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ABSTRACT
In mammals, plasmatic osmolality needs to be stable, and it is highly related to the hydric state of
the animals which depends on the activity of the hypothalamic neurohypophysial system and
more particularly by vasopressin secretion. Meriones, a desert rodent, can survive even without
drinking for more than one month. The mechanism(s) by which they survive under these
conditions remains poorly understood. In this study, we examine the water’s deprivation
consequences on the: (1) anatomy, morphology, and physiology of the hypothalamic supraoptic
nucleus, (2) body mass and plasma electrolytes changes in male desert rodents ‘Meriones
libycus’ subjected to water deprivation for 30 days. The effect of water deprivation was
evaluated on the structural and cellular organization of the supraoptic nucleus by
morphological observations and immunohistochemical approaches, allowing the labeling of
AVP but also oxytocin. Our finding demonstrated that upon water deprivation (1) the body
weight decreased and reached a plateau after a month of water restriction. (2) The plasmatic
osmolality began to decrease and return to values similar to control animals at day 30. (3) The
SON, both in hydrated and water-deprived animals, is highly developed.(4) The AVP labeling in
the SON increased upon dehydration at variance with OT. These changes observed in body
mass and plasma osmolality reveal an important adaptive process of male Meriones in response
to prolonged water deprivation. Overall, this animal represents an interesting model for the
study of water body homeostasis and the mechanisms underlying the survival of desert rodents
to xeric environments.
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1. Introduction

In mammals, the regulation of plasmatic osmolality is an
essential physiological mechanism for normal develop-
ment (Hussy et al. 2000). Regulation of the osmolality
of extracellular fluids is achieved by balancing the
intake and excretion of salts and water (Louden 2012).
The neuroendocrine hypothalamo-neurohypophysial
system responsible for this physiological regulation con-
sists of neurons located in the paraventricular (PVN) and
supraoptic nuclei (SON). These neurons (magnocellular
neurons of the SON and those of the PVN nuclei)
secrete two main neuropeptides: arginine vasopressin
(AVP) and oxytocin (OT). These neuropeptides are
stored in the neuron cell bodies, transported to the pitu-
itary, and released in the general circulation upon phys-
iological stimulation like dehydration. According to a
large and recent literature, these neuropeptides have

been shown to affect water reabsorption, arterial
blood pressure, glucose homeostasis, ACTH secretion
(Manning et al. 2012). One of the most important func-
tions of AVP is to maintain homeostasis (e.g. water reten-
tion, blood pressure, circadian rhythms and temperature
regulation, arousal activation, and memory), while OT is
involved in the maintenance of the social group and/or
species (e.g. ovulation, parturition, lactation, sexual
behavior, and social interactions) but also suppression
of food intake (Finger 2011; Benarroch 2013; Ludwig
et al. 2017).

Small mammals, such as desert rodents can survive
for long periods in extreme environmental conditions
without free water and resist the effects of dehydration
by obtaining preformed water from food and metabolic
water (Degen 1997). The main avenues for water loss are
respiration, urine, feces, and thermoregulatory mechan-
isms, such as sweating, salivation, and evaporative
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cooling (Schwimmer and Haim 2009). Many homeostatic
mechanisms and physiological adaptations to deserts
have been characterized in several rodents like Gerboa,
Pocket mice, Meriones, Jerbils (Ghobrial and Nour
1975; Baddouri et al. 1987; Baddouri and Quyou 1991;
Ouali and Bensalem 1996). Interestingly, Meriones are
characterized by their resistance to long periods of
thirst and have a particular ability to support prolonged
dehydration for periods up to three months (Laalaoui
et al. 2001; Elgot et al. 2009).

It has been suggested also that electrolytes may be
considered as important markers of dehydration (Cheuv-
ront and Kenefick 2011). Interestingly, in humans and
traditional mammalian models, the response to severe
acute dehydration leading to severe electrolyte imbal-
ance is poorly documented. In order to survive despite
prolonged dehydration states, the main challenge for
desert animals is to maintain the electrolyte gradients
required for proper function (MacManes 2017).

In the present study, we investigated the effects of
prolonged water deprivation (WD) on the morphological
and the cellular organization of the SON as well as on
plasma electrolytes and osmolality changes, and hem-
atocrit; which is an indicator of plasma volume (Kutscher
1968) in male desert rodent Meriones libycus. Further-
more, using immunohistochemicals approaches, we
evaluated AVP and OT expression in magnocellular
neurons (MCNs) of the SON to better understand how
these mammalian species adapt their AVP level of pro-
duction in response to their arid environment.

2. Materials and methods

2.1. Animals

Only the minimum number of animals necessary to
produce reliable scientific data was used. Experiments
were carried out in male Meriones libycus (Gerbillidae),
a granivorous rodent captured in December around
the desert region of Béni Abbes (Southwest of Algeria,
with hot and extremely dry desert climate).

Fifty-six (56) wild adult males Meriones libycus (Body
weight (BW): 80–100 g) (control n = 28, WD n = 28)
were housed singly in stainless-steel cages. The colony
room was maintained at a constant temperature (25 ±
1°C) under 12:12 h light–dark cycle, with free access to
food (standard dried rat pellets) and tap water until
the initiation of water deprivation protocol. Animals
were kept water deprived for 30 days. Body mass and
plasmatic electrolytes were measured on days 7, 14, 21
and 30. All experiments and animal care procedures
were designed in accordance with the European guide-
lines on the ethical use of animals and have been

approved by the ethical local Committee and the
‘Association Algérienne des Sciences en Expérimen-
tation Animale (AASEA)’ (http://www.aasea.asso.dz/).

2.2. Slice preparation

Meriones were deeply anaesthetized (pentobarbital,
120 mg/100 g BW by i.p. injection) then perfused trans-
cardially with PF 4% in phosphate buffer (0.1 M, pH 7.4).
The Brains were carefully removed and post-fixed in the
same fixative for 24 h at 4°C. The tissues collected were
rinsed in Phosphate Buffer Saline (PBS) to wash out the
fixative, dehydrated in graded ethanol solutions (70–
100%), and embedded in pure paraffin. Frontal sections
of the hypothalamus (10 μm) were realized with a micro-
tome. Sections were performed throughout the SON.
The immunolabeling was performed on selected sec-
tions in the median part of the nucleus where the cell
density is maximal.

2.3. Immunohistochemistry

The microtome sections were mounted, deparaffinized,
and rehydrated. The slices were then incubated in a
moist chamber for 48 h at 4°C with one or two primary
antibodies (Anti-Neurophysin 2/NP-AVP mouse IgG,
1:500, Millipore, USA, Anti-OT rabbit IgG, 1:4000, produced
by G. Alonso, Montpellier, France) (Alonso et al. 2005).

After rinsing in PBS, sections were incubated for 1 h at
room temperature with the corresponding secondary
antibodies conjugated with Cy3 (donkey anti-rabbit
IgG, Jackson ImmunoResearchLaboratories, USA,
1:2000) or Alexa Fluor 488 (goat anti-mouse IgG, Invitro-
gen Molecular Probes, USA, 1:2000). The antibodies were
diluted in PBS containing 2% Bovine Serum Albumin
(BSA) and 0.1% Triton X-100. After rinsing in PBS, sec-
tions were incubated for 30 min in DAPI (1:1000) (4′,6-
diamidino-2-phenylindole) a nuclear counterstain for
fluorescence microscopy.

Labeled sections were rinsed in PBS, mounted in
Mowiol, and observed under Zeiss Axio Imager 2 fluor-
escence microscope with Apotome (IGF Montpellier,
France).

The specificity of the vasopressin, oxytocin and com-
mercial antibodies has been assessed by absorption
tests. Additional negative and positive controls were
applied. This allowed us to confirm the validity of the
staining pattern and to exclude experimental artifacts.

2.4. Immunolabeling quantification

Quantitative analysis was performed on series of 10–12
sections per animal passing through the middle portions
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of the entire SON (i.e. the largest SON areas). The analysis
was performed on three animals for each group (control
and WD groups). The optical density (OD) of AVP and OT
immunoreactivity was quantified using NIH Image J soft-
ware. The OD value resulted from the difference
between the staining intensity in the SON and the back-
ground intensity. Furthermore, regarding the distri-
bution of AVP and OT neurons in the SON a semi-
quantitative analysis was assessed on 5–10 sections
per animal with a total of 75 images for controls and
WD animals.

2.5. Plasma assays

Blood samples were collected from the infra-orbital
sinus in plastic tubes containing heparin and centrifuged
(3000g for 15 min). Plasma sodium and potassium con-
centration ([Na+] [K+]) were measured immediately
thereafter using an ion-specific electrode (Easylyte®).
The osmolality of each sample was measured using an
Osmometer (Loeser type 6M). Other blood samples
were collected in heparinized hematocrit capillary
tubes. These samples were centrifuged at 1500g for
10 min at 4°C, and the hematocrit was determined
directly (Hematokif-210).

2.6. Statistical analysis

Quantitative results are expressed as means ± S.E.M.
We compared WD groups and controls using one-
way analysis of variance (ANOVA) after an initial F-
test for uniformity of variance. When differences
were noted, Post hoc Scheffe test analysis was used.
Differences were considered significant when p-value
of <.05 (*); p < .01 (**); or p < .001 (***). Statistical ana-
lyses were performed with GraphPad Prism 6.0 (Graph-
Pad software).

3. Results

3.1. Changes in body weight after water
deprivation

We measured the body mass of 56 wild adult males at
days 7, 14, 21, and 30 (Figure 1). During the first thre
weeks of water deprivation, we observed a progressive
decrease of the Meriones body weight, which became
significant only after two weeks of water restriction.
Then, the body weight remained stable up to the 30th
day. At this moment, WD Meriones lost 16.3 ± 8.1% of
their body weight (n = 7).

3.2. Hematocrit and plasma osmolality

Both the hematocrit and the plasma osmolality provide
reliable information about the body water content of an
animal. We measured the hematocrit index and plas-
matic osmolality of wild adult males Meriones at days
7, 14, 21, and 30.

Regarding the hematocrit index (Figure 2(a)) there is
no significant difference between controls and WD Mer-
iones during the first three weeks of water privation.
However, after 30 days of water deprivation, the hem-
atocrit index increased significantly by 12.14 ± 2.4% (p
< .001).

Figure 2. Evolution of Hematocrit (a) and plasmatic osmolality
(b) in the controls and water-deprived Meriones (WD) measured
at days 7, 14, 21 and 30. Data are expressed as means ± S.E.M. (*)
p < .05.

Figure 1. Evolution of body weight of control and water-
deprived Meriones (WD) measured at days 7, 14, 21 and 30.
Data are expressed as means ± S.E.M. (*) p < .05.
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For plasmatic osmolality (Figure 2(b)), there is no sig-
nificant difference between controls and WD Meriones
during the first week of water restriction. However,
during the two next weeks, a significant decrease of
33.7 ± 8.2% was observed in WD animals compared to
controls (p < .01). Interestingly, we observed a normali-
zation of this parameter after a month of water depri-
vation and the plasmatic osmolality returned to
control values despite a continuous water privation.

3.3. Electrolyte (Na+, K+) contents

We also measured levels of serum sodium and potass-
ium for the same 56 wild adult males Meriones libycus
at days 7, 14, 21, and 30. For sodium (Figure 3(a)),
there was only a significant difference between WD Mer-
iones and controls on the 30th day of water restriction
(p < .05). However, no significant difference was
observed for potassium between WD Meriones and con-
trols (Figure 3(b)).

3.4. AVP and OT neurons distribution in the SON
of Meriones

Different tests and positive or negative controls were
assessed to validate the specificity of both the AVP and
OT labeling (data not shown). In comparison with labora-
tory rodents and other mammals, the hypothalamic

magnocellular nucleus (SON) of the desert rodent Mer-
iones libycus is highly developed; it has a large medio-
lateral extension in the dorso-lateral part of the optic
chiasm (OC). Both antibodies (anti-AVP and anti-OT)
were used to label the whole population of SON
neurons. In all SON sections, AVP and OT positive
neurons were detected (Figure 4(A,B)). Strong immunola-
beling characterized their round to ovoid shaped somata.
The AVP neurons are mostly located in the lateral and
ventral part of this nucleus, while the OT positive
neurons are essentially localized in the dorso-lateral part
of the SON (Figure 4(C)). Indeed, in the SON of Meriones
most of the visible AVP-containing cells showed OT
immunofluorescence, a semi-quantitative evaluation, on
frontal sections revealed that immunoreactivity coexisted
in about 37% of magnocellular neurons.

3.5. Effect of WD on AVP and OT expression in
SON

Neurophysin 2 (NPII) (or vasopressin associated neuro-
physin NP-AVP) is a protein co-expressed with vasopres-
sin and a carrier of peptide hormones Vasopressin (AVP).
We used immunofluorescence to quantify the
expression of NP-AVP.

Compared to controls, the WD animals of seven days
showed a significant increase in NP-AVP immunoreactiv-
ity (Figure 5(A,B) and Figure 6(A, B and D)). However,
after four weeks of water deprivation, the intensity of
cytoplasmic NP-AVP staining goes back to the same
level as control animals (Figure 5(C) and Figure 6(C,D)).

On the other hand, in the anti-OT immunolabeling
after seven days of water deprivation, we observed a
slight non-significant increase (Figure 5(A, B, and C)
and Figure 6(A,B)). By contrast, in the 30 days WD
group, a highly significant decrease of OT immunoreac-
tivity was detected (Figure 6(E)).

4. Discussion

Desert rodents occupy habitats that present extraordi-
nary demands, and they take up these challenges with
evident success (Walsberg 2000). They display physio-
logical features that favor body water conservation,
such as efficient kidney function, low fecal water
content, and comparatively lower evaporative water
loss (Bozinovic and Gallardo 2006).

5.1. Body mass, plasma electrolytes, and
hematocrit

In this study, we found that water deprivation leads to a
decrease in body mass. This loss of weight was similar to

Figure 3. Evolution of plasmatic concentration of electrolyte (Na
+, K+) in control and water-deprived Meriones measured at days
7, 14, 21 and 30. Data are expressed as means ± S.E.M. (*) p
< .05.
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other desert rodents (Castel and Abraham 1969; Sahni
et al. 1993; Tracy and Walsberg 2001; Tirado et al.
2008; Kordonowy et al. 2017) and may help to produce
some metabolic water and compensate the body
water needs during WD. In the desert rodent ‘Notomys
alexis’, 23% of body mass loss after 7 days of water depri-
vation was attributed to the loss of body fat. An unex-
pected body mass increase was observed after more
than 10 days of WD in this species, which suggests
that water restriction stimulated food intake, which
may lead to an increased metabolic rate for water pro-
duction and contribute to the maintenance of water
balance (Takei et al. 2012). On the other hand, other
studies performed in ‘Meriones shawi’, a semi-desert
rodent, showed that the body mass stabilizes after
three months of water restriction but without ever
return to their initial values (Sahni et al. 1993; Sellami
et al. 2005).

While plasma urine osmolality provides information
about the body water content before, and after, water
restriction, hematocrit is an indicator of plasma volume
(Kutscher 1968). Decreased water intake is associated
with fluid loss in both intracellular and extracellular com-
partments. In water-deprived Meriones, change in the
extracellular compartment was reflected by increased
hematocrit. The mean value of plasmatic osmolality
was significantly decreased in WD Meriones for 14 and
21 days followed by an increase the last week of the

experiment. In fact, the loss of free water from the extra-
cellular fluids by evaporation and excretion can lead to
an increase in plasma osmolality and a decrease in extra-
cellular fluid volume, if uncompensated. The water-
deprived Meriones in our study had increases in osmol-
ality during the last week of the experiment, which cor-
responded to an increase in sodium concentration.
Therefore, increases in osmolality may be due to
increased concentrations of sodium but also other
osmolytes.

Plasma osmolality is often unaffected in many small
desert mammals in experimental conditions when they
are water-deprived, which indicates that they can com-
pensate to remain in water balance and do not
become dehydrated (see Degen 1997; Heimeier et al.
2004; Heimeier and Donald 2006). Several processes
have been described for maintaining body water
content; including the production of metabolic water
from body fat, the antidiuretic effect of AVP on urine
concentration, and the extensive use of intracellular
water (Horowitz and Adler 1983; Sicard 1987; Sicard
1992; Lacas et al. 2000).

5.2. AVP and OT expression

The present study reveals that the hypothalamic magno-
cellular nucleus of the desert rodentMeriones libycus is in
a hyperactive state and shows several characteristics

Figure 4. Immunofluorescent micrographs of frontal sections through the hypothalamus of Meriones libycus showing distribution of
(A) magnocellular vasopressin (AVP, red) and (B) oxytocin (OT, red) neurons and nuclei (DAPI, blue) in the supraoptic nucleus (SON).
The upper schematic illustrates the distribution of VP neurons (black dots) and OT neurons (red dots). OC: optic chiasm. Scale bar:
200 µm.
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favoring neurosecretion. In fact, the hyperactivity of the
hypothalamo-neurohypophysial system has been
already described in two other gerbillidae rodents
(Ouali-Hassenaoui et al. 2011). From our immunohisto-
chemical observations, it is obvious that the hypothala-
mic SON of Meriones is very developed; it has a large
medio-lateral extension in the dorso-lateral part of the
optic chiasm. The AVP neurons are mostly located in
the lateral and ventral part of this nucleus, while the
OT positive neurons are essentially localized in the
dorso-lateral part of the SON. In the laboratory rat, the
relative location of AVP and OT neurons in the SON
was initially described. Swaab et al. (1975) reported
that more OT-containing cells were found in the rostral
part of the SON. Vandesande and Dierickx 1975,

however, described OT cells as being preferentially
located in the dorsal part of the SON and VP cells in its
ventral region. Another feature of heightened activity
was the numerous neurons that exhibit colocalization
of two neuropeptides. In comparison with the rat
(Swaab et al. 1975; Armstrong 1995), the SON of our
animal model was composed of a greater number of
magnocellular neurons that display a high degree of
immunostaining for both OT and AVP. Indeed, as
shown by earlier studies in the rat, under normal basal
levels of neurosecretion, few neurons present colocaliza-
tion of OT and AVP while under conditions like lactation
and dehydration, their incidence is significantly
enhanced – up to 16% in the second day of lactation
(Mezey and Kiss 1991; Telleria-Diaz et al. 2001).

Figure 5. Double immunofluorescence staining in the frontal sections through the hypothalamus of Meriones libycus shows vasopres-
sinergic (NP/AVP, green) and oxytocinergic (OT, red) neurons and nuclei (DAPI, blue) of the SON in control group (A), 7 days WD group
(B) and 30 days WD group (C). NP/AVP colocalizes with OT (orange). OC: optic chiasm. Scale bar: 100µm
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After one week of WD, the immunohistochemical
study showed a significant increase in vasopressin
expression in the SON. These data strongly suggest
that AVP is stored to be released into the blood
(Ciosek 1989). This finding may be due to an increase
in AVP synthesis in the SON. Many studies on desert
rodents showed significant VPergic hyperactivity of the
hypothalamo–neurophyseal system. In fact, AVP stores
were higher in the neurohypophysis of desert rodents
than in laboratory rats; the hypothalamic AVP

biosynthesis was enhanced, and the releasable pool of
neuropeptide was never exhausted (Bridges and James
1982; Ouali-Hassenaoui et al. 2011). Moreover, during
dehydration, AVP is the first hormone to be secreted
(Bouby and Fernandes 2003). Several studies have
shown an increase in the bioelectrical discharge of vaso-
pressinergic neurons of magnocellular hypothalamic
nuclei during progressive dehydration (Poulain and
Wakerley 1982). These data could explain and confirm
that the enhanced immunoreactivity of AVP is due to

Figure 6. Double immunofluorescence shows vasopressinergic (NP/AVP, green) and oxytocinergic (OT, red) neurons in the SON of
Meriones libycus in control group (A), 7 days WD group (B) and 30 days WD group (C). It also reveals many neurons showing immu-
nofluorescence for both peptides (orange) in their somata (arrows). Histograms show the OD of immunoreactivity of AVP (D) and OT
(E) in the magnocellular neurons of the SON in different groups. Values are mean ± SEM. OD: optical density. Scale bar: 50 µm.
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an increase of peptide synthesis. Several studies in
desert species have used radioimmunoassay, to
examine the hormonal control of osmoregulation. In com-
parison to non-desert mammals, the plasma levels of AVP
in desert rodents are higher than in mesic species (Castel
and Abraham 1972; El-Husseini and Haggag 1974; Bad-
douri et al. 1984; Stallone and Braun 1988). Recent exper-
iments using electrophysiology demonstrate that AVP
neurons show a rapid increase in activity within 30 s at
the onset of dry food ingestion, suggesting that the
same neurons are capable of rapid bidirectional modu-
lation of kidney function, beginning in the period prior
to any systemic feedback. Indeed, this increase occurred
before any significant rise in plasma osmolality which
began more than 2 min after feeding onset (Bankir et al.
2017; Mandelblat-Cerf et al. 2017). This could explain the
no significant changes in the plasmatic osmolality in the
first week of WD in Meriones, it is now understood that
thirst and AVP release are regulated not only by the clas-
sical homeostatic, intero-sensory plasma osmolality nega-
tive feedback but also by novel, extra-sensory, anticipatory
signals (Bankir et al. 2017).

After four weeks of WD, we showed a decrease in AVP
immunoreactivity that goes back to the same level as
control animals, suggesting that AVP was released into
the blood and/or in our animal model, which is an
impressive way of staying hydrated. AVP is most likely
released in response to extracellular fluid (ECF) hyperos-
molarity in desert mammals, but many species can main-
tain plasma osmolarity and ECF when water-restricted
and therefore suppress osmotically driven up-regulation
of AVP release (Donald and Pannabecker 2015).

On the other hand, the immunohistochemical analy-
sis has shown a decrease in OT expression in the SON
after four weeks of WD. Under osmotic stimulation, pre-
vious studies suggest activation of OT synthesis and
release in some experimental models (Han et al. 1992).
These data could explain the increase of sodium concen-
tration after a prolonged WD. Indeed, previous studies in
rats show that OT is a natriuretic hormone that plays a
fundamental role in the regulation of extracellular fluid
volume (Soares et al. 1999). It was also found that
several MCNs display immunoreactivity for both nona-
peptides under water deprivation conditions (Jirikowski
et al. 1991). It has been clearly distinguished with in situ
PCR technique that there is some OT and VP mRNA co-
expression in all of the MCNs in the rat’s SON (Xi et al.
1999). This finding reversed the concept that the
expression of these peptides genes was mutually exclu-
sive and occurs separately in the OT and AVP MCNs
(Mohr et al. 1988). Under certain functional conditions,
however, it has been shown that OT and AVP can be
expressed in the same neuron, as determined by

combined immunocytochemistry and in situ hybridiz-
ation (Mezey and Kiss 1991). The colocalization indicates
simultaneous synthesis and release of both peptides.
The question of whether OT neurons are recruited into
AVP expression upon prolonged osmotic stimulation,
to compensate for the deficit of AVP, vasopressin
neurons start to express OT or whether dormant popu-
lations of MCNs are activated to synthesize both pep-
tides is the topic of further investigations.

In conclusion, the adaptation of rodents to life in the
desert may include different combinations of morpho-
logical, physiological, and behavioral characteristics to
generate mechanisms of water conservation (Bozinovic
and Gallardo 2006). In Meriones libycus, 30 days of WD
induced modifications in biological and morphofunc-
tional parameters of the hypothalamo-neurohypophy-
sial system’s activity. Prolonged water deprivation
caused in our animal model an increase in AVP
expression in the MCNs of the SON associated to a
decrease of OT expression in this nucleus.

In sum, our study supports the fact that the desert
rodent ‘Meriones libycus’ can survive a long period of
water deprivation by physiological adaptations that
reduce water loss. Beside the morphological and physio-
logical modifications cited above, many groups of small
mammals drastically reduce their energy expenditure,
body temperature, metabolic rate, and water loss
during torpor to avoid seasonal shortages of water or
energy and to regulate the animal’s major avenues of
water gain and loss (Walsberg 2000; Ehrhardt et al.
2005). However, in our species, Meriones libycus, a
recent study reported no evidence of hypothermia or
torpor (Alagaili et al. 2017), which excludes torpor as
an adaptive mechanism for water saving in extreme con-
ditions in these species.

It would be interesting to analyze several aspects of
this hypothalamo-neurohypophysial system. Electronic
microscopy studies can reveal the synaptic structural
changes in SON magnocellular neurons with water
deprivation and their physiological consequences. Fur-
thermore, Meriones libycus could serve as an excellent
natural model for research on osmoregulation, chronic
dehydration, and metabolic syndromes.
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