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Abstract
Evaluating the importance of coevolution for a wide range of evolutionary questions, 
such as the role parasites play in the evolution of sexual reproduction, requires that we 
understand the genetic basis of coevolutionary interactions. Despite its importance, 
little progress has been made identifying the genetic basis of coevolution, largely be-
cause we lack tools designed specifically for this purpose. Instead, coevolutionary 
studies are often forced to re-purpose single species techniques. Here, we propose a 
novel approach for identifying the genes mediating locally adapted coevolutionary in-
teractions that relies on spatial correlations between genetic marker frequencies in 
the interacting species. Using individual-based multi-locus simulations, we quantify 
the performance of our approach across a range of coevolutionary genetic models. 
Our results show that when one species is strongly locally adapted to the other and a 
sufficient number of populations can be sampled, our approach accurately identifies 
functionally coupled host and parasite genes. Although not a panacea, the approach 
we outline here could help to focus the search for coevolving genes in a wide variety 
of well-studied systems for which substantial local adaptation has been 
demonstrated.

K E Y W O R D S

association study, coevolution, genetics of adaptation, genome scans, infection genetics, 
landscape genetics, local adaptation, resistance, SNP genotyping, virulence

1  | INTRODUCTION

Host–parasite coevolution has the potential to drive many evolution-
ary transitions: from sexual to asexual reproduction (Hamilton, 1980; 
Jaenike, 1978; Lively, 1987), from haploidy to diploidy (Nuismer & 
Otto, 2004), and from selfing to outcrossing (Agrawal & Lively, 2001). 
What has become increasingly apparent, however, is that coevolu-
tion’s role in these evolutionary transitions depends on the genetic 
details of the interaction (Agrawal & Otto, 2006; Lively, 2010; Otto & 
Nuismer, 2004). Thus, in order to make concrete predictions about the 
likely long-term evolutionary consequences of coevolution, we need 
to better understand the genetic details of interactions between hosts 
and parasites.

Despite long-standing interest, identifying the genes involved in 
coevolution has proven difficult. The primary reason for this is that 
understanding the genetic basis of coevolution requires identifying 
the suites of genes in host and parasite that interact to determine 
the outcome of the interaction (Ebert, 2008; Heath & Nuismer, 2014; 
Thrall, Barrett, Dodds, & Burdon, 2016). Thus, in contrast to studies 
of single species where it may be sufficient to identify genes that 
influence a phenotype of interest, studies of coevolution must iden-
tify genes in both host and parasite that interact with one another to 
produce a composite phenotype such as resistance or virulence. As a 
consequence, established approaches for identifying genes influenc-
ing single species phenotypes, such as genetic association tests, can 
identify genes important in each species, but never which genes in one 
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species interact with which genes in the other. A result of this difficulty 
is that we have a substantial collection of studies identifying candidate 
genes for resistance in hosts (e.g., Atlija, Arranz, Martinez-Valladares, 
& Gutierrez-Gil, 2016; Benavides et al., 2015; Kim, Sonstegard, da 
Silva, Gasbarre, & Van Tassell, 2015; Kover & Caicedo, 2001; Kover, 
Wolf, Kunkel, & Cheverud, 2005; Magwire et al., 2012; Redmond 
et al., 2015; Wilfert & Schmid-Hempel, 2008) and infectivity in par-
asites (e.g., Molina-Cruz et al., 2013; Scanlan, Hall, Lopez-Pascua, & 
Buckling, 2011) , but virtually no studies that identify evolutionarily 
coupled genes in host and parasite.

A novel approach for identifying evolutionarily coupled genes in 
interacting species is suggested by coevolutionary theory (Morgan, 
Gandon, & Buckling, 2005; Nuismer & Gandon, 2008). This theory 
demonstrates that if a reciprocal cross-infection experiment reveals 
local adaptation of one species to the other, it must be the results of 
spatial covariation between the frequencies of functionally interacting 
genes in host and parasite (Nuismer & Gandon, 2008). Thus, for the 
wide range of host–parasite interactions where parasite local adapta-
tion has been demonstrated (Greischar & Koskella, 2007; Hoeksema & 
Forde, 2008; Lively, 1989), it should be possible to identify the genes 
involved in coevolution by identifying genetic markers in each spe-
cies that covary with one another across populations. Thus, as with 
approaches that seek to identify the genetic basis of local adaptation 
by searching for statistical associations between genotype frequencies 
and environmental variables (Coop, Witonsky, Rienzo, & Pritchard, 
2010; Gunther & Coop, 2013; Hancock et al., 2011; Hoban et al., 
2016; Joost et al., 2007), our approach seeks to identify genes in-
volved in coevolution by searching for statistical associations between 
genotype frequencies in the interacting species.

Here, we formalize the use of statistical associations between host 
and parasite gene frequencies as a tool for identifying regions of host 
and parasite genomes involved in coevolution. We begin by develop-
ing the theoretical background that underpins the approach. Next, we 
lay out a step-by-step implementation of the approach for a scenario 
where frequencies of genetic markers have been estimated for host 
and parasite populations. Finally, we use multilocus individual-based 
simulations to evaluate the performance of our approach for a wide 
range of coevolutionary scenarios and parameter values.

2  | OVERVIEW OF APPROACH

2.1 | Theoretical background

Studies of host–parasite coevolution frequently estimate the ex-
tent to which parasites or hosts are adapted to their local antagonist 
populations using a reciprocal cross-infection experiment (Greischar 
& Koskella, 2007; Hoeksema & Forde, 2008; Nuismer & Gandon, 
2008). Often such studies rely on sampling host and parasite indi-
viduals from N populations and confronting them with one another 
in a fully reciprocal design. The result is an N × N matrix with entries 
corresponding to the average infection rate, Pi,j, of parasites drawn 
from population i when confronted with hosts drawn from population 
j. Parasite local adaptation, , can then be calculated as the difference 

between expected infection rate when confronted with local hosts 
and expected infection rate when confronted with all hosts, irrespec-
tive of location:

Using a very general model, Nuismer and Gandon (2008) showed 
that this expression can be re-written in terms of the spatial covari-
ance between host and parasite genotype frequencies:

where αi,j is the infection rate of a parasite with genotype Xi when con-
fronted with a host of genotype Yj, Cov

[
Xi,Yj

]
 is the covariance between 

the frequency of parasite genotype i and host genotype j over the popu-
lations included in the cross-infection experiment, and nk is the number 
of genotypes within species k that influence the probability of infection. 
This result demonstrates that in systems where the parasite is locally 
adapted, frequencies of genotypes that result in infection must have a 
positive covariance across populations. In contrast, in systems where 
the host is locally adapted, frequencies of genotypes that result in in-
fection must have a negative covariance across populations. Thus, in 
systems where local adaptation of one species to the other has been ob-
served through a reciprocal cross-infection experiment, it must be the 
result of a spatial covariance between frequencies of genotypes that in-
fluence infection. This suggests that identifying host and parasite genes 
with frequencies that covary across space provides a potentially useful 
tool for identifying the genetic basis of coevolution and local adaptation.

2.2 | Implementation

The theoretical results outlined above suggest that when local adapta-
tion is observed, searching for coevolving regions of the genome by 
looking for genes with spatially covarying frequencies may be a profit-
able approach. We emphasize that the approach we propose here is 
only likely to be effective, and the results interpretable, when local 
adaptation has first been estimated experimentally using a recipro-
cal cross-infection experiment. Assuming local adaptation has been 
demonstrated experimentally, implementing this approach is straight-
forward in principle and can be accomplished through the following 
steps. First, identify a set of candidate genes or markers (e.g., SNP’s) 
within each of the interacting species. Second, calculate the frequen-
cies of these genes or markers within each of the N populations for 
which local adaptation has been estimated. Third, calculate the spatial 
covariance between the frequencies of each host and parasite gene or 
marker. The result is a matrix of covariances between the frequency, 
pH,i, of host genotype/marker i, and the frequency, pP,j, of parasite 
genotype/marker j:

(1)=

N∑
i=1

Pi,i−

N∑
i=1

N∑
j=1

Pi,j.

(2)=

nP∑
i=1

nH∑
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αi,jCov
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Xi,Yj

]
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where the matrix has a number of rows equal to the number of host 
genotypes/markers and a number of columns equal to the number of 
parasite genotypes/markers. Screening this potentially enormous ma-
trix for statistical associations between host and parasite genotype/
marker frequencies can be simplified by transforming the covariances 
into correlations using the standard statistical formula:

where σpH,i and σpP,i are the standard deviations of marker/genotype 
frequencies pH,i and pP,j across the N study populations. Using (4) to 
transform the covariance matrix (3) results in a matrix of spatial cor-
relations for all possible pairs of host and parasite markers/genotypes:

With this correlation matrix in hand, it is a simple matter to 
quickly screen combinations of host and parasite markers/genotypes 
for statistical significance by calculating a test statistic, ti,j, for each 
correlation:

where N is the total number of populations in the study. Finally, com-
pare the value of the test statistic ti,j to the critical value of t drawn 
from the Student’s t-distribution with N − 2 degrees of freedom and 
the desired significance level, α, for each correlation. This statistical 
approach is strictly correct only in cases where populations evolve 
independently of one another (i.e., no gene flow, no historical pop-
ulation genetic structure) and loci also evolve independently of one 
another. If these conditions do not hold, correlations may not follow 
a t-distribution and the degrees of freedom will certainly be overesti-
mated. In the subsequent section, we use individual-based simulations 
to grossly violate these key assumptions of our statistical approach 
and to evaluate the consequences of these violations for both type I 
and type II error rates. In the discussion, we introduce alternative sta-
tistical approaches and avenues for future statistical development that 
may prove to be more efficient. The result of the screening procedure 
we propose is a list of matched pairs of host and parasite markers/
genotypes that correlate significantly with one another across space. 
The stringency of this screen, and the number of false positives, can be 
adjusted using different values of α.

3  | INDIVIDUAL-BASED SIMULATIONS

The previous section lays out a straightforward methodology for iden-
tifying candidate pairs of host and parasite markers/genes responsible 
for observed patterns of interspecific local adaptation and potentially 
also involved in the coevolutionary process. To evaluate how well this 

method is likely to work in practice, we tested it using genetically explicit 
individual-based simulations. Simulations followed a metapopulation of 
host and parasite individuals consisting of N populations, each of which 
contained η haploid host and parasite individuals. The genomes of host 
and parasite individuals consisted of nH and nP diallelic loci, of which a ran-
domly selected subset were assumed to be involved in the coevolution-
ary interaction. Loci not involved in the coevolutionary interaction had 
no impact on fitness and thus evolved neutrally in response to random 
genetic drift, gene flow, mutation, and indirect selection. These neutral 
loci provide an important control and allow us to explore whether pro-
cesses other than coevolution (e.g., population structure) can confound 
our approach. Simulations proceeded by following individuals through a 
life-cycle consisting of: (1) species interactions, (2) reproduction, (3) mu-
tation, and (4) migration. Each stage of this life cycle is detailed below.

3.1 | Species interactions

Individual hosts and parasites were assumed to encounter one an-
other at random within each population, with each host individual en-
countering exactly one parasite individual. Random encounters 
between host and parasite individuals resulted in either infection or 
resistance, with the probability of infection determined by one of two 
coevolutionary models. In the first model, which we refer to as the 
“discrete matching” model, the probability of infection depends on the 
proportion of the coevolving loci that carry matching alleles in host 
and parasite. Specifically, this model assumes that the probability of 
parasite infection is greatest when host and parasite individuals have 
precisely matched genotypes and decreases as the proportion of mis-
matched loci, , increases such that:

where the parameter β determines how sensitive the probability of 
infection is to the degree of genetic mismatching between host and 
parasite (Figure 1). As the parameter β approaches 1, this model con-
verges on a classical matching alleles model of coevolution where par-
asites can infect only those hosts with perfectly matching genotypes.

The second coevolutionary model we consider, which we refer 
to as the “quantitative matching” model, assumes the probability of 
infection depends on the difference, δ, between a quantitative trait 
in the host, zh, and a quantitative trait in the parasite, zp (Figure 1). 
Specifically, we assume the probability of infection is greatest when 
host and parasite phenotypes match and declines as the distance be-
tween host and parasite phenotypes increases such that:

where δ= zh−zp. Within this expression, the host and parasite pheno-
types zh and zp are determined by summing the number of “1” alleles 
each individual carries at the subset of loci involved in coevolution. 
The parameter β determines how sensitive the probability of infec-
tion is to the difference between the individual’s phenotypes. Within 
simulations, phenotypes of host and parasite were scaled to always lie 
between zero and one.

(4)ρi,j=
Cov

[
pH,i,pP,j

]
σpH,iσpP,i

(5)ρ=
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For each random encounter between host and parasite, the fitness 
of the host individual is equal to one minus the product of the infec-
tion probability and the virulence of infection, s:

and the fitness of the parasite individual is equal to the probability 
of successful infection:

After calculating fitness, a random number was drawn from a uni-
form distribution on [0,1] for each individual, and if that number was 
greater than the fitness calculated by (9) the individual was eliminated 
from the population.

3.2 | Reproduction, mutation, and migration

Individual hosts and parasites that successfully survived species in-
teractions were allowed to reproduce sexually. Mating occurred 

by selecting a random pair of haploid parents and producing a new 
haploid offspring. Offspring was produced following standard rules 
of Mendelian inheritance with recombination occurring between ad-
jacent loci i and j at rates rH,i,j and rP,i,j in host and parasite, respec-
tively. Random mating continued until a new population of zygotes 
was created of a size equal to the original population size, η. After 
reproduction, each genome experienced a mutation with probabilities 
μH and μP in host and parasite, respectively. Mutation was symmetrical 
and converted the current allele at a randomly selected locus to its 
alternative form. Finally, individuals migrated at random among neigh-
boring populations with probabilities mH and mP in host and parasite, 
respectively. Thus, migration followed a linear stepping stone model 
and was symmetric— if an individual from one population migrates 
to another population, then a replacement must migrate back to the 
migrant’s starting population. Populations located at the two ends of 
the linear sequence of populations experienced migration at half the 
rate of interior populations (because they have only a single neighbor-
ing population).

4  | QUANTIFYING PERFORMANCE

After simulating coevolution for 500 generations, local adaptation 
was calculated by conducting a simulated reciprocal cross-infection 
experiment and applying Equation (1). Spatial correlations were then 
calculated for all possible pairs of host and parasite loci to generate 
the correlation matrix described by (5). Statistically significant correla-
tions were then identified using (6) and a range of significance levels 
spanning α=0.001 and α=0.020. Type I error rates were quantified by 
summing the number of matrix entries that were falsely identified as 
coevolving (statistically significant correlations between neutral loci or 
between coevolving loci that were not functionally paired) and divid-
ing by the total possible number of type I errors. Type II error rates 
were calculated by summing the number of matrix entries between 
coevolving loci that were not identified (no statistically significant 
correlation between functionally paired loci) and dividing by the total 
possible number of type II errors. In cases where multiple loci were 
involved, we considered cases where only a subset of the loci involved 
were identified as errors. Thus, our estimates of type II errors are con-
servative. Simulations were run for scenarios where coevolution de-
pended on 1, 2, or 3 loci and for metapopulations consisting of 30, 40, 
and 50 populations. For each combination of coevolving loci and meta-
population size, remaining parameters were assigned as described in 
Table 1, and simulations were run repeatedly until at least 30 replicate 
simulations were accumulated for each of the following strengths of 
local adaptation: minimal (0<≤0.10), weak (0.10<≤0.15), moder-
ate (0.15<≤0.20), and strong (0.20<). These values of local adap-
tation were chosen to span the range observed in empirical studies of 
naturally occurring host–parasite interactions (Table 2).

Simulation results demonstrated that scanning host and para-
site genomes for markers/genotypes with frequencies that covary 
across space can be an effective tool for identifying loci involved in 
coevolutionary interactions. For instance, when local adaptation was 

(9a)Wh=1−sP

(9b)Wp=P

F IGURE  1 The relationship between the proportion of genetic 
mismatches at coevolving loci, , and the probability of infection for 
the discrete matching model (top panel) and the relationship between 
scaled phenotypic distance, δ, and the probability of infection for 
the quantitative matching model (bottom panel). For the discrete 
matching model, the green line corresponds to β=0.5, the orange line 
to β=0.7, and the blue line to β=0.9. For the quantitative matching 
model, the green line corresponds to β=0.5, the orange line to β=1.2,  
and the blue line to β=2.0

Discrete
matching

Quantitative
matching
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strong ( ||>0.20), coevolution depended on only a single locus, and 
40 or more populations were sampled, our method identified the co-
evolving pair of loci in 100% of simulations (Figure 2). The method 
performed almost as well for cases of more modest local adaptation 
(0.15< ||≤0.20), successfully identifying the coevolving locus in 
93.3% of cases for the discrete matching model and 80.0% of cases 
for the quantitative matching model when only a single locus was 
involved (Figure 2). In contrast to the promising results observed in 
cases where local adaptation was substantial, simulations suggest the 

statistical power of our method drops precipitously when local adap-
tation is weak (magnitude less than 15%) (Figure 2). This result is not 
surprising, of course, because coevolutionary theory predicts spatial 
associations between genotype frequencies should be proportional to 
the magnitude of local adaptation (Nuismer & Gandon, 2008). In addi-
tion to weak local adaptation, sampling from a relatively small number 
of populations (≤20) greatly reduces the power of our approach (re-
sults not shown). As a general rule of thumb, unless local adaptation 
is exceptionally strong (e.g., ||>0.30), our approach is only likely to 

Parameter Meaning Values

nH Host background genome size Fixed at 100

nP Parasite background genome 
size

Fixed at 100

mH Host movement rate Drawn at random from a uniform distribution 
on [0, 0.01]

mP Parasite movement rate Drawn at random from a uniform distribution 
on [0, 0.01]

β Sensitivity of infection to host 
and parasite genotypes

Drawn at random from a uniform distribution 
on [0.8, 1.0] for the discrete matching model 
and on [2.0, 4.0] for the quantitative 
matching model

S Virulence of infection Drawn at random from a uniform distribution 
on [0.6, 0.9]

ηH Local host population size Drawn at random from a uniform distribution 
on [150, 300]

ηP Local parasite population size Drawn at random from a uniform distribution 
on [150, 300]

μH Host genome wide mutation 
rate

Drawn at random from a uniform distribution 
on [0.01, 0.05]

μP Parasite genome wide mutation 
rate

Drawn at random from a uniform distribution 
on [0.01, 0.05]

rH,i,j Host recombination rate 
between adjacent loci i and j

Drawn at random from a uniform distribution 
on [0, 0.5]

rP,i,j Parasite recombination rate 
between adjacent loci i and j

Drawn at random from a uniform distribution 
on [0, 0.5]

TABLE  1 Parameter values used in 
simulations and their biological 
interpretations

Estimated magnitude 
(averaged across replicates) Species Reference

0.058 Microbotryum violaceum
Silene latifolia

(Kaltz, Gandon, Michalakis, & 
Shykoff, 1999)

0.108 Melampsora amygdalina 
Salix triandra

(Niemi, Wennström, Hjältén, 
Waldmann, & Ericson, 2006)

0.110 Schistocephalus solidus
Gasterosteus aculeatus

(Weber et al., 2017)

0.188 Microphallus sp.
Potamopyrgus antipodarum

(Lively, 1989)

0.252 Microphallus sp.
Potamopyrgus antipodarum

(Lively & Dybdahl, 2000)

0.236 Protopolystoma spp.
Xenopus laevis

(Jackson & Tinsley, 2005)

0.103 Plasmodium spp. 
Parus major

(Jenkins, Delhaye, & Christe, 
2015)

TABLE  2 Estimates of local adaptation 
from reciprocal cross-infection studies. We 
reviewed studies of local adaptation and 
identified those where a reciprocal 
cross-infection study was performed in the 
laboratory, allowing local adaptation to be 
calculated using Equation (1) and the 
resulting value compared directly to 
simulation results. In some cases, we 
selected fully reciprocal combinations from 
larger studies and thereby excluded 
populations that were not reciprocally 
exposed. Bold entries are those for which 
local adaptation is sufficiently large for our 
technique to be useful
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be useful when it is possible to include twenty or more populations 
in the study.

Although our simulation results demonstrate that our approach is 
quite effective at identifying coevolving genes when only a single locus 
is involved, the power of the approach declines with increasing num-
bers of coevolving loci in some cases. Specifically, for the quantitative 
matching model, statistical power drops when more than a single locus 
is involved in the coevolutionary process (Figure 2). In contrast, for the 
discrete matching model, increasing the number of coevolving loci has 
a much less substantial impact on statistical power (Figure 2). This dif-
ference in behavior arises because loci in the discrete matching model 
interact epistatically and are thus not interchangeable, whereas loci in 
the quantitative matching model interact additively and are thus inter-
changeable. Consequently, if substantial local adaptation is observed 
in the discrete matching model, it must be that the frequencies of all 
loci involved in coevolution covary across space; in contrast, for the 
quantitative matching model, substantial local adaptation can occur 
when only a subset of allele frequencies covary across space. Although 
the drop in statistical power with increasing numbers of coevolving 
loci is, in principle, a problem, the results of our simulations strongly 

suggest that when substantial local adaptation is observed in a host–
parasite interaction, it is most likely to be the result of coevolution 
mediated by a small number of genes with major effects on the proba-
bility of infection (Figure 3).

Taken together, the results of coevolutionary simulations suggest 
that our approach can be an effective tool for identifying the major 
genes contributing to local adaptation in coevolving interactions 
between hosts and parasites. At the same time, of course, our ap-
proach also falsely identifies neutral loci as coevolving in some cases. 
Quantifying the type I error rate of our approach using simulations 
demonstrates that, on average, the type I error rate is inflated, with 
the degree of inflation inversely proportional to the magnitude of local 
adaptation (Figures 4 and 5). The primary reason the type I error rate 
becomes inflated is that our statistical test assumes populations are 
independent; an assumption that is clearly violated in the presence 
of substantial gene flow. We further investigated the relationship be-
tween the magnitude of local adaptation and the type I error rate by 
plotting the type I error rate as a function of the magnitude of local 
adaptation (Figure 6; top row). The results of this investigation demon-
strate that type I error rates are greatly inflated when local adaptation 
is weak, but fall as the magnitude of local adaptation increases. In fact, 
as the magnitude of local adaptation becomes very large, the median 
value of the type I error rate converges on the significance level, α, set 
by the investigator. The primary reason the type I error rate falls as 
the magnitude of local adaptation increases is simply that very strong 
local adaptation occurs only when rates of gene flow become very low 
and populations evolve more or less independently of one another 
(Figure 6; bottom row). Thus, as long as local adaptation has been ex-
perimentally demonstrated to be strong, a priori, type I error rates are 
only moderately inflated above the user-defined significance level.

5  | DISCUSSION

We have developed a new methodology for identifying the genes 
mediating coevolutionary interactions. Our method capitalizes on 
well-established theory demonstrating that local adaptation of one 
species to another must be the result of spatial associations between 
frequencies of coevolving genes in the interacting species (Morgan 
et al., 2005; Nuismer & Gandon, 2008). This new methodology repre-
sents a significant advance over existing techniques because it has the 
potential to identify functionally paired genes across species rather 
than genes adapting independently in each species. Extensive simula-
tion testing of our method demonstrates that it performs well if local 
adaptation is strong (||>0.15) and marker frequencies can be esti-
mated from thirty or more populations. In contrast, if local adapta-
tion is weak or marker frequencies cannot be estimated from at least 
twenty populations, the statistical power of our approach is poor and 
the false discovery rate can become extremely high.

From a practical standpoint, our simulation results suggest our 
methodology will be limited to a subset of empirical systems where 
coevolution produces strong local adaptation. Unfortunately, this 
means our approach cannot be applied to systems where coevolution 

F IGURE  2 Statistical power as a function of the strength of local 
adaptation (bar shading) and the number of loci (bar groups) for the 
discrete matching model (top panel) and the quantitative matching 
model (bottom panel). Values of local adaptation were 0.0≤≤0.10 
(black bars), 0.10<≤0.15 (dark gray bars), 0.15<≤0.20 (gray 
bars), and 0.20< (light gray bars). Data results from simulations 
where forty populations were sampled, and the significance level, α, 
was set to 0.01

1 Locus 2 Loci 3 Loci

Discrete model

Quantitative model
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does not cause strong local adaptation, such as arms races medi-
ated by quantitative traits (e.g., Brodie, Ridenhour, & Brodie, 2002; 
Ridenhour & Nuismer, 2007). It also means that our approach should 
not be applied in cases where local adaptation has not been first 
demonstrated experimentally. Although these limitations narrow 

the scope of application, some important and well-studied systems 
do meet the requirements of our approach (Table 2; bold entries). 
Furthermore, given the wide range of host–parasite systems where 
strong local adaptation has been observed (but which we did not in-
clude in our table because the units were not directly comparable 

F IGURE  3 The percentage of 
simulations yielding a magnitude of local 
adaptation exceeding a threshold value 
for the discrete matching model (left hand 
column) and the quantitative matching 
model (right hand column). In the top row, 
the threshold value of local adaptation 
is modest (=0.11) corresponding to 
the middle ground of the estimates for 
local adaptation reported in Table 2. In 
the second row, the threshold of local 
adaptation was more extreme (=0.23), 
corresponding to the largest estimates of 
local adaptation reported in Table 2. In all 
cases, simulations demonstrate that large 
values of local adaptation are more likely to 
result when coevolution is mediated by a 
small number of genes with large effect1 Locus 2 Loci 3 Loci 1 Locus 2 Loci 3 Loci

Discrete matching model Quantitative matching model

F IGURE  4 Type I error rates and statistical power for the discrete matching model as a function of the significance level, α, for three 
different levels of local adaptation and cases where thirty populations are sampled (left hand column) or fifty populations are sampled (right 
hand column). The gray-dotted line shows cases where local adaptation is modest (0.1≤≤0.15) and in such cases, statistical power is low 
unless a large number of populations is sampled. The black dashed line shows cases where local adaptation is more substantial (0.15≤≤0.20

) and in such cases, statistical power is substantially improved. The solid black line shows cases where local adaptation is strong (0.20≤), and 
in such cases, statistical power is very good, even when only thirty populations are sampled. The red line shows the expected type I error rate 
given the significance level, α
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to those of our simulations), opportunities for applying our approach 
should be substantial (Greischar & Koskella, 2007; Hoeksema & 
Forde, 2008).

Although our approach provides a new method for identifying in-
teracting genes in coevolving species, it shares many of the limitations 
of existing approaches based on genotype–environment associations 
(Hoban et al., 2016). For instance, our approach works best when 

coevolution and local adaptation depend on a small number of loci 
with large phenotypic effects (Korte & Farlow, 2013; Rockman, 2012). 
Our approach also requires that genomic coverage is sufficiently 
dense for markers to lie within, or in close proximity to, the genes in-
volved in the coevolutionary interaction. An additional potential com-
plication could arise if both host and parasite are jointly adapted to a 
common feature of the abiotic environment. For all of these reasons, 

F IGURE  5 Type I error rates and statistical power for the quantitative matching model as a function of the significance level, α, for three 
different levels of local adaptation and cases where thirty populations are sampled (left hand column) or fifty populations are sampled (right 
hand column). The gray-dotted line shows cases where local adaptation is modest (0.1≤≤0.15), and in such cases, statistical power is low 
unless a large number of populations is sampled. The black-dashed line shows cases where local adaptation is more substantial (0.15≤≤0.20

), and in such cases, statistical power is substantially improved. The solid black line shows cases where local adaptation is strong (0.20≤), and 
in such cases, statistical power is very good, even when only thirty populations are sampled. The red line shows the expected type I error rate 
given the significance level, α
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F IGURE  6 Type I error rates and 
the product of host and parasite 
migration rates plotted as a function of 
the magnitude of local adaptation for 
the discrete matching model (left hand 
column) and the quantitative matching 
model (right hand column). Data results 
from simulations where coevolution was 
mediated by a single genetic locus, but 
patterns are similar for larger numbers 
of loci. The red line is the best fit of a 
negative exponential model to the data and 
is included only as an aid to visualization. 
The significance level, α, was set to 0.001 
in these simulations (shown by the dashed 
red line), and as local adaptation increases, 
the median type I error rate converges on 
this value
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it is important to recognize that our approach provides only a coarse 
initial screen for identifying candidate pairs of loci involved in coevo-
lution. Sifting through the resulting collection of candidate coevolving 
gene pairs to nail down the genetic basis of coevolution will require 
the use of a wide range of existing techniques and ultimately exper-
imental verification (Cantor, Lange, & Sinsheimer, 2010). In addition 
to these standard limitations of genetic association studies, our ap-
proach requires the accurate estimation of genetic marker frequencies 
within a pair of interacting species across a relatively large number 
of populations (>20). Although a daunting challenge in many systems, 
rapidly decreasing genotyping costs suggest this barrier will continue 
to decline, making our approach financially feasible in a wide range of 
natural systems.

As we have outlined it here, our approach relies upon a very simple 
statistical test that identifies unusually large correlations by comparing 
them to the distribution expected under a null model where all popu-
lations and loci are independent of one another. The strength of this 
approach is that it is quick and easy to implement and performs well 
in cases of strong local adaptation. A significant weakness of this ap-
proach, however, is that it can lead to inflated type I error rates when 
gene flow among populations is significant and local adaptation more 
moderate. As has been previously demonstrated for single-species 
genotype–environment association studies, inflation of type I error 
rates becomes increasingly acute as isolation by distance increases 
(Lotterhos & Whitlock, 2014). As a consequence, the technique we 
present here should work best in situations where isolation by dis-
tance is weak or absent, as is likely to be the case in systems where 
gene flow approximates an island model.

Future work could significantly improve on the approach we 
develop here by developing methods that correct for the impact 
of population structure. For instance, following research on single-
species studies, it may be possible to generate null distributions of 
interspecific correlations using the simulations we developed here 
coupled with a known demographic history or estimated patterns 
of movement among populations (e.g., Beaumont & Nichols, 1996; 
Eckert et al., 2010; Excoffier, Hofer, & Foll, 2009). An obvious 
weakness of this approach, however, is that it relies on an accurate 
knowledge of demographic history or patterns of movement (Hoban 
et al., 2016; Lotterhos & Whitlock, 2014). Alternatively, it may be 
possible to correct for the impact of neutral population structure by 
estimating the covariance structure among marker frequencies from 
the data itself (e.g., Bonhomme et al., 2010; Gunther & Coop, 2013). 
A strength of this approach is that it does not require knowledge of 
demographic history or estimates of patterns of movement; a weak-
ness is that loci involved in coevolution may be used to correct for 
neutral population structure, thus reducing statistical power (Hoban 
et al., 2016). Developing these additional tools, and testing them 
using genetically explicit coevolutionary simulations has the poten-
tial to greatly expand the number of systems in which our approach 
can be applied.

In summary, the approach we develop here introduces a novel 
methodology for identifying the genetic basis of coevolving in-
teractions in cases where local adaptation has been estimated a 

priori and shown to be strong. Our approach provides significant 
advantages over existing techniques, the most important of which 
is the ability to identify not just individual genes in each of the in-
teracting species, but also the interactions between these genes 
across species. Although not a panacea, the approach we outline 
here could help to focus the search for coevolving genes in a wide 
variety of well-studied systems for which local adaptation has been 
demonstrated. More importantly, by demonstrating that interspe-
cific genetic correlations carry the signature of coevolution, our 
results pave the way for future approaches that correct for popula-
tion structure and remove key limitations of the statistically crude 
approach presented here.

ACKNOWLEDGMENTS

We thank Joanna Kelley, Katie Lotterhos, Peter Tiffin, and Jeb Owen 
for helpful comments. This work was supported by NSF grants DEB 
1118947 and DEB 1450653 to SLN.

CONFLICT OF INTEREST

None declared.

REFERENCES

Agrawal, A. F., & Lively, C. M. (2001). Parasites and the evolution of self-
fertilization. Evolution, 55, 869–879.

Agrawal, A. F., & Otto, S. P. (2006). Host-parasite coevolution and selection 
on sex through the effects of segregation. American Naturalist, 168, 
617–629.

Atlija, M., Arranz, J. J., Martinez-Valladares, M., & Gutierrez-Gil, B. (2016). 
Detection and replication of QTL underlying resistance to gastrointes-
tinal nematodes in adult sheep using the ovine 50K SNP array. Genetics 
Selection Evolution, 48.

Beaumont, M. A., & Nichols, R. A. (1996). Evaluating loci for use in the ge-
netic analysis of population structure. Proceedings of the Royal Society 
B-Biological Sciences, 263, 1619–1626.

Benavides, M. V., Sonstegard, T. S., Kemp, S., Mugambi, J. M., Gibson, J. P., 
Baker, R. L., … Van Tassell, C. (2015). Identification of novel loci associated 
with gastrointestinal parasite resistance in a Red Maasai × Dorper back-
cross population. PLoS ONE, 10(4), e0122797. https://doi.org/10.1371/ 
journal.pone.0122797

Bonhomme, M., Chevalet, C., Servin, B., Boitard, S., Abdallah, J., Blott, S., & 
SanCristobal, M. (2010). Detecting selection in population trees: The 
Lewontin and Krakauer test extended. Genetics, 186, 241–262.

Brodie, E. D., Ridenhour, B. J., & Brodie, E. D. (2002). The evolutionary re-
sponse of predators to dangerous prey: Hotspots and coldspots in the 
geographic mosaic of coevolution between garter snakes and newts. 
Evolution, 56, 2067–2082.

Cantor, R. M., Lange, K., & Sinsheimer, J. S. (2010). Prioritizing GWAS re-
sults: A review of statistical methods and recommendations for their 
application. American Journal of Human Genetics, 86, 6–22.

Coop, G., Witonsky, D., Rienzo, A. D., & Pritchard, J. K. (2010). Using en-
vironmental correlations to identify loci underlying local adaptation. 
Genetics, 185, 1411–1423.

Ebert, D. (2008). Host-parasite coevolution: Insights from the Daphnia-
parasite model system. Current Opinion in Microbiology, 11, 290–301.

Eckert, A. J., Van Heerwaarden, J., Wegrzyn, J. L., Nelson, C. D., Ross-
Ibarra, J., González-Martínez, S. C., & Neale, D. B. (2010). Patterns of 
population structure and environmental associations to aridity across 

https://doi.org/10.1371/journal.pone.0122797
https://doi.org/10.1371/journal.pone.0122797


     |  6903NUISMER et al.

the range of loblolly pine (Pinus taeda L., Pinaceae). Genetics, 185, 
969–982.

Excoffier, L., Hofer, T., & Foll, M. (2009). Detecting loci under selection in a 
hierarchically structured population. Heredity, 103, 285–298.

Greischar, M. A., & Koskella, B. (2007). A synthesis of experimental work on 
parasite local adaptation. Ecology Letters, 10, 418–434.

Gunther, T., & Coop, G. (2013). Robust identification of local adaptation 
from allele frequencies. Genetics, 195, 205–220.

Hamilton, W. D. (1980). Sex vs. non-sex vs. parasite. Oikos, 35, 282–290.
Hancock, A. M., Brachi, B., Faure, N., Horton, M. W., Jarymowycz, L. B., 

Sperone, F. G., … Bergelson, J. (2011). Adaptation to climate across the 
Arabidopsis thaliana genome. Science, 334, 83–86.

Heath, K. D., & Nuismer, S. L. (2014). Connecting functional and statisti-
cal definitions of genotype by genotype interactions in coevolutionary 
studies. Frontiers in Genetics, 5, 77.

Hoban, S., Kelley, J. L., Lotterhos, K. E., Antolin, M. F., Bradburd, G., Lowry, 
D. B., … Whitlock, M. (2016). Finding the genomic basis of local adap-
tation: Pitfalls, practical solutions, and future directions. The American 
Naturalist, 188, 379–397.

Hoeksema, J. D., & Forde, S. E. (2008). A meta-analysis of factors affecting 
local adaptation between interacting species. American Naturalist, 171, 
275–290.

Jackson, J. A., & Tinsley, R. C. (2005). Geographic and within-population 
structure in variable resistance to parasite species and strains in a ver-
tebrate host. International Journal for Parasitology, 35, 29–37.

Jaenike, J. (1978). An hypothesis to account for the maintenance of sex 
within populations. Evolutionary Theory, 3, 191–194.

Jenkins, T., Delhaye, J., & Christe, P. (2015). Testing local adaptation in a 
natural great tit-malaria system: An experimental approach. PLoS One, 
10, e0141391.

Joost, S., Bonin, A., Bruford, M. W., Despres, L., Conord, C., Erhardt, G., & 
Taberlet, P. (2007). A spatial analysis method (SAM) to detect candidate 
loci for selection: Towards a landscape genomics approach to adapta-
tion. Molecular Ecology, 16, 3955–3969.

Kaltz, O., Gandon, S., Michalakis, Y., & Shykoff, J. A. (1999). Local malad-
aptation in the anther-smut fungus Microbotryum violaceum to its host 
plant Silene latifolia: Evidence from a cross-inoculation experiment. 
Evolution, 53, 395–407.

Kim, E.-S., Sonstegard, T. S., da Silva, M., Gasbarre, L. C., & Van Tassell, 
C. P. (2015). Genome-wide scan of gastrointestinal nematode resis-
tance in closed Angus population selected for minimized influence of 
MHC. PLoS ONE, 10(3), e0119380. https://doi.org/10.1371/journal.
pone.0119380

Korte, A., & Farlow, A. (2013). The advantages and limitations of trait anal-
ysis with GWAS: a review. Plant Methods, 9, 29.

Kover, P. X., & Caicedo, A. L. (2001). The genetic architecture of disease re-
sistance in plants and the maintenance of recombination by parasites. 
Molecular Ecology, 10, 1–16.

Kover, P. X., Wolf, J. B., Kunkel, B. N., & Cheverud, J. M. (2005). Genetic ar-
chitecture of Arabidopsis thaliana response to infection by Pseudomonas 
syringae. Heredity, 94, 507–517.

Lively, C. M. (1987). Evidence from a New-Zealand snail for the mainte-
nance of sex by parasitism. Nature, 328, 519–521.

Lively, C. M. (1989). Adaptation by a parasitic trematode to local popula-
tions of its snail host. Evolution, 43, 1663–1671.

Lively, C. M. (2010). A review of red queen models for the persistence of 
obligate sexual reproduction. Journal of Heredity, 101, S13–S20.

Lively, C. M., & Dybdahl, M. F. (2000). Parasite adaptation to locally com-
mon host genotypes. Nature, 405, 679–681.

Lotterhos, K. E., & Whitlock, M. (2014). Evaluation of demographic history 
and neutral parameterization on the performance of FST outlier tests. 
Molecular Ecology, 23, 2178–2192.

Magwire, M. M., Fabian, D. K., Schweyen, H., Cao, C., Longdon, B., et al. 
(2012). Genome-wide association studies reveal a simple genetic basis 
of resistance to naturally coevolving viruses in Drosophila melanogas-
ter. PLoS Genetics, 8(11), e1003057. https://doi.org/10.1371/journal.
pgen.1003057

Molina-Cruz, A., Garver, L. S., Alabaster, A., Bangiolo, L., Haile, A., Winikor, J., 
… Barillas-Mury, C. (2013). The human malaria parasite Pfs47 gene me-
diates evasion of the mosquito immune system. Science, 340, 984–987.

Morgan, A. D., Gandon, S., & Buckling, A. (2005). The effect of migration 
on local adaptation in a coevolving host-parasite system. Nature, 437, 
253–256.

Niemi, L., Wennström, A., Hjältén, J., Waldmann, P., & Ericson, L. (2006). 
Spatial variation in resistance and virulence in the host–pathogen system 
Salix triandra–Melampsora amygdalinae. Journal of Ecology, 94, 915–921.

Nuismer, S. L., & Gandon, S. (2008). Moving beyond common-garden and 
transplant designs: Insight into the causes of local adaptation in species 
interactions. The American Naturalist, 171, 658–668.

Nuismer, S. L., & Otto, S. P. (2004). Host-parasite interactions and the evo-
lution of ploidy. Proceedings of the National Academy of Sciences of the 
United States of America, 101, 11036–11039.

Otto, S. P., & Nuismer, S. L. (2004). Species interactions and the evolution 
of sex. Science, 304, 1018–1020.

Redmond, S. N., Eiglmeier, K., Mitri, C., Markianos, K., Guelbeogo, W. M., 
Gneme, A., … Vernick, K. D. (2015). Association mapping by pooled se-
quencing identifies TOLL 11 as a protective factor against Plasmodium 
falciparum in Anopheles gambiae. BMC Genomics, 16.

Ridenhour, B. J., & Nuismer, S. L. (2007). Polygenic traits and parasite local 
adaptation. Evolution, 61, 368–376.

Rockman, M. V. (2012). The qtn program and the alleles that matter for 
evolution: All that’s gold does not glitter. Evolution, 66, 1–17.

Scanlan, P. D., Hall, A. R., Lopez-Pascua, L. D. C., & Buckling, A. (2011). 
Genetic basis of infectivity evolution in a bacteriophage. Molecular 
Ecology, 20, 981–989.

Thrall, P. H., Barrett, L. G., Dodds, P. N., & Burdon, J. J. (2016). 
Epidemiological and evolutionary outcomes in gene-for-gene and 
matching allele models. Frontiers in Plant Science, 6, 1084. https://doi.
org/10.3389/fpls.2015.01084

Weber, J. N., Kalbe, M., Shim, K. C., Erin, N. I., Steinel, N. C., Ma, L., & 
Bolnick, D. I. (2017). Resist globally, infect locally: A transcontinental 
test of adaptation by stickleback and their tapeworm parasite. The 
American Naturalist, 189, E000.

Wilfert, L., & Schmid-Hempel, P. (2008). The genetic architecture 
of susceptibility to parasites. BMC Evolutionary Biology, 8, 187, 
doi:10.1186/1471-2148-8-187.

How to cite this article: Nuismer SL, Jenkins CE, Dybdahl M. 
Identifying coevolving loci using interspecific genetic 
correlations. Ecol Evol. 2017;7:6894–6903. https://doi.org/ 
10.1002/ece3.3107

https://doi.org/10.1371/journal.pone.0119380
https://doi.org/10.1371/journal.pone.0119380
https://doi.org/10.1371/journal.pgen.1003057
https://doi.org/10.1371/journal.pgen.1003057
https://doi.org/10.3389/fpls.2015.01084
https://doi.org/10.3389/fpls.2015.01084
https://doi.org/10.1186/1471-2148-8-187
https://doi.org/10.1002/ece3.3107
https://doi.org/10.1002/ece3.3107

