applied light-induced autofluorescence spectroscopy for the diagnosis of 

colorectal cancer and adenoma [339]. In a study with 11 patients, they found 96% sensitivity 

and 93% specificity for rectal cancer detection, and 98% sensitivity and 89% specificity for 

diagnosis of dysplastic adenomas [339].  
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The fluorescence signal is often influenced by wavelength-dependent tissue scattering 

and absorption. To overcome this limitation, methods have been developed to extract the 

intrinsic fluorescence spectroscopy (IFS) signal by measuring the fluorescence and 

reflectance spectra with same illumination/detection geometry to cancel these unwanted 

wavelength-dependent effects [340, 341]. Using IFS, Georgakoudi et al reported 100% 

sensitivity and 97% specificity in differentiating HGD from low-grade dysplasia (LGD) and 

non-dysplastic BE on 16 patients [342].  

To enhance the fluorescence detection capability for early lesions, exogenous contrast 

agents that can selectively accumulate in neoplastic tissues can be applied. One of the most 

widely used exogenous contrast agents is 5-aminolevulinic acid (5-ALA), which is converted 

intracellularly into protoporphyrin IX (PpIX). PpIX has greater production and retention in 

neoplastic cells due to the increased metabolic rate and the reduced ferrochelatase activity 

which converts PpIX to heme [329, 343]. As a result, the characteristic red fluorescence of 

PpIX is increased in neoplastic tissues [327]. Clinical studies using point fluorescence 

spectroscopy showed oral administration of 5-ALA can detect HGD from non-dysplastic BE 

[344]. Using PpIX fluorescence alone, 77% sensitivity and 71% specificity were reported in a 

study with 20 patients, whereas 100% sensitivity and 100% specificity can be achieved by 

using the fluorescence intensity ratio I635nm/I480nm [344]. To further differentiate the PpIX 

fluorescence from autofluorescence, Ortner et al invented time-gated fluorescence 

spectroscopy utilizing the long fluorescence decay time of PpIX to suppress the 

autofluorescence background [345]. In this approach, nanosecond excitation pulses is used to 

excite the tissue, and then the ratio of 20 ns delayed PpIX fluorescence intensity to the 

immediate autofluorescence intensity is calculated. Using this method, it was possible to 

differentiate LGD from non-dysplastic BE, and dysplasia can be detected at a rate of 2.8 

times higher compared to white-light screening endoscopy [345].   
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Fluorescence spectroscopy can be combined with other spectroscopic techniques to 

provide complementary information about the biochemical and morphological state of tissue. 

Georgakoudi et al demonstrated that superior results for differentiating dysplastic from non-

dysplastic epithelium can been achieved by combining fluorescence, reflectance, and light-

scattering spectroscopies [342]. In such a multi-modality approach, fluorescence 

spectroscopy (IFS) provides the biochemical information, diffuse reflectance spectroscopy 

(DRS) reveals morphologic information about the bulk tissue, and light-scattering 

spectroscopy (LSS) indicates the nuclei size and density information. Tri-modal spectroscopy 

has been shown to detect HGD from LGD and non-dysplastic BE with 100% sensitivity and 

100% specificity on 40 sites from 16 patients [342]. The results from tri-modal spectroscopy 

are better than those obtained using individual modalities alone as tri-modal spectroscopy 

combines the advantages of each modality. Such multi-modality methods can be extended to 

imaging modes to enable rapid surveillance of large tissue areas. 

 

Wide-Field Fluorescence Imaging 

One example of the clinically used wide-field fluorescence systems is autofluorescence 

endoscopy, which can be implemented by using fiber-coupled wide-field excitation and CCD 

cameras for detection. There are several approaches to generate fluorescence images. Wang 

et al used a long-pass filter (> 400 nm) to select the fluorescent light, and an intensified 

charge injection device (CID) camera to capture the fluorescence image [346]. To account for 

the non-uniform illumination/detection geometry, they applied a moving average algorithm to 

the acquired image. The area of dysplasia was determined by the fluorescence intensity below 

a certain threshold. Another approach used two filters and intensified CCD (ICCD) cameras 

to detect the fluorescence in the green (490-560 nm) and red (>630 nm) wavelength ranges, 
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and the ratio between these two channels (Ired/Igreen) was used to create pseudo-color images 

in real time [347, 348].  In this “laser-induced fluorescence” (LIF) system, normal mucosa 

usually appears cyan (blue-greenish), whereas neoplastic lesions appear red due to the higher 

red/green fluorescence intensity ratio. Newer generations of fluorescence endoscopy systems 

incorporate total autofluorescence and both green and red reflectance into the imaging 

algorithm. In this case, non-dysplastic mucosa appears green whereas neoplastic lesion 

appears blue-purple [349]. 

 Fluorescence imaging can accurately identify dysplasia associated with adenomatous 

polyps in ex vivo colon specimens [346]. In an in vivo study of 30 patients, dysplasia was 

identified with a sensitivity of 83% [350]. Fluorescence endoscopy with LIF mode (LIFE) 

has been found to enhance the ability to localize small neoplastic lesions in the bronchus 

[351] and the GI tracts [347, 348, 352]. However, a randomized crossover study on 50 

patients showed that LIFE was not superior to standard video endoscopy in detecting early 

neoplasia in Barrett’s esophagus (sensitivity for the diagnosis of HGD / early-stage cancer in 

targeted biopsy were both only 62%) [353].  

As in point-probe fluorescence spectroscopy, using exogenous contrast agents such as 

5-ALA promises to enhance the detection capability in wide-field fluorescence imaging. 

Endlicher et al found a sensitivity of >80% for dysplasia detection, while the specificity was 

only between 27% to 56%  in a study of 47 patients [326]. Messmann et al also used 5-ALA 

to evaluate the detection of low and high-grade dysplasia in ulcerative colitis patients, and 

reported a sensitivity of 87-100%, while the specificity was only in the range of 51-62% in a 

study of 37 patients [325]. The high false positive rates are most likely associated with 

inflamed tissue or fecal materials [327, 354].  
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Using video autofluorescence imaging (AFI) system with both green and red 

reflectance, Kara et al recently demonstrated that AFI detected more dysplastic and 

neoplastic regions in Barrett’s esophagus than conventional endoscopy [349]. In a cohort of 

60 patients with Barrett’s esophagus, 22 patients were diagnosed with high-grade 

intraepithelial neoplasia (HGIN), and among them, 7 patients were detected solely by AFI 

after high-resolution endoscopy (HRE) had not shown any suspicious lesions. However, the 

positive predictive value (PPV) from per lesion analysis was only 49%. Further technology 

development and combination of other imaging modalities will improve the specificity and 

PPV. 

One of such promising modalities is narrow-band imaging (NBI). NBI utilizes a set of 

optical filters to allow only narrow wavelength regions of blue, green, and red light to 

sequentially illuminate the tissue [355-357]. Blue light penetrates only superficially, whereas 

red light penetrates into deeper layers. In addition, blue and green wavelengths are strongly 

absorbed by hemoglobin. Therefore, NBI enhances mucosal surface contrast and capillary 

patterns allowing detailed inspection of the mucosal and vascular patterns with high 

resolution and contrast without the use of exogenous dyes to improve visualization and 

diagnosis [358]. When combining AFI with NBI, AFI has high sensitivity in detecting 

dysplasia, and therefore can first scan large areas of mucosal surface to identify possible 

regions of neoplasia. However, AFI is often associated with high false-positive rate. NBI, on 

the other hand, can provide magnified inspection of mucosal patterns for detection of 

dysplasia. Therefore, the combination of AFI and NBI can provide complementary 

information for more accurate detection of early neoplasia. Kara et al performed a cross-

sectional study on 20 patients with BE using endoscopic video AFI followed by NBI [359]. 

AFI identified all HGIN lesions (100% sensitivity), however, the false positive rate was high 
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(19 in 47 lesions, 40%). Using NBI, the false positive rate dropped to 10% (5/47). Figure 8 

shows an example of the detection of HGIN lesions using the combined modality.  

 

 

Figure 8 

The images of a Barrett’s esophagus lesion with high-grade intraepithelial neoplasia (HGIN) 
detected with autofluorescence imaging (AFI) and narrow band imaging (NBI). (A) During 
inspection with white light, this area was not judged as suspicious. (B) The area around the 

small squamous island in the middle of the image showed a blue violet autofluorescence 
imaging color. (C) and (D) With NBI, irregular and disrupted mucosal patterns were found. 

The histopathology confirmed the presence of HGIN. From Ref. [359], with permission. 

 

Wide-field imaging also enables image-guided resection of tumor and tumor margin 

assessment. Keller et al demonstrated autofluorescence and reflectance spectral imaging as a 

valuable tool for examining the superficial margin status of excised breast tissue specimens, 

with 85% sensitivity and 96% specificity [360]. 5-ALA-induced PpIX fluorescence imaging 
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has found great success clinically in fluorescence-guided resection of malignant glioma [361, 

362]. Fluorescence-guided resection improves the results of glioma surgery for gross total 

resection and patient survival. Several clinical trials are undergoing to further validate its 

clinical utility [361-365]. Another FDA approved fluorescence contrast agent is ICG. Troyan 

et al recently demonstrated successful 6-patient pilot human clinical trial in breast cancer 

sentinel lymph node mapping using an intra-operative NIR fluorescence imaging system 

(FLARETM) [366]. Figure 9 shows the photo of the system and an example of SLM 

identification using peri-tumoral injection of ICG. These results demonstrate successful 

clinical translation of a new NIR fluorescence imaging system for image-guided oncologic 

surgery.  Intra-operative fluorescence imaging of ICG lymphatic draining promises to guide 

resection or biopsy of various forms of cancers (including breast cancer [367-371], skin 

cancer [372, 373], gastric cancer [374, 375], and rectal cancer [376]), monitor the perineal 

wound contamination in abdominoperineal resection (APR) [377], as well as to interrogate 

the difference between normal and abnormal lymphatic structure and function [378-382].  
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Figure 9 

(A) Portable FLARETM imaging system and satellite monitor stand deployed in the operating 
room. (B) NIR fluorescent sentinel lymph node (SLN) mapping in a woman with breast 

cancer. Color video images (left), 800 nm NIR fluorescence images (middle) and a pseudo-
colored (lime green) merge of the two (right) after injection (Inj.) of 10 μM ICG:HSA. The 

single SLN identified and resected for this patient. Shown are flow through a lymphatic 
channel (LC) and position of the SLN (arrow; top row), identification of the SLN (arrow; 

middle row), and a zoomed image of the SLN (arrow) during resection (bottom row). 800 nm 
camera exposure time was 200 msec. From Ref. [366], with permission. 

 

Fluorescence Tomography 

Fluorescence tomography can provide cross-sectional and volumetric views of biological 

tissue, therefore it is a promising tool to quantitatively characterize lesions and monitor 

therapy. Corlu et al reported the first human study of fluorescence tomographic imaging of 

breast tumor with ICG contrast enhancement [323]. Figure 10 shows the tomographic 

reconstruction of hemoglobin concentration, blood oxygen saturation, scattering coefficient 

and fluorescence signal.  The reconstructed images demonstrated significant tumor contrast 

compared to typical endogenous optical contrast in breast, such as hemoglobin concentration 

and scattering coefficients obtained with traditional diffuse optical tomography (DOT). 

Successful fluorescence tomography in human represents a critical step towards application 

of molecularly-targeting probes for future clinical translation. 
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Figure 10 

(A) Total hemoglobin concentration, blood oxygen saturation, s’(786nm) and fluorescence 
image slices at y = 5 cm. (B) Iso-surface plot of THC, s’ (786nm) and fluorescence at iso-

values of three standard deviations above their respective means correspond to tumor 
location. Outline designates the border of the breast modeled as an ellipsoid using the breast 

photo taken with the CCD camera. From Ref. [323], with permission. 

 

Other Techniques and Applications 

Besides the spectrally-resolved steady-state fluorescence measurement techniques described 

above, time-resolved fluorescence measurement techniques [383, 384] are evolving and 

currently under investigation as a potential tool for clinical diagnosis and surgical guidance. 

Different from the intensity-based steady-state methods, time-resolved methods measure the 

fluorescence intensity decay properties (lifetime) to provide additional information of tissue. 

There are several advantages of using time-resolved fluorescence systems to investigate 

biological tissues [385]:  

1. Biomolecules with overlapping fluorescence emission spectra but with different 

fluorescence decay times can be discriminated. 
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2. The measurements are sensitive to various parameters of the biological 

microenvironment, including pH, ion concentration and binding, enzymatic activity, and 

temperature, thus allowing these variables to be analyzed. 

3. Time-resolved measurements are more robust to changes in fluorescence 

excitation-collection geometry; presence of endogenous absorbers (e.g., hemoglobin); 

photobleaching; and changes in fluorophore concentration and location depth, light 

scattering, and excitation intensity. 

 Time-resolved fluorescence techniques have been applied to detect atherosclerotic 

plaques and shown great promise in providing diagnostic information for high-risk 

atherosclerotic plaques [385]. In addition, applications such as tumor detection [386, 387] 

and image-guided tumor surgery [388] are actively pursued. With further technical 

development and pilot studies, this method holds strong promise on clinical translation.  

 

2.4 Optical Molecular Imaging 

Probe and Instrumentation  

Nonspecific contrast agents (such as ALA and ICG) passively accumulate in diseased tissues 

without a specific molecular targeting moiety, therefore are subject to low sensitivity and 

specificity. Recently, there have been great advances in targeted imaging of basic molecular 

processes such as gene expression, enzyme activity, and disease-specific molecular 

interactions in vivo [389-391]. Molecular imaging promises early detection and in situ 

characterization of diseases with high sensitivity and specificity [392-395]. Optical imaging 

in conjunction with near-infrared fluorescent imaging probes has been developed to improve 

early disease detection [396, 397]. Generally, there are two major strategies for molecular-
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targeting contrast agents [398], including active targeting (using targeted molecular probes 

with high affinity for specific disease-related targets) and selective activation of the image 

probe at target tissues.  

 

Affinity-Based Molecular Probes 

Affinity-based molecular probes utilize the molecular selectivity of diseased cells to 

differentiate normal from abnormal tissues. Compared to normal cells, diseased cells tend to 

over-express certain specific molecular biomarkers, therefore providing a means for imaging 

contrast. A variety of targeting moieties can be used to deliver the reporter dyes to the 

diseased tissue. Representative strategies for reporter dye-labeled molecular targeting contrast 

agents are listed in Table 2. Common approaches include: monoclonal antibodies [399, 400], 

protein ligands [401-404], small peptides [405-407], and non-peptide ligands [408-410]. 

Table 2. Representative Affinity-Based Molecular Probes. 

Targeting Moiety Biomarker Reference 

 

Monoclonal Antibodies (mAb) 

 

VEGFR, VEGFR2 

 

[399, 400] 

 

Protein Ligands 

 

VEGFR 

 

[401, 402] 

EGFR [403, 404] 

 

Small Peptides 

Somatostatin [405-407, 411, 412] 

Integrin [413-420] 

Bombesin [421-423] 

 

Non-Peptide Ligands 

 

Folate receptor 

 

[424-426] 
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Glucose transporter [408-410, 427-431] 

 

VEGFR: vascular endothelial growth factor receptor; EGFR: epidermal growth factor 

receptor 

 

Activatable Molecular Probes 

Activatable probes are initially administered in a quenched (non-fluorescent) state, and the 

fluorescence signals increase when the probes are activated by specific biomolecules or 

environment in the disease tissue. Figure 11 shows an example of enzyme activatable 

imaging probe. Originally, the fluorophores are stacked together on a polymeric support, 

which leads to the quenching of fluorescence signals through Forster resonance energy 

transfer (FRET). The peptide linker is recognized by a specific proteolytic enzyme. Upon 

linker cleavage by the enzyme, the fluorophores are detached, which leads to dequenching 

and increases the fluorescence signal. Diseases tissues tend to have higher level of certain 

enzyme classes, therefore activatable probes provide an imaging contrast to differentiate 

normal from diseased tissues. Examples of activation mechanisms include [432]: enzymes, 

nucleic acids, ions and reactive oxygen species (ROS). Table 3 listed some representative 

activatable molecular imaging probes.  
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Figure 11 
Principle of enzyme activated molecular probe. 
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Table 3. Representative Activatable Molecular Probes. 

Activation Mechanism Biomarker Reference 

 

Enzymes 

 

Cathepsin 

 

[433, 434] 

MMP [435-437] 

 

Nucleic Acids 

 

RNA 

 

[438, 439] 

 

Ions 

Calcium [440] 

pH [441, 442] 

 

ROS 

 

H2O2 

 

[443, 444] 

MMP: metalloproteinase; ROS: reactive oxygen species 

 

Optical Molecular Imaging Systems 

Optical molecular imaging systems are essentially similar to those used in fluorescence 

imaging. Fluorescence imaging can be performed with different resolutions and penetration 

depths ranging from microscopy to tomography. Fluorescence reflectance imaging (FRI) is 

commonly used for two-dimensional mapping of superficial fluorophore distributions. 

Fluorescence molecular tomography (FMT) [332] enables three-dimensional quantification of 

fluorescence signals inside scattering tissues. Using near-infrared fluorophores, deeper 

penetration can be achieved. In addition, tissue auto-fluorescence is reduced at longer 

wavelength, thereby improving target to background ratio. 

Miniaturized endoscope devices can be developed for molecular imaging inside 

luminal structures in vivo. For example, Funovics et al developed a miniaturized 2.7 F (0.8 
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mm in diameter) fiber-optic sensor for laparoscopic imaging of enzyme activity and gene 

expression in vivo [445]. This device includes a dichroic mirror, a bandpass filter, and two 

independent cameras permitting simultaneous recording of white-light and fluorescent 

images. Zhu et al also demonstrated a one-dimensional near-infrared fluorescence imaging 

catheter for the detection of atherosclerotic plaque in human carotid plaque specimens in 

vitro [446]. The endoscopic devices will enable the intraluminal molecular imaging of GI 

tracts and vessels for early diseases identification.  

 

Applications and Clinical Translation 

Oncology 

Numerous biomarkers for cancers have been identified to facilitate early detection [447]. 

Antibodies to these markers have high specificity, but their in vivo use has been limited by 

immunogenicity [448]. In contrast, peptides are typically less immunogenic, non-toxic, and 

relatively easier for mass production. Kelly et al developed fluorescent affinity ligands 

derived from a phage library specific for colon cancer, and demonstrated a 7-fold higher 

contrast than a control in orthotopic colonic tumors (HT29) using a two-channel miniaturized 

near-infrared fluorescent endoscopy [396]. Hsiung et al screened phage display peptide 

libraries against fresh human colonic adenomas for high-affinity ligands with preferential 

binding to premalignant tissue [449]. Furthermore, they conjugated the peptide with 

fluorescein and topically applied to human patients undergoing colonoscopy. In vivo 

fluorescence confocal microendoscopy images showed stronger binding of fluorescent 

affinity ligands to dysplastic tissues than normal (see Figure 12), with an overall sensitivity of 

81% and specificity of 82%. Phage display based molecular imaging and targeted therapy 

represents a promising diagnostic and therapeutic approach for early detection of colorectal 
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cancer [450] and other cancers, such as prostate cancer [451], cholangiocarcinoma [452], 

hepatocarcinoma [453], and melanoma [454], among others. 

 

Figure 12 

In vivo confocal fluorescence images of peptide binding. (a) Binding to dysplastic colon 
polyp. (b) Binding to adjacent normal mucosa. (c,d) Histology of dysplastic colon polyp (c) 

and normal mucosa (d) stained with H&E. Scale bars, 20 µm.  From Ref. [449], with 
permission. 

 

In addition, proteolytic enzymes have been shown to play an essential roll in tumor 

growth, including high cell turnover, invasion, and angiogenesis [455]. Cathepsin B in 

particular has been shown to be up-regulated in areas of inflammation, necrosis, angiogenesis 

[455], focal invasion of colorectal carcinomas [456], and  dysplastic adenomas [457, 458]. 

Marten et al applied the fluorescent enzyme-cleavable and activatable cathepsin B sensing 

probe, which is non-fluorescent at injection and locally activated after target interaction, to 

the APCmin mouse model [397]. Ex vivo fluorescent imaging showed increased detection 

sensitivity and specificity, and the smallest lesion detected measured about 50 m [397]. In 

vivo imaging of enzyme activity for colorectal cancer detection can be achieved using 

catheter-based microendoscope [445, 459]. Protease activity concentration (PAC), quantified 

by fluorescence molecular tomography (FMT), has been demonstrated to be a unique in vivo 
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diagnostic parameter for tumor detection and chemotherapy monitoring for brain glioma 

[460]. Another family of proteases, the matrix metalloproteinase (MMP), also shows higher 

expression in cancers than normal tissues. Studies have indicated that MMP-2 degrades the 

extracellular matrix and is involved in tumor infiltration and angiogenesis [461, 462]. Clinical 

studies also show a correlation between the level of MMP-2 expression and poor disease 

outcome [463]. Therefore, in vivo imaging and quantification of MMP-2 expression would be 

important in characterization of tumors. Bremer et al developed an activatable probe which 

can sense the MMP activity in vivo using near-infrared optical imaging [435, 436].     

 Mucins (glycoproteins that cover the surfaces of epithelial cells and aid the epithelia 

in homeostatic and metabolic functions) represent another promising target for molecular 

imaging. Colorectal tissues are abundantly supplied with mucins throughout the mucosa; 

however, the adenoma to carcinoma transformation of cancerous cells alters O-glycans 

mucinous expression [464]. During carcinoma transformation of cells, O-glycans mucinous 

expression is altered in tumor tissues [465]. An earlier study found out that “an exposed 

carbohydrate structure that is not normally present in human tissues is expressed in the mucin 

produced by malignant colonic epithelium” [466]. Another study also reported the levels of 

mature Muc1 mucins were significantly higher in carcinoma tissues than those in normal 

mucosa (p<0.001) [467]. A more recent study showed 100% Muc1 expression in colonic 

adenocarcinomas and 76% expression in adenomas, relative to 29% Muc1 expression by 

mucosa within 2 cm of the cancer margin, and 0% expression by normal mucosa > 2 cm from 

the cancer margin [468]. Previous studies demonstrated that -L-fucose binding lectin Ulex 

europaeus agglutinin-1 (UEA-1) showed positive binding in human colorectal specimens of 

adenocarcinomas, adenomas, and polyposis coli, but not in the normal epithelium [469, 470]. 

In addition, increased UEA-1 reactivity in polyposis patients with a familial history of large 

bowel carcinoma has been reported [471]. Furthermore, it was reported that there was an 83% 
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positive rate of UEA-1 binding on apical surfaces of human carcinoma cells, compared with a 

0% positive rate of UEA-1 binding on non-neoplastic mucosa adjacent to the carcinoma 

[472]. 

 Roney et al developed UEA-1 conjugated polymerized liposomes for fluorescence 

molecular imaging (FMI) [473]. Figure 13 shows the results of the OCT/FMI imaging of 

APCmin mouse intestine ex vivo [474]. Polyps are visible in OCT images (Figures 13A-E) 

and histology (F-I). Fluorescence intensities (13K) are higher around the polypoid areas. This 

indicates the preferential accumulation and targeted binding of UEA-1 conjugated contrast 

agents to the polyps (13L). 

 

Figure 13 

Co-registered OCT/FMI of intestinal polyps ex vivo. (A) OCT en face surface profile image. 
(B-E) Cross-sectional OCT images corresponding to lines 1-4 in (A) and corresponding 

histology (F-I). (J) Tissue scattering coefficient (µs) image. Polyps show higher scattering 
coefficients. (K) Fluorescence image using the contrast agents targeting to -L-fucose over-
expressed in the mucin of polyp regions. (L) Fused scattering coefficient and fluorescence 

image. Bar = 1 mm. From Ref. [474], with permission. 

 

Hypermetabolism is another hallmark of cancer and has been utilized clinically for 

radiolabeled fluorodeoxy glucose (18FDG) based positron emission tomography (PET) 
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imaging for cancer detection [475]. The analogous fluorescent deoxy glucose (2-NBDG) has 

shown enhanced fluorescence in neoplastic tissues compared to normal tissues [408].  NIR 

fluorescence labeled glucose analogs also showed in vivo tumor-to-normal contrast 

enhancement [409, 410, 428-430, 476] and efficient photodynamic therapy [431]. Although 

the mechanism of cellular uptake is still under debate [477], metabolism-based molecular 

probe holds the promise of addressing the universal nature of cancer cells (not limited by 

specific cancer types) and could be an optical surrogate of FDG [394]. 

The expression of folate receptor-α (FR-α) is increased in 90-95% of epithelial 

ovarian cancers (EOC) [478, 479], and therefore could be a promising target for molecular 

imaging. Recently, van Dam et al performed the first in-human intra-operative fluorescence-

guided ovarian cancer surgery using tumor-specific FR-α-targeted fluorescence contrast agent 

[480]. This work shows the potential application of molecular imaging in patients with 

ovarian cancer for improved intra-operative surgical guidance.  

 

Skeletal Disease 

Optical molecular imaging is also able to image osteoblastic activity. The development and 

integrity of the skeleton requires hydroxyapatite (HA) deposition by osteoblasts. Zaheer et al 

developed a NIR fluorescent bisphosphonate derivative which specifically binds to HA, 

thereby revealing osteoblastic activity in living animals [481]. Recently, Kovar et al 

synthesized a NIR fluorescent tetracycline derivative which binds specifically to 

differentiated mineralized osteoblasts [482]. Those agents hold promises in imaging bone 

development and mineralization, osteoblastic metastasis, and bone remodeling process.  

 Using FMT, Zilberman et al imaged fracture repair on murine models with 

implantation of mesenchymal stem cells overexpressing the osteogenic gene BMP2 [483]. 
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Real-time imaging and quantification of bone formation and remodeling was performed using 

bisphosphonate imaging agent (OsteoSenseTM). Higher fluorescence signals was found at 

implantation sites, indicating fluorescence molecular imaging has the potential for 

quantitative evaluation of bone regeneration and tissue engineering. 

 Optical molecular imaging is also able to image and characterize arthritis, including 

rheumatoid arthritis (RA) and osteoarthritis (OA). Chen et al developed a NIR fluorophore-

conjugated folate as probe for RA imaging [484]. A fluorescence signal intensity ratio of 2.3 

between arthritic and normal joint was detected 12 and 24 hours after folate injection, which 

shows the potential for early diagnosis of RA. In addition, proteinase activities are altered 

during arthritis. Wunder et al used an activatable probe to detect proteinase activity in joints 

[485]. Similar approach also performed by Lai et al to measure the proteinase activity in OA 

instead of RA [486]. Together, these studies demonstrated the potential of optical molecular 

imaging as a means for mechanistic study and clinical applications for orthopedic research 

[487]. 

 

Cardiovascular Disease 

Optical molecular imaging can visualize molecular targets rather than anatomic structures 

therefore helps to elucidate the underpinning molecular and cellular mechanisms associated 

with cardiovascular diseases in vivo. NIR fluorescence molecular imaging has been applied 

to image atherosclerosis in vivo [488]. Chen et al. used FMT to image protease activity 

(ProSenseTM) in atheromata [489]. Non-invasive FMT detected the fluorescence signal in the 

atherosclerotic aorta in vivo and correlated well with ex vivo FRI images. This study 

demonstrated the feasibility of FMT to visualize augmented plaque protease activity. Deguchi 

et al investigated MMP-2 and MMP-9 activity in atherosclerosis using FMT [490]. 
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Augmented NIR fluorescence (NIRF) signals were detected and co-localized with 

macrophage accumulation. As macrophages contribute pivotally to cardiovascular diseases, 

in vivo imaging of macrophages and protease activity would provide an important means to 

understanding the pathphysiology, evaluating the effects of interventions, and ultimately 

aiding clinical care [491].  

 To facilitate the clinical translation of molecular cardiovascular imaging, Jaffer et al 

developed an intravascular NIRF molecular sensing catheter based on the OCT imaging 

catheter [492]. This one-dimensional intravascular fluorescence catheter can detect cysteine 

protease activity using ProSenseTM in real time. This device could aid in the detection of 

inflammation and high-risk plaques in small arteries. To provide a two-dimensional (2D) 

imaging, Jaffer et al also developed a 2D intravascular NIRF imaging catheter using rational 

and pullback design [493]. In atherosclerosis, 2D NIRF imaging provided insight into the 

spatial distribution of plaque protease activity. In stent-implanted vessels, 2D NIRF imaging 

indicated an edge-based pattern of stent induced arterial inflammation. Figure 14 shows in 

vivo multimodality x-ray angiography, IVUS, and intravascular NIRF imaging [493]. In 

stent-injured vessels, increased in vivo NIRF signal localized at the edges of the implanted 

stents, and particularly at the leading or distal stent edge (Fig. 14C), suggesting that stent-

based injury occurred at sharp transition points. The continued development of molecular-

sensing imaging agents and minimally-invasive intravascular fluorescence imaging device 

promise to provide high-resolution in vivo spatial mapping of inflammation-regulated 

protease activity in vivo. 
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Figure 14 

Representative multimodality NIRF molecular and IVUS anatomical imaging of arterial 
inflammation at day 7 following coronary stent implantation. (A) Angiogram of an implanted 

bare-metal stent in the abdominal aorta. Dotted rectangle denotes stent position. (B, C) 
Longitudinal IVUS and NIRF catheter pullbacks demonstrate NIRF signal within the stent. 
NIRF signal collection was performed through blood without flushing, in 3.5-mm diameter 

vessels. From Ref. [493]. 
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3. Conclusion 

This paper provides an overview of several emerging optical technologies, including their 

principles and translation to various biomedical applications. The continuous technology 

development in advanced light sources, miniaturized imaging devices, and detection 

methods, will motivate future clinical investigations to determine optics method’s utility in 

medicine. The future technology development will be strengthened by the translational 

research from the bench to the bedside, and the clinical feedback will shape the new 

technology advancement. In addition, a close academia-industry synergy will facilitate the 

technology transfer and bring the new optical technologies to the hands of the clinicians. 

With such inter-disciplinary collaboration, optical methods are promised to significantly 

impact the future practice in clinical medicine. 
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