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Abstract

Background

The gold standard surgical treatment of nerve injury includes direct repair, nerve graft, and

neurolysis. The underlying effects (either beneficial or detrimental) of angiogenesis during

nerve regeneration by rotational muscle flap have not yet determined. We assess the neuro-

logical outcome and angiogenesis of nerve injury following a rotational muscle flap.

Methods

We retrospectively analyzed the outcome of the patients with severe radial nerve injury by

neurolysis and rotational muscle flap; we also mimicked the clinical situation by nerve crush

followed by rotational muscle flap in animals to assess associated angiogenesis factor

expression.

Results

Twenty-three out of 25 (92%) cases of severe radial nerve injury underwent neurolysis

assisted by muscle flap rotation and eventually reached their preinjury neurological out-

come. In the animal study, both FITC–dextran and Dil infusion showed a remarkably

increased vascular structure in the crushed nerve integrated by the muscle flap and abol-

ished by Avastin injection. The rotational muscle flap significantly increased angiogenesis

factor expression, and this was attenuated by Avastin injection. The increased angiogenesis

factor expression paralleled the improvement seen in neurobehavioral and electrophysio-

logical studies as well as the significant expression of nerve regeneration markers and the

restoration of denervated muscle morphology.

Conclusion

Based on the clinical and animal data analysis, we conclude that muscle flap rotation pro-

vides a platform for angiogenesis in the acceleration of nerve regeneration. It appears that
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the muscle flap rotation augmented the nerve regeneration process which may be beneficial

for nerve repair in clinical application.

Introduction

The gold standard treatment of peripheral nerve injury is to restore the preinjury function of

the damaged nerve and to improve quality of life [1]. The optimal surgical approach depends

on the pathology of the nerve injury per sec. Primary repair is a direct reconnection of the

nerve immediately after injury, performed by an epineurial repair to suture the epineuria of

the separated nerve endings. In a situation with a small intraneural connective tissue compo-

nent, the best results occur when the nerves contain either purely sensory or purely motor

components [2, 3]. Neurolysis is performed on intraneural and extraneural scar tissue to

release degenerative nerve fibers with the hope of improving functional recovery [4]. In

severely damaged nerves, a nerve graft would be necessary to achieve nerve continuity without

tension [5].

Angiogenesis is a biological process in which new vessels are formed from old capillaries by

sprouting or separating via several steps, including endothelial cell migration and proliferation

[6]. Nerves and vessels constitute a complicated branching network within many tissues in the

body, and they are closely correlated with each other in terms of anatomy and function [7].

Regarding vascular anatomy, specifically, the peripheral nervous system is a highly important

participant in the angiogenesis process and so too are complete endothelial cells [8]. Increased

rates of axonal regeneration in the vicinity of larger blood vessels and changes in capillary

number and permeability are dependent upon successful axonal regeneration; this underscores

the important interactions between axons and blood vessels [9]. In addition, the aspect of

neoangiogenesis and neovasculogenesis by arteovenous loops and intellingent materials, both

in experimental and clinical translation, has also been fully investigated [10–12].

Increased vascularization promotes axon regeneration capacity in an acellular nerve con-

duit [13]. In a nerve graft and conduit study, a neo-vascularization front preceded axonal

regeneration and Schwann cells and axons extended together, never exceeding the area of vas-

cularization; they appeared most numerous in well vascularized areas containing longitudi-

nally oriented vessels [14]. In our previous study, we found that angiogenesis played a crucial

role in promoting axon regeneration [15, 16]. Hence, either endogenous expression or exoge-

nous supplement of angiogenesis was crucial for nerve regeneration [6–9, 13–20]. Therefore,

wrapping injured nerve with the rotational muscle flap to increase angiogenesis may promote

axon regeneration and be considered a valuable treatment strategy.

Based on the assumption of increased angiogenesis by the muscle flap wrapping the injured

nerve to promote the nerve regeneration, we retrospectively analyzed our clinical data of

severe radial nerve injury treated with neurolysis and rotational muscle flap. We also mim-

icked the clinical situation by nerve crush followed by rotation muscle flap in animals to assess

the outcome of the expression of associated angiogenesis factors related to neurological

outcomes.

Materials and methods

The patient population

From 2010 to 2017, there were 32 case diagnosed as the radial nerve injury obtained from the

data bank. Among them, 4 cases of radial nerve paralysis with progressive improvement within
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3 months and 3 cases of radial nerve rupture undergoing the sural nerve graft or nerve conduit

repair were excluded from this study. Finally there were 25 cases of radial nerve injury without

improvement over more than 6 months, and these were included in the clinical review. The

patients included one case of osteomyelitis, 12 cases with inappropriate implantation, and 9

cases with chronic denervation. All patients underwent neurolysis and rotational muscle flap

to wrap the injured nerve. The patients received periodic follow-up to assess muscle power

and sensory function recovery, and they also underwent EMG/NCV testing. The outcomes of

functional recovery were evaluated by Sakellarides’ scale for the sensory function and British

medical research council scale for the muscle power [21, 22]. The reviews of medical charts

and imaging were approved by the Taichung Veterans General Hospital Institute Review

Board. The agreements of illustration of photography in the manuscript were also approved by

the patients.

Animal model

Sprague-Dawley rats weighing 250-300g were anesthetized with 4% isoflurane for induction

and were kept under maintenance dose (1%-2%). The left sciatic nerve was exposed under a

microscope using the gluteal muscle splitting method. The left sciatic nerve was crushed at the

point of 10 mm from the obturator by a vessel clamps for 20 minutes [23]. These animals were

randomly assigned to various treatment groups, including nerve crush alone (Crush), crush

with rotational muscle flap (Crush+MF), and crush with rotational muscle flap and VEGF

inhibitors (Avastin treatment) (Crush+MF+Avastin). The intramuscular injection over the

rotational muscle flap consisted of 1.25 mg bevacizumab (Avastin) (Roche, Basel, Switzerland)

according to the recommended dose for the treatment of the neo-vascular macular degenera-

tion [24]. During the immediate post-procedural period, the animals were monitored closely

in the recovery cage until they could maintain sternal recumbency. To minimize post-opera-

tive pain, the animals received an intramuscular injection of ketoprofen 5 mg/kg q12 hours for

one day.

All animals underwent rehabilitation therapy on a metal mesh every week. Food and water

were provided ad libitum before and after the experiments. The animals were kept in a temper-

ature-controlled environment at 20 ˚C, and they were exposed to alternating light and dark

cycles of 12 h intervals. The animals received neurological assessments weekly after surgery

until the end of the experiment, and then they were subjected for histological and electrophysi-

ological assessments at one month post-operation. After the experiment, all animals were

euthanized with CO2.

All care and animal procedures were consistent with the ARRIVE guidelines (Animal

Research: Reporting In Vivo Experiments). The study was approved by the Institutional

Review Board and animal care complied with the Guide for the Care and Use of Laboratory

Animals.

Analysis of motor function of sciatic nerve-injured rats

Evaluation of sciatic nerve function was performed weekly for four weeks after the surgery

[23]. The SFI was calculated based on the following equation: SFI = 38.3(EPL-NPL/ NPL)

+ 109.5(ETS-NTS/NTS) + 13.3(EIT-NIT/NIT) − 8.8. The SFI ratio with the SFI value of 0 was

defined as normal function, and the SFI value of −100 was defined as complete injury.

Nociceptive behavior

For behavior measurements, bilateral hind paws of all animals were examined by researchers

blinded to management. Mechanical allodynia was assessed using von Frey hair (Touch-Test
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Sensory Evaluator) (North Coast Medical, Gilroy, CA, USA), as previously described by our

group [25]. Briefly, a series of different grams von Frey hair was applied to the bilateral hind

paw five times at 5 seconds intervals or at the moment that the hind paw was placed appropri-

ately on the platform. The withdrawal threshold depended on the value (gram) of the hair that

caused the hind paw to withdraw either four or five times out of the five applications. Thermal

hyperalgesia was evaluated by hot-plate test (Technical & Scientific Equipment GmbH, Thu-

ringia, Germany) according to our pervious procedure [25, 26]. The time of paw withdrawal

latency was recorded during the course of the rat touching a 52–54 ˚C hotplate to the with-

drawal of the paw. A protective proviso using a maximal cut-off of twenty seconds was main-

tained to prevent paw tissue injury.

CatWalk gait analysis

CatWalk gait analysis (Noldus, Wageningen, Netherlands) was previously described by our

group [25, 27]. Briefly, the CatWalk XT system comes with a high-speed digital camera with a

sample rate of 100 frames per second. The brightness of a pixel depends on the amount of light

received from such an area by the camera. The illuminated footprint enables intensity differ-

ence to be detected between animals’ paws. The intensity varies from 0 to 225, and they are

represented by different colors. Quantitative analysis of the data from the CatWalk XT

included the following parameters: step sequence distribution, regularity index, print area,

duration of swing and stance phases, and footprint intensity.

Electrophysiological assessment

The compound muscle action potential (CMAP) amplitudes and conduction latencies were

recorded in the gastrocnemius muscle with an active monopolar needle electrode 10 mm

below the tibia tubercle and with a reference needle 20 mm from the active electrode. The

stimulation intensity and filtration ranges were 5 mA and 20–2000 Hz, respectively. A similar

procedure was conducted on the other side as a control. The CMAP and conduction latency

data were converted to the ratio of the injured side divided by the normal side to adjust for the

effect of anesthesia [23].

Enzyme-linked immunosorbent assays (ELISA)

The parts of nerves wrapped by muscle were obtained and subjected to homogenization in

buffer containing 1% Triton X-100, 50 mM Tris-HCl, 150 mM NaCl, and 1% protease inhibi-

tor cocktail (Cal-biochem) (Merck, Darmstadt, Germany). The homogenates and cultured

supernatants were loaded onto 96-well plates at 4˚C overnight. After washing with 0.1%

Tween-20/PBS and blocking, the wells were incubated with indicated primary antibodies

against von Willebrand (Santa Cruz Biotechnology, Dallas, TX, USA), isolectin B4 (Vector

Laboratories, Burlingame, CA, USA), VEGF (Santa Cruz Biotechnology, Dallas, TX, USA) fol-

lowed by biotin-conjugated secondary anti-body and streptavidin-HRP. Finally, the color was

developed by the addition of TMB, and the optical density was measured using a microplate

reader at wavelength 450 nm [28].

Western blot analysis

The middle part of the gastrocnemius muscle and the distal end of crush nerves were har-

vested and proteins were extracted. Proteins (50 μg) were resolved by SDS-polyacrylamide

gel electrophoresis and transferred to blotting membranes. After blocking with nonfat milk,
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the membranes were incubated with antibodies: S-100 (1:1000 dilution, Merck Millipore,

Burlington, MA, USA), neurofilament (1:1000 dilution, Merck Millipore, Burlington, MA,

USA), CD 68 (1:1000 dilution, Bio-rad, Hercules, CA, USA), von Willebrand factor (1:200

dilution, Santa Cruz Biotechnology, Dallas, TX, USA), Isolectin B4 (1:200 dilution, Vector

Laboratories, Burlingame, CA, USA), desmin (1:1000 dilution, Abcam, Cambridge, MA,

USA), acetylcholine receptor (1:1000 dilution, Merckmillipore, Burlington, MA, USA),

GAPDH (1: 2000 dilution, Santa Cruz Biotechnology, Dallas, TX, USA) overnight at 4˚C.

The membranes were incubated with horseradish peroxidase-conjugated secondary antibody

and developed using ECL western blotting reagents. The intensity of protein bands was deter-

mined by a computer image analysis system (IS1000) (Alpha Innotech Corporation, San

Leandro, CA, USA) [29].

Immunohistochemistry

The middle part of gastrocnemius muscle and distal end of crush nerve were harvested and

then cryosectioned into 8-μm and mounted on Superfrost/Plus slides (Menzel-Glaser, Braun-

schweig, Germany). The tissue slices were subjected to immunohistochemistry with antibodies

against von Willebrand factor (1:200 dilution, Santa Cruz Biotechnology, Dallas, TX, USA),

isolectin B4 (1:200 dilution, Vector Laboratories, Burlingame, CA, USA), CD 68 (1:200 dilu-

tion, Bio-rad, Hercules, CA, USA), neurofilament (1:200 dilution, Merck Millipore, Burling-

ton, MA, USA), S-100 (1:200 dilution, Merck Millipore, Burlington, MA, USA), desmin (1:200

dilution, Abcam, Cambridge, MA, USA), and acetylcholine receptor (1:200 dilution, Merck

Millipore, Burlington, MA, USA), for detection of nerve and muscle regeneration/degenera-

tion. The immunoreactive signals were observed using AF 488 donkey anti–mouse IgG and

AF594 donkey anti-rabbit (1:200 dilution, Invitrogen, Carlsbad, CA, USA) under a confocal

microscope [29].

DiI and Fluorescein isothiocyanate–dextran perfusion for

neovascularization quantitation

Four weeks after the operation, three animals were perfused using 1,10-dioctadecyl-3,3,30,30-

tetramethylindocarbocyanine perchlorate (DiI) fluorescent dye (Sigma-Aldrich, St. Louis,

MO, USA) (20μl) in 200μl PBS from tail veins following a previously-described protocol and

these animals were subjected to transcardial perfusion with 4% paraformaldehyde in 0.1 M

phosphate buffer (pH 7.4) 24 hours after DiI injection [30]. The other 3 animals received

transcardial perfusion of 125 μg fluorescein isothiocyanate–dextran (Sigma-Aldrich,

St. Louis, MO, USA) in 500ml normal saline for 30 minutes [31]. Following euthanasia

through intraperitoneal pentobarbital sodium injection, the parts of nerve wrapped by mus-

cle were subjected to analysis. The quantitation method has been published by our group

[29].

Histology examination

After behavioral and electrophysiological examination, six rats in each group were subjected to

transcardial perfusion with 4% paraformaldehyde in 0.1 M phosphate buffer (pH 7.4). Left sci-

atic nerves and adjacent muscles were harvested from the animals after electrophysiological

assessment, and the nerve tissue was fixed on a plastic plate using stay suturing to keep the

nerve straight. The nerve and muscle were embedded, cut longitudinally into sections 8-μm
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sections and examined with hematoxylin-eosin (H&E) and immunohistochemical staining

[28].

Statistical analysis

Data were presented as the mean ±standard error (SE). The statistical significance of differ-

ences between groups was determined by one–way analysis of variance (ANOVA) followed by

Dunnett’s test. For SFI and Catwalk analysis, and von-Frey test, the results were analyzed by

repeated-measurement of ANOVA followed by Bonferroni’s multiple comparison method. A

p value less than 0.05 was considered significant.

Results

The clinical outcome of severe radial nerve treated by neurolysis and

muscle flap rotation

Twenty-five cases of severe radial nerve injury were evaluated in this study, and they consisted

of one case of humerus fracture s/p ORIF complicated by osteomyelitis (Fig 1A–1G), 15 cases

with impingement of nerve by the implants (Fig 2A–2H), and 9 cases of chronic denervation

without improvement longer than 6 months (Fig 3A–3F). The mean age of the patients was 45

years (range 21–72 years). The ratio of female to male was 20 to 5. The mean duration of nerve

palsy to treatment was 8 months (6–12). The onset of improvement of muscle power ranged

from 1 to 6 months (mean 2 months). The details of motor and sensory function outcome as

well as the name of rotational muscle flaps were depicted in Table 1. Following surgery,

twenty-three of 25 (92%) cases gained muscle power to Grade 5, and 2 cases reached the mus-

cle power of Grade 3. In Sakellarides scale analysis in the sensory function, 21 of 25 (84%)

cases reach the scale of 5, 2 (8%) cases in the scale 4, and 2 (8%) cases in the scale 3. In the sub-

sequent animal study, we mimicked the patients’ operative procedure by conducting nerve

crush injury wrapped by rotational muscle flap to assess the power of angiogenesis involved in

nerve regeneration.

Fig 1. Representation of a right humerus fracture after ORIF complicated with osteomyelitis. (A) 68-year-old male

presented with right wrist drop for 6 months after humerus fracture after operation. (B) MRI of right upper limb in

T1W1 in coronal view. (C) MRI of right upper limb in T1W1 with contrast administration in coronal view. (D) MRI of

right upper limb in T1W1 with contrast administration in axial view. (E) Intraoperative recording of CMAP

stimulated from the distal to proximal end of the nerve. (F) The photography showed intact nerve but with severe

fibrotic change. (G) Rotation of the muscle flap to wrap the injured region. (H) The patient showed favorable

neurological outcome with restoration of wrist function 2 months after the operation. b: biceps muscle; r: radial nerve.

https://doi.org/10.1371/journal.pone.0217402.g001
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Improvement of neurological outcome after muscle flap rotation and

abolished by Avastin injection

The Crush+ MF group showed significant improvement of SFI compared to the Crush and

Crush+MF+Avastin groups (p = 0.02). However, there were no significant difference between

the Crush and Crush+MF+Avastin groups (Fig 4A). On electrophysiology study, the CMAP

in the Crush+MF group was 70±5.2%, significant improvement compared to the Crush

(20±2.1%) (p<0.001) and Crush+ MF+ Avastin (30±2.3%) groups (p<0.001). The conduction

latency in the Crush+MF group was 61±6.3%, which showed a significant improvement com-

pared to the Crush (135±12.9%) (p<0.01) and Crush+MF+ Avastin (142±3.8%) groups

(p<0.05) (Fig 4B). In the CatWalk gait analysis, increased printed area, Max contact maximum

intensity, and stand, as well as decreased swing were significantly higher in the Crush+MF

group than in the Crush and Crush+MF+Avastin groups (Table 2). In the thermal and

mechanical withdrawal experiments, there was no significant differences among these groups

(Table 3).

The increased angiogenesis and regeneration of crushed nerve by muscle

flap rotation

The architecture of muscle flap rotation related to the crushed nerve is shown in Fig 5A and

5B. FITC-dextran infusion showed appreciable green fluorescence distributed to the nerve in

the Crush+MF group compared to the Crush group, and these effects were attenuated by Avas-

tin injection (Crush+MF+Avastin) (Fig 5C–5E). The DiI dye injection also showed the same

Fig 2. Representative right radial nerve injury by a crush injury with chronic denervation. (A) A 38-year-old male

suffered a crush injury with the paralysis of finger dorsal flexion for 6 months. (B) MRI of right upper limb in T1W1 in

coronal axial view. (C) MRI of right upper limb in T1W1 with contrast administration in coronal view. (D) MRI of

right upper limb in T1W1 with contrast administration in axial view. (E) Intraoperative recording of CMAP in

brachioradials and dorsal digitorum of radialis. (F) Intraoperative photography showing nerve crushed injury. (G) The

injured nerve wrapped by the biceps muscle. (H) The patient showed the improved neurological outcome with

restoration of wrist function 2 months after the operation. Arrow: radial nerve in the crush site; Arrow head: muscle

flap rotation.

https://doi.org/10.1371/journal.pone.0217402.g002
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phenomenon as that of FITC-dextran infusion (Fig 5F–5I). These crushed nerves were allo-

cated for determination of angiogenesis factors and nerve regeneration potential. Levels of von

William factor (vWF) in Crush+MF showed an 8.6-fold increase over those of the Crush

group (p<0.001). The effect was also attenuated by Avastin treatment, as seen in the Crush

+MF+Avastin group (p<0.01). Isolectin B4 levels showed a 3.4- fold increase compared to the

Crush group (p<0.001), and this was attenuated by Avastin treatment, as seen in the Crush

+MF+Avastin group (p<0.01). There were significantly higher expression levels of S-100 and

neurofilament in the Crush+MF group than in the Crush group (p<0.001, p<0.01, respec-

tively). These expression levels were significantly reduced by Avastin injection in the Crush

+MF+Avastin group (p<0.01, p<0.05) (Fig 6A–6C). The ELISA analysis also showed similar

trends (Table 4). Furthermore, the restoration of denervated muscle morphology in the

expression of acetylcholine and desmin were in line with the trend of increased nerve regener-

ation (Fig 7A–7C).

Fig 3. Representative left humerus fracture after ORIF complicated with nerve entrapped by the implant. (A) A 27-year-old female presented with

left wrist drop for 6 months after a humerus fracture s/p operation repair of the fracture. (B) Plate and screws fixation in left humerus on X- ray film.

(C) The photography showed the left radial nerve entrapped by the implant. (D) Intraoperative recording of CMAP stimulated from the distal to

proximal end of nerve. (E) Rotation of a muscle flap to wrap the injured region and separation of the radial nerve from the implants. (F) The patient

showed favorable neurological outcome with restoration of wrist function 3 months after operation. Arrow: implant; Arrow head: Muscles flap to wrap

the radial nerve and separate it from the implant.

https://doi.org/10.1371/journal.pone.0217402.g003
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In H&E analysis, the muscle flap showed integration of nerve related to the muscle flap.

There were remarkably increased numbers of vessel structures among the intraneural struc-

tures in the Crush+ MF group compared to the Crush group, and the phenomena of

increased numbers of vessel structures was attenuated by Avastin treatment, as seen in the

Crush+ MF+ Avastin group (Fig 8A–8F). In the assessment of axon count number and mor-

phology, there were significantly increased numbers of axon and greater proportions of large

diameter axons in the Crush+ MF group than in the Crush and Crush+ MF+ Avastin groups

(Table 5).

Discussion

Increase angiogenesis in crushed nerve mediated by the rotation muscle flaps is a crucial factor

in nerve regeneration, as shown in both clinical and animal studies. The integration of injured

nerve to a rotational muscle flap showed the ingrowth of vessels from the muscle and led to

increased expression of associated angiogenesis factors. The abolishment of the angiogenesis

effect by intramuscular Avastin injection caused a reciprocal effect, and confirming this

hypothesis. Furthermore, there were no adverse effects such as increased pain sensory thresh-

old after muscle flap rotation. Therefore, the strategy of muscle flap rotation in the assistance

of nerve regeneration could be a treatment option in nerve repair.

Table 1. Outcome of motor /sensory function after muscle flap rotation.

Pre op MRC Post OP MRC Pre-op Sakellarides scale Post op Sakellarides scale Muscle Flap

#1 0 5 3 5 Biceps

#2 0 5 2 5 Biceps

#3 0 5 2 5 Biceps

#4 0 3 2 3 Biceps

#5 0 5 3 4 Biceps

# 6 0 5 3 5 Biceps

# 7 0 3 2 3 Biceps

# 8 0 5 3 5 Biceps

# 9 0 5 2 5 Biceps

# 10 0 5 3 5 Biceps

# 11 0 5 2 5 Biceps

# 12 0 5 3 5 Biceps

# 13 0 5 2 5 Biceps

# 14 0 5 2 5 Biceps

# 15 0 5 3 5 Biceps

# 16 0 5 3 4 Biceps

# 17 0 5 2 5 Biceps

# 18 1 5 3 5 Biceps

# 19 0 5 2 5 Biceps

# 20 0 5 2 5 Biceps

# 21 0 5 2 5 Biceps

# 22 0 5 3 5 Biceps

# 23 1 5 2 5 Biceps

# 24 0 5 3 5 Biceps

# 25 1 5 3 5 Biceps

MRC: British medical research council scale for the muscle power

https://doi.org/10.1371/journal.pone.0217402.t001
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Fig 4. Representative SFI and electrophysiology results. There were three groups of animals subjected to SFI analysis

weekly and then electrophysiology 4 weeks after injury. (A) The data of SFI related to different time points in the three

different groups (B) CMAP and conduction latency presented as the ratio of left side/right side. Crush, Crush+MF,

Crush+MF+Avastin: see text. �p<0.05, ��p<0.01 indicated the Crush+MF related to Crush, # p<0.05 indicated Crush

+MF+Avastin related to Crush+MF.

https://doi.org/10.1371/journal.pone.0217402.g004

Table 2. Outcome of catwalk gait analysis in various treatment groups related to various time frames and catwalk parameters.

0 3 7 14 21 28 P value

Printed area (% of Lt/Rt) Crush 98±0.7 45±3.8 47±5.1 51±4.2 59±5.4 63±5.9 P<0.01

Crush+ MF 99±1.1 47±4.1 50±3.9 66±4.7 77±5.1 89±4.8

Crush+ MF+ Avastin 97±1.1 44±4.2 47±3.3 60±5.2 65±4.7 67±5.1

Max Contact Maximum Intensity(% of Lt/Rt) Crush 95±0.9 70±5.5 71±6.3 75±5.9 79±7.3 82±6.5 P<0.01

Crush+ MF 96±1.1 71±5.8 77±8.7 83±6.2 89±7.3 98±4.9

Crush+ MF+ Avastin 97±0.8 69±4.8 72±6.1 74±8.1 78±5.5 84±4.7

Stand(% of Lt/Rt) Crush 101±1.2 60±3.8 62±4.4 69±7.2 73±6.5 79±4.9 P<0.05

Crush+ MF 98±0.9 62±4.2 67±3.9 78±5.2 85±6.7 94±7.3

Crush+ MF+ Avastin 102±0.5 63±4.2 64±5.1 68±5.7 74±4.9 81±5.2

Swing (% of Lt/Rt) Crush 102±0.8 201±17.8 198±15.4 170±11.2. 160±9.8 150±10.2 P<0.05

Crush+ MF 98±0.6 199±16.5 190±13.8 140±9.7 121±9.2 102±8.4

Crush+ MF+ Avastin 101±1.1 211±15.8 197±12.7 167±8.8 158±7.9 149±8.5

The data was presented as the mean±standard error

Crush, Crush+MF, Crush+MF+Avastin: see text

https://doi.org/10.1371/journal.pone.0217402.t002
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Endogenous angiogenesis is a biological process responded to injury in which new vessels

form from old capillaries, and the integration of nerves and vessels constitute a complicated

branching network within the injured nerve [6, 7]. Neurobehavior, gastrocnemius muscle

mass, and morphometric indices confirmed faster recovery of regenerated axons with VEGF

administration. On Immunohistochemical assessment, reactions to S-100 in the VEGF group

were more positive than those in a silicone group [18]. Local application of VEGF promotes

the invasion of Schwann cells and neovascularization, both of which are important for nerve

regeneration [19]. There, both the endogenous and exogenous supplementation of angiogene-

sis factors are essential for nerve regeneration and this further confirm our hypothesis.

Table 3. Outcome of von Frey and thermal plate in different treatment groups related to various time frames.

0 3 7 14 21 28 P value

Von Frey (gm) Crush 72±2.1 35±4.1 28±2.9 38±2.5 45±3.2 62±2.8 0.55

Crush+ MF 71±1.7 33±3.1 27±3.4 41±2,1 46±2.8 63±2,5

Crush+ MF+ Avastin 73±1.1 36±3.8 29±4.2 39±3.2 44±2.1 64±3.1

Thermal plate (seconds) Crush 15±1.1 25±2.1 30±2.8 24±1.9 21±2.8 18±1.3 0.75

Crush+ MF 17±0.9 26±1.9 31±2.1 27±1.7 24±2.2 19±1.5

Crush+ MF+ Avastin 16±0.9 27±1.9 32±2.1 28±1.7 23±2.4 20±1.5

The data was presented as the mean±standard error

Crush, Crush+MF, Crush+MF+Avastin: see text

https://doi.org/10.1371/journal.pone.0217402.t003

Fig 5. Representative muscle flap rotation and potential of angiogenesis results. (A) A representative nerve crush.

(B) Nerve crush wrapped by the muscle. (C) Demonstration of FITC dextran infusion in the Crush group. (D)

Demonstration of FITC dextran infusion in the Crush+MF group. (E) Demonstration of FITC dextran infusion in the

Crush+MF+Avastin group. (F) Demonstration of DiI infusion in the Crush group. (G) Demonstration of DiI infusion

in the Crush+MF group. (H) Demonstration of DiI infusion in the Crush+MF+Avastin group. (I) Quantitative

analysis of FITC dextran and DiI infusion in various treatment groups. Crush, Crush+MF, Crush+MF+Avastin: see

text. �p<0.05, ��p<0.01 indicated the Crush+MF related to Crush, # p<0.05 indicated Crush+MF+Avastin related to

Crush+MF. Black arrow bar length = 1cm; White arrow bar length = 100 μm; Black arrow: crush site; white arrow

head: muscle flap. n: center of nerve; m:muscle.

https://doi.org/10.1371/journal.pone.0217402.g005
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Avastin is an immunoglobulin G monoclonal antibody directed against VEGF, used for the

treatment of cancer and aged-related macular degeneration [24, 32]. In this study, rotational

muscle augmented the vascular structures over injured nerves and the associated angiogenesis

factor levels. At the same dosage used in macular degeneration [24], intramuscular injection of

Avastin attenuated the microvascular structures and angiogenesis factors in the crushed nerve.

The up-and-down regulation of angiogenesis factors in the crushed nerve paralleled the

increased and decreased nerve regeneration demonstrated in this study, and the results high-

light the effects of angiogenesis contributing to nerve regeneration.

There remains a debate concerning the extent to which angiogenesis is beneficial or detri-

mental to nerve degeneration. Several lines of evidence suggest that pathological angiogenesis

caused by the VEGF cascade in the inflammatory state is regulated by circulating leukocytes

[33]. Angiogenic properties of macrophages and neutrophils are stimulated by chemokines

and the impact of circulating neutrophils and macro-phages in angiogenesis may contribute to

the development of neuropathic pain [34, 35]. In this study, the increased angiogenesis around

nerves by the muscle flap rotation did not promote the recruitment of inflammatory cells (S1

Fig) involved in inflammatory responses. Furthermore, there was no increase in nociceptor

Fig 6. Increased nerve regeneration and angiogenesis by the muscle flap rotation. (A) The representative of crushed

nerve in the expression of S-100, NF, isolectin B4, and vWF in various treatment groups. (B) A representative of

western blot showing expression of S-100, NF, isolectin B4, and vWF in the various treatment groups. (C) Quantitative

analysis of S-100, NF, isolectin B4, and vWF in the various treatment groups. Crush, Crush+MF, Crush+MF+Avastin:

see text. �p<0.05, ��p<0.01 indicated the Crush+MF related to Crush, # p<0.05 indicated Crush+MF+Avastin related

to Crush+MF. Arrow bar length = 100 μm.

https://doi.org/10.1371/journal.pone.0217402.g006

Table 4. ELISA analysis of angiogenic factors of nerve wrapped by the muscle flap.

Crush Crush+MF Crush+MF+Avastin P value

von Willebrand 0.35±0.04 OD 0.78±0.04 OD 0.45±0.05 OD P<0.05

Ioslectin B4 0.45±0.06 OD 0.88±0.07 OD 0.51±0.07 OD P<0.05

VEGF 0.31±0.02 OD 0.55±0.04 OD 0.32±0.04 OD P<0.05

The data was presented as the mean±standard error

Crush, Crush+MF, Crush+MF+Avastin: see text

https://doi.org/10.1371/journal.pone.0217402.t004
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Fig 7. Restoration of morphology in denervated muscle in the crushed nerve wrapped by muscle flap rotation. (A)

A representative example of a denervated muscle showing the expression of acetylcholine receptor and desmin in

various treatment groups. (B) A representative example of western blot showing expression of acetylcholine receptor

and desmin in the various treatment groups. (C) Quantitative analysis of acetylcholine receptor and desmin in the

various treatment groups. Crush, Crush+MF, Crush+MF+Avastin: see text. �p<0.05, ��p<0.01 indicated the Crush

+MF related to Crush, # p<0.05 indicated Crush+MF+Avastin related to Crush+MF. Arrow bar length = 100 μm.

https://doi.org/10.1371/journal.pone.0217402.g007

Fig 8. Histomorphology analysis of nerve related to muscle flap. (A) Illustration of crush neve related to muscle flap

in the Crush group. (B) Loss of nerve intact structure in the Crush group. (C) Illustration of crushed neve related to

muscle flap in the Crush group. (D) Well-organized nerve structure with increased vessel structure in the Crush+ MF

group. (E) Illustration of crushed neve related to muscle flap in the Crush+ MF+ Avastin group. (F) Less-organized

nerve structure in the Crush+ MF+ Avastin group. �: center of nerve. Arrow bar length = 100 μm.

https://doi.org/10.1371/journal.pone.0217402.g008
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sensation after angiogenesis by muscle flap rotation. Therefore, the rotational flap did not

increase the expression of inflammatory responses in the injured nerve nor did angiogenesis

contribute to the development of neuropathic pain in the current study.

Conclusion

In our clinical review, the rotation of muscle flap after neurolysis led to an appreciable neuro-

logical improvement after surgery. The analogous preclinical study showed that muscle flap

rotation augmented angiogenesis in the injured nerve. The increased microvascular structure

was associated with nerve regeneration and favorable neurological outcome. Therefore, the

combined neurolysis and rotation of muscle flap to wrap the injured nerve appears to be a rea-

sonable adjuvant treatment option for nerve repair.
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