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Abstract

Chronic ethanol consumption is associated with changes in the function and structure of the lungs. The aim of this
study was to investigate the effect of chronic ethanol exposure on the lungs and whether ginger extract mitigated
pulmonary abnormalities induced by ethanol in rats. Male Wistar rats were divided into the control group, the ethanol
group, and the ethanol plus ginger extract group. Six weeks of ethanol treatment increased the proliferation of lung
cells, and induced fibrosis, inflammation and leukocyte infiltration. A significant rise in the level of 8-
hydroxydeoxyguanosine, NADPH oxidase, and oxidized low-density lipoprotein was also observed. Ginger extract
significantly ameliorated the above changes. These findings indicate that ethanol induces abnormalities in the lungs
by oxidative DNA damage and oxidative stress, and that these effects can be alleviated by ginger, which may function
as an antioxidant and anti-inflammatory agent.
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Introduction

The association between ethanol consumption and
lung abnormalities, such as diffuse alveolar damage,
impaired gas exchange, pro-inflammatory cytokines
release, as well as predisposing factors that increase the
incidence of acute respiratory distress syndrome
(ARDS) is well known[1–2]. Despite finding many
different abnormalities in the ethanol exposed lungs, the
precise mechanism behind the structural and functional
changes in ethanol-induced lungs has not yet been
completely clarified. A growing body of evidence from
recent studies implies that ethanol induces its deleter-

ious effects on different tissues, as well as on lung
tissues through oxidative stress and reactive oxygen
species (ROS) generation[3–5]. In addition, the beneficial
effects of antioxidant therapy during alcohol exposure
supports the idea that ethanol may exert its deleterious
effects mainly via oxidative stress[3–6]. The oxidative
nature of ethanol-induced abnormalities, on the one
hand, and the ameliorative or protective effect of
antioxidant administration, on the other hand, prompted
us to re-examine this theory that maybe the deleterious
effect of chronic ethanol consumption on the lungs is
entirely or partially mediated by oxidative stress.
Therefore, in the current study, 1we investigated the
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effect of long-term ethanol consumption on oxidative
stress indexes, such as 8-hydroxydeoxyguanosine (8-
OHdG), nicotinamide adenine dinucleotide phosphate
oxidase (NADPH oxidase), oxidized low-density lipo-
protein (Ox-LDL) levels, as well as lung cell prolifera-
tion and fibrosis in rat lungs. We also sought to
investigate whether ginger extract mitigated pulmonary
abnormalities induced by ethanol in rats.

Materials and methods

Ginger extract preparation

To prepare ginger extract, a dried ginger rhizome
(originally Chinese) was purchased from a local market.
A sufficient quantity of rhizome was powdered in an
electric grinder. The hydro-alcoholic extract of ginger
was prepared by mixing three kg of powder with six
liters of ethanol (70% in a suitable container). It was
then left for 72 hours at room temperature. Next, the
extract was filtered through filter papers and then
concentrated using a rotary evaporator. The yield of the
extract was kept in a refrigerator until use[6–7]. The
control group was treated with vehicle only (tap water).

Animals

All animal studies were performed in strict accor-
dance to the "Principles of Laboratory Animal Care"
(NIH publication no. 85–23, revised in 1985) and were
approved by the Urmia University of Medical Sciences
Animal Care Committee. Twenty-four male Wistar rats
were randomly divided into three groups: the control
group (Group I), the ethanol group (Group II), and the
ethanol plus ginger extract group (Group III). Rats in
Group II received ethanol at a dose of 4.5 g/kg
bodyweight (Merck KGaA, Darmstadt, Germany) in
tap water (20%w/v) once a day by gastric gavage for six
weeks. Following previous studies, rats in the Group III
received a hydro-alcoholic extract of ginger at a dose of
50 mg/kg bodyweight by gastric gavaged; in addition to
their regular daily diet and the same amount of
ethanol[7]. Group I was treated with vehicle only (tap
water). After six weeks of treatment with ginger
exgtract, anesthesia was induced by 10% chloral
hydrate (0.5 mL/kg bodyweight, IP), and the depth of
anesthesia was probed by pinching a hind paw. At
termination, after weighing the animals, the thoracic
cavity was opened and the lungs were harvested. The
excised lungs were freed of adventitial tissues, fat, and
blood clots, and were subsequently washed in ice-cold
normal saline and weighed. For analyzing histopatho-
logical changes, a part of the lungs was fixed in buffered
formalin and embedded in paraffin after standard
dehydration steps were taken.

For analyzing oxidative indexes, other parts of the
lungs were washed with ice-cold normal saline and then
dried on filter papers. An ice-cold extraction buffer
(10% w/v), containing a 50 mmol/L phosphate buffer
(pH 7.4), was added and subsequently homogenized
using Ultra Turrax (T10B, IKA, Germany). The
homogenates were then centrifuged at 10,000 � g for
20 minutes at 4°C. The supernatant was collected and
stored at – 80°C until analysis.

Biochemical assays

The amount of 8-OHdG was measured by the
quantitative sandwich enzyme immunoassay method
using a commercial rat 8-hydroxy-desoxyguanosine
ELISA kit (Cusabio, China) following the manufac-
turer's recommended protocol.
Assessment of the level of NADPH oxidase (NOX1)

in the lung supernatant was carried out by Rat NADPH
Oxidase 1(NOX1) ELISA Kit (Cusabio, China) accord-
ing to the manufacturer's recommended protocol. The
Ox-LDL level of lung tissues was measured using a
capture ELISA (also known as a "sandwich" ELISA) kit
(Mercodia, Sweden) according to the manufacturer's
recommended protocol.

Immunohistochemistry

For histopathological staining, 5-mm thick histologi-
cal sections from paraffin-embedded lung tissues were
used. Proliferating cells were detected by performing
immunohistochemistry using an antibody against the
proliferation cell nuclear antigen (PCNA). In brief, after
taking tissue processing steps, such as deparaffinization,
rehydration, and gradient ethanol, sections were stained
using monoclonal anti-PCNA antibody (Dako Denmark
A/S, Denmark). Optimal results were obtained with the
EnVisionTM visualization system (Dako Denmark A/S,
Denmark). Furthermore, hematoxylin was adopted as a
counterstain. The assessment included proper negative
controls. Moreover, two expert pathologists inspected
all the slides independently. PCNA-positive indices
were regarded as indicators of lung cell proliferation.
For assessing the percentage of PCNA-positive indices,
four non-overlapping fields of view per section from
two-to-three sections (from different regions of the
lungs) per animal were analyzed. For each field of view,
the number of positively stained cells and the total
number of cells were counted. For each animal, the
number of positively stained cells was then expressed as
a percentage of the total number of cells counted[8]. The
criteria set for scoring the quality of PCNA-positive
indices were as follows[3]: normal (i.e. PCNA-positive
indices are present in less than 5% of the lung cells);
mild (i.e. PCNA-positive indices are present in less than
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25% of the lung cells), mild to moderate (i.e. PCNA-
positive indices are present in 25%–50% of the lung
cells); moderate to severe (i.e. PCNA-positive indices
are present in 50%–75% of the lung cells); and severe
(i.e. PCNA-positive indices are present in 75%–100%
of the lung cells)[3]. To evaluate lung tissue fibrosis, 5
µm lung tissue sections were stained using Masson's
Trichrome staining in accordance with the manufac-
turer's instructions (Asiapajohesh, Amol, Iran). The
severity of tissue fibrosis was estimated adopting a
semiquantitative method as described by Ashcroft et
al.[9]. A score ranging from zero (normal lung) to eight
(total fibrosis) was set. The criteria set for scoring lung
fibrosis were as follows: grade 0 = normal lung, grade 1
= minimal fibrosis thickening of lung tissue, grade 2 and
3 = moderate thickening of lung tissue without obvious
damage to the structure of lung tissue, grade 4 and 5 =
increased fibrosis with definite damage to architecture
of the lung and formation of fibrosis bands or small
fibrosis masses, grade 6 and 7 = severe distortion of
structure and large fibrosis areas, and grade 8 = total
fibrotic obliteration.
For general histological changes of lung tissues,

paraffin-embedded sections of the lung tissue were
stained with hematoxylin and eosin (H&E).

Statistical analysis

Normal distribution of data within each group was
verified performing a Kolmogorov-Smirnov test. By
conducting a one-way ANOVA and then the Tukey's
post hoc test, statistical differences between the groups
were tested. The data obtained from each test were
expressed as mean�S.E., and P< 0.05 was considered
as being statistically significant.

Results

The 8-OHdG levels in the lung tissues in Group II
were significantly higher than those of Group II
(P< 0.002). There was no significant difference in 8-
OHdG levels in lung tissues between Group III and
Group I (Fig. 1A). The Ox-LDL levels were signifi-
cantly increased in Group II compared with Group I
(P< 0.02). There were no significant differences in Ox-
LDL levels between Group III and Group I (Fig. 1B).
The amount of NADPH oxidase in the lung tissues
increased significantly in Group II and Group III
compared to Group I (P< 0.05) (Fig. 1C).
Lung tissue histopathological examination results are

given in Figs. 2–4. In tGroup II, several histopathologic
changes, such as enlargement and destruction of air
spaces, increase of alveolar wall thickness, focal
infiltration of polymorphonuclear cells, increase of

pneumocytes in the alveolar walls, and vacuolization
of cells were observed in different parts of the lung
tissue (Fig. 2). No significant differences in lung tissue
structure were observed between Group III and Group I.
Lung cell proliferation (without considering the type of
cells), as detected by the percentage of cells stained
positive for PCNA, is depicted in Fig. 3. The ratio of
proliferated cells in the lung tissues was 1, 40.5�6 and 2
in Group I, II and III, respectively. The PCNA-positive
indices were mildly to moderately increased in Group II
compared to that of Group I (P< 0.05). There were no
significant differences between Group I and III.
The area of lung tissue was stained for collagen and

fibrosis by Masson's Trichrome staining. Fig. 4 shows
microscopic fibrosis scores in different parts of the lung
tissue, such as the pre-bronch area, pre-vessels and
villus hair in different groups. There were no lesion
scores in the pre-broch area, pre-vessels and villus in
Group I (grade 0). The microscopic lesion score in the
pre-bronch area, pre-vessels and villus was 4 to 5, which
is an indication of increased fibrosis with definite

Fig. 1 Ethanol consumption significantly increases 8-OHdG, Ox-
LDL, and NADPH oxidase levels in the lung tissues compared to the
control group, and ginger extract administration mitigates ethanol
induced increases in 8-OHdG and Ox-LDL levels. *P< 0.05.
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damage to the lungs architecture and formation of
fibrosis bands or small fibrosis masses. There were no
significant differences between Group I and III.

Discussion

The major findings of the current study were that
long-term exposure to ethanol led to histopathologic
changes, such as enlargement and destruction of the air
spaces, an increase in the alveolar wall thickness, focal
infiltration of polymorphonuclear cells, an increase in
pneumocytes in the alveolar walls, and vacuolization of
the lung cells. Moreover, fibrosis with definite damage
to the lung architecture and formation of fibrosis bands
or small fibrosis masses, and mild to moderate

proliferation of lung cells were also observed in the
lungs of rats exposed to ethanol compared to the control
rats. Furthermore, we also observed oxidative stress
manifestations, such as elevations of 8-OHdG, NADPH
levels and Ox-LDL in the lung tissues in parallel with
structural alterations in rats exposed to ethanol. In
addition, giner extract significant ameliorated ethanol
induced lung tissue alteration and oxidative stress
manifestations in rats. These findings classify redox-
sensitive and structural alteration-dependent signaling
as novel mechanisms causing ethanol-induced lung
abnormalities. Previous studies demonstrated that
exposure to ethanol in experimental models led to
oxidative stress that was manifested by a marked
decrease in antioxidant glutathione in lung tissues and

Fig. 2 Ginger extract attenuates lung tissue histopathological changes induced by ethanol (H&E, *400). H&E staining shows alveolar
wall thickness, focal infiltration of polymorphonuclear cells, increase of pneumocytes in the alveolar walls, and vacuolization of cells are
observed in different parts of the lung tissues in the ethanol group (B and C) compared to the control group (A). There are no significant
differences in lung tissue structure between the ginger extract plus ethanol group (D) and the control group. Vacuolization (→), PMN( ),
pneumocytes ( )

Fig. 3 Immunohistochemical staining of lung tissues by proliferating cell nuclear antigen (PCNA) antibody (magnification *400). The
results show mild to moderate lung cell proliferation in the ethanol group (B) compared to the control group (A). Ginger extract treatment reduced
cell proliferation in lung tissues (C). PCNA positive indices (↕ ↓).
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an increase in NADPH oxidase expression and super-
oxide generation in the lungs through the rennin-
angiotensin pathway[10–11]. NADPH oxidase generates
superoxide anion which is an important landmark for
oxidative stress. In this study, we identified an increase
in NADPH oxidase activity, focal polymorphonuclear
cell infiltration, as well as fibrosis in rats exposed to
ethanol. Based on previous work, cells such as
macrophages and neutrophils can induce lung damage
through oxidative stress[12]. In normal situations,
polymorphonculear leukocytes are essential parts of
the lungs' defense system, and these cells can also
damage lung tissues by releasing proteolytic enzymes
and generating ROS[13]. The activation of infiltrated
leukocytes or polymorphonuclear cells release cytotoxic
substances, such as ROS, proteolytic enzymes, cyto-
kines, and eicosanoids in the lungs, which in turn
initiate a chain of events leading to acute inflamma-
tion[14]. Protein kinase C (PKC) is considered as an
important possible mechanism for polymorphonuclear
cells-induced ROS generation and oxidative stress[15].
Stimulation of the oxidative respiratory burst enzyme
(i.e. NADPH oxidase) in polymorphonuclear cells can
be regarded as a downstream event of PKC activa-
tion[16]. Accordingly, enhancement of NADPH oxidase
activity in our study along with infiltration of
polymorphonuclear cells in lung tissues, may contribute
to the predisposition of lung tissue structural damage
such as fibrosis and inflammation by PKC activation of
NADPH oxidase. In addition, excessive deposition of
the extracellular matrix (ECM) is a future result of
fibrosis[17]. Previous studies indicated that ethanol
exposure induced lung tissue ECM remodeling by
increasing the expression of the matrix protein fibro-

nectin[18]. In the present study, Ox-LDL levels tended to
be increased by ethanol exposure. Since Ox-LDL levels
are indicative of lipid peroxidation, and consequently of
oxidative stress, it is possible that increased fibrosis in
the lung tissues in response to ethanol exposure is partly
caused by the generation of free radicals during ethanol
biotransformation. Ox-LDL is generated during oxida-
tive stress and accumulated in macrophages and other
cell types at the site of chronic inflammation[19–20]. A
recent study by Greig et al. showed that Ox-LDL
triggered activation of several transcription factors,
increased chemotaxis of leukocytes, enhanced secretion
of chemokines and cytokines, and increased intracel-
lular ROS generation, all of which are involved in the
pathogenesis of lungs diseases such as chronic obstr-
uctive pulmonary disease[21]. Our recent study has
documented the association between Ox-LDL and
vascular cell proliferation[22]. Mechanistically, Ox-
LDL promotes cell proliferation by generating phos-
pholipase D-related second messengers that modulate
mutagenesis[23]. In addition, it stimulates growth via an
oxidative mechanism that causes the release of
fibroblast growth factore-2 (FGF-2), potentiates the
mitogenic effect of angiotensin II, and stimulates
mitogen-activated protein kinases (MAPK) activ-
ation[23–25]. Moreover, it has been shown by previous
studies that Ox-LDL induces expression of proteins
known as cell cycle regulatory proteins[23]. Interest-
ingly, the results of our study showed that lung
proliferation paralleled the increase in Ox-LDL. In the
present study, administration of ethanol caused DNA
damage to the lung tissues which was indicated by an
increased 8-OHdG level in the lung tissues of rats. To
our knowledge, this is the first in vivo study to show that

Fig. 4 Photomicrograph of lung tissue of rats (Masson's Trichrome staining). In A, the control group, in B, C, and D, the ethanol group, in
E and F, the ethanol-ginger group. (Original magnification � 400). Fibrosis band (↕ ↓).
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ethanol exposure increases 8-OHdG levels along with
lung fibrosis and cell proliferation in rats. The 8-OHdG
is one of the predominant forms of free radical-induced
lesion of DNA. It results from oxidation of the hydroxyl
group being added to the 8th position of the guanine
molecule, the oxidatively modified product 8-
OHdG[26]. Oxidative stress occurrence in the current
study, indicated by increased Ox-LDL and NADPH
oxidase levels, on the one hand, and oxidative DNA
damage along with tissue fibrosis and cell proliferation,
on the other hand, prompted us to speculate that ethanol
exerts its hazardous effects on lung tissues through
oxidative stress.
The second feature addressed in this study was the

mitigated or protective effect of ginger extract against
histological alterations and oxidative stress induced by
ethanol exposure in the lung tissues. Large bodies of
evidence have indicated that plants and their extracts are
currently used in medicine and treatments of various
diseases. Due to the biological effects of these
substances which have antioxidant and anti-inflamma-
tion properties, they are of dominant importance in
medicine. Our previous work and others also have
shown that ginger supplementation increases the total
antioxidant capacity and reduces lipid and protein
oxidation as two main ROS generating sources in
diabetic and ethanol-induced hepatic oxidative stress
conditions[7,27–28]. Ginger treatment along with ethanol
caused a decrease in the number of PCNA positive cells
in the lungs and fibrosis suggesting that ginger extract is
an anti-fibrotic and proliferative agent. Accordingly, if
ethanol induces some functional and structural abnorm-
alities through oxidative stress, as confirmed by
previous studies, the rescue effect of ginger supple-
mentation on these abnormalities may be due to its
antioxidant properties. It has also been shown that
ginger has anti-inflammatory effects and suppresses
pro-inflammatory cytokine expressions such as TNF-α
and the arachidonic acid cascade[29–30]. Anti-inflamma-
tory effects of ginger are due to its gingerol and shogaol
components that inhibit prostaglandin and leukotriene
biosynthesis via suppression of 5-lipooxygenase
synthetase activities[31]. Although various studies have
shown the improving effects of ginger supplementation
on inflammatory cytokines, such as TNF-α, IL-6,
prostaglandins and leukotriene, this is the first in vivo
study demonstrating the protective effect of ginger
extract against oxidative stress, along with lung tissue
fibrosis and lung cell proliferation in the ethanol-treated
lungs.
In conclusion, our work launches three points. First,

exposure to chronic ethanol leads to lung structural
alterations as manifested in the enlargement and

destruction of the air spaces, an increase in alveolar
wall thickness, focal infiltration of polymorphonuclear
cells, an increase in pneumocytes in the alveolar walls,
fibrosis in different parts of the lungs, and mild to
moderate cellular proliferation. The second point is that
ethanol-induced lungs structural alterations correlate
with oxidative DNA damage, Ox-LDL, and also with
lung tissue NADPH oxidase elevation, and that it
provides strong evidence for the occurrence of oxidative
stress under ethanol exposure. The third point we have
established is that the ingestion of ginger extract
concurrent with ethanol nearly eliminates structural
changes and oxidative stress induced by ethanol. Our
results support the hypothesis that ethanol-related
alterations in the lungs structure are caused by oxidative
stress along with inflammatory responses.
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