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Quantum error correction is an essential tool for reliably perform-
ing tasks for processing quantum information on a large scale.
However, integration into quantum circuits to achieve these tasks
is problematic when one realizes that nontransverse operations,
which are essential for universal quantum computation, lead to
the spread of errors. Quantum gate teleportation has been pro-
posed as an elegant solution for this. Here, one replaces these
fragile, nontransverse inline gates with the generation of specific,
highly entangled offline resource states that can be teleported
into the circuit to implement the nontransverse gate. As the first
important step, we create a maximally entangled state between
a physical and an error-correctable logical qubit and use it as
a teleportation resource. We then demonstrate the teleporta-
tion of quantum information encoded on the physical qubit into
the error-corrected logical qubit with fidelities up to 0.786. Our
scheme can be designed to be fully fault tolerant so that it can be
used in future large-scale quantum technologies.

quantum computing | quantum error correction | quantum teleportation |
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I t is well known that quantum mechanics provides a new
paradigm for the creation, manipulation, and transmission of

information in ways that exceed conventional approaches (1, 2).
These tasks, whether they be in computation, communication, or
metrology, are generally represented by some form of quantum
circuit. As the size of these circuits increases, noise and imper-
fections in the fundamental quantum gates used to implement
those circuits render them unreliable to perform the tasks one
wanted to do (3). The natural solution is quantum error correc-
tion schemes which allow one to construct logical qubits resilient
to those errors (4–7). With logical operations, one can then
undertake large-scale quantum information tasks. It is essential
that, as part of this, one needs to be able to get “data” in and out
of the processor in a reliable fashion.

Quantum error correction works by encoding the information
that is present on a single qubit into a logical qubit, a special
type of highly entangled state. This logical qubit has the property
that certain errors move the state out of the code space hold-
ing the logical qubit (8). One can then use ancillary qubits to
detect and correct those errors in a nondemolition way (5–10).
By increasing the redundancy in the degree of freedom within
the logical qubit, the errors can be suppressed to arbitrarily low
levels. When the physical error rate is below a certain threshold,
it is possible to avoid errors propagating through the circuit to
ensure the reliable quantum computation—a concept known as
fault tolerance (3–5). It is the key to large-scale quantum infor-
mation processing tasks which generally take a form illustrated
in Fig. 1A. Here a single qubit holding initial quantum infor-
mation is encoded into a logical block with the encoding circuit

which includes the physical qubits required by quantum error
correction code (QECC) and additional ancillary qubits used for
the error detection and correction. The encoded logical block is
then directed to further logical operation in a fault-tolerant man-
ner. One immediately notices that we have separated these into
transversal and nontransversal gates. The transversal gates have
the essential property of preventing error propagation between
physical qubits inside QECC (11). Any QECC requires both
transversal and nontransversal gates for universal quantum com-
putation. Typically, most Clifford gates are transversal, and their
fault-tolerant implementation is straightforward, whereas non-
Clifford gates such as the T (π/8) gate are nontransversal, and
hence the realization of a logical T (π/8) gate is the key for
universal quantum computation.

Through the introduction of quantum teleportation (12), these
difficulties with nontransversal gates can be addressed. Here we
employ a maximally entangled Bell state of the form

|Φ+〉= 1√
2

(|0〉|0〉L + |1〉|1〉L), [1]

where the subscript L denotes the logical QECC protected state
space. As shown in Fig. 1C, the teleportation utilizes a Bell
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Fig. 1. Schematic illustration of teleportation-based error correction state
encoding. In A and B, we show the fault-tolerant quantum circuit before
and after combining with quantum teleportation, where the unreliable
operations, unknown state encoding, and nontransversal gate U2 are
marked with red blocks. The flow of quantum information is transmitted
along the circuit from left to right. In A, errors will be accumulated as the
number of unreliable operations grows. In contrast, by introducing quan-
tum teleportation, the “fragile nodes” can be replaced with preestablished
entanglement states taking a specific form. As shown in B, the encoding
process and nontransversal gate U2 are replaced with states |ψ0〉 and |ψU2 〉.
Upon encountering “fragile nodes,” such as encoding, the circuit is paused
until a suitable |ψ0〉= |Φ+〉 is generated. Then the BSM transforms quan-
tum information holding by the initial state into the QECC, which can then
be further operated by following logical gates. Scheme in C illustrates the
teleportation-based QECC encoding where, to encode the unknown initial
state, a physical qubit is entangled with logical qubit encoded in a specific
QECC. Then the BSM is performed between initial qubit and the physical
qubit with the measurement results fed forward to complete the transfer of
our quantum information into the QECC.

state measurement (BSM) between the initial state |ψ〉 to be
teleported and the single physical qubit of |Φ+〉. Classical feed-
forward of our BSM result ensures the initial quantum state is
teleported into the encoded qubit. All these procedures, includ-
ing the generation of |Φ+〉 together with BSM, can, in principle,
be performed in a fault-tolerant manner (2). Quantum telepor-
tation allows us to perform nontransversal gates offline, where
the probabilistic gate preparation can be done, as shown in Fig.
1B. The initial state |ψ〉 could be an arbitrary state; however, the

choice of the state |A〉= (|0〉+ e iπ/4|1〉)/
√

2, known as a magic
state, is the most relevant to quantum computation. It is used to
implement the T gate through magic state injection (3, 13)—a
crucial approach toward a fault-tolerant non-Clifford gate. The
same mechanism holds for a fault-tolerant implementation of
nontransversal gates when the offline state preparation achieves
the required precision through repeat-until-success strategies.
More generally, a recursive application of this protocol allows
us to implement a certain class of gates fault tolerantly, includ-
ing a Toffoli gate (14), which is also indicated in Fig. 1B. It is
equally important to note that the quantum teleportation to the
logical qubit is an important building block for distributed quan-
tum computation and global quantum communications. The
teleportation-based quantum error correction schemes thus have
the potential to significantly lower the technical barriers in our
pursuit of larger-scale quantum information processing (QIP).

In stark contrast to theoretical progress, quantum tele-
portation and QECC have been developed independently in
the experimental regime. We have seen quite a number of
remarkable quantum teleportation demonstrations (15–27) and
QECC experiments (28–35) performed in a number of physi-
cal systems. However, the experimental combination of these
operations, quantum teleportation-based quantum error cor-
rection, is still to be realized. Given that it is an essen-
tial tool for future larger-scale quantum tasks, it will be our
focus here.

In this work, we report on an experimental realization of
the teleportation of information encoded on a physical qubit
into an error-protected logical qubit. This is a key step in
the development of quantum teleportation-based error correc-
tion. We begin by establishing an Einstein−Podolsky−Rosen
channel—the entangled resource state for an error-protected
logical qubit. Quantum teleportation involving a physical qubit
of the entangled resource state transfers the quantum infor-
mation encoded in one single qubit into the error-protected
logical qubit. The quality of the entanglement resource state
and the performance of the quantum teleportation are then
evaluated.

Experimental Implementation
The scheme shown in Fig. 1B is conceptually very similar to the
original teleportation protocol; however, currently, it is signif-
icantly more challenging due to the necessity of creating the
entangled resource Eq. 1 involving a logical encoded qubit—
especially when one considers optical implementations. Here our
logical qubit basis states

|0〉L =
1

2
√

2
(|000〉+ |111〉)⊗3,

|1〉L =
1

2
√

2
(|000〉− |111〉)⊗3

[2]

are associated with the (9,1,3) Shor code (2), which is a repetition
of the three-photon Greenberger−Horne−Zeilinger (GHZ3)
state (36). More details concerning Shor code can be found in
SI Appendix. Now, given the complexity here, it is crucial to
design and configure our optical circuit efficiently, remember-
ing that, in linear optical systems, most multiple-qubit gates are
probabilistic (but heralded) in nature. Only gates including the
controlled NOT (CNOT) gate between different degrees of free-
dom (DOFs) on the same single photon can be implemented in
a deterministic fashion.

Our experiment is divided into three key stages: 1) the cre-
ation of the entangled resource state |Φ+〉; 2) the preparation
and teleportation of the initial physical qubit |ϕ〉 into the logical
qubit |ϕ〉L; and 3) readout of the logical state |ϕ〉L and detection
of error syndromes.
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Fig. 2. Principle experimental scheme. We employ three nonlinear crystals
(NLCs) to create six photons in total. Two NLCs in combination with a PBS cre-
ate a GHZ4 state in the polarization DoF. The fifth photon is programmed
with an arbitrary qubit state |ϕ〉 to be teleported, while the sixth photon
serves as a trigger. Shown in the green box is a beam splitter (BS) in combina-
tion with coincidence detection to implement the BSM necessary to teleport
the quantum state |ϕ〉 of the fifth photon into the QECC space. The readout
stage (purple box) used to measure the error syndromes contains three con-
secutive measurement stages. First, the path DoF is measured, followed by
the polarization DoF. Finally, the OAM DoF is measured using an OAM-to-
polarization converter. This, in total, results in eight single-photon detectors
(SPDs) per photon, and thus 24 SPDs for the logic qubit readout stage only.

The first key stage is the creation of the |Φ+〉 state per-
formed using the quantum circuit shown in Fig. 2. It begins by
generating a polarization-entangled four-photon GHZ (GHZ4)
state (36) using beam-like type-II spontaneous parametric down-
conversion (SPDC) in a sandwich-like geometry (37). This par-
ticular geometry produces a maximally entangled two-photon
state, and so, in order to create a GHZ4 state, photons 2 and 3 are
combined on a polarizing beam splitter (PBS), which transmits
horizontally (H ) polarized photons and reflects vertically (V)
polarized photons. A fourfold coincidence registration detects
the four photons in the GHZ state |ψ4〉= (|H 〉⊗4 + |V 〉⊗4)/

√
2.

Among these four photons, photon 4 acts as the physical qubit
to be used in the BSM, while photons 1, 2, and 3 are directed
to the logical qubit encoding circuit. Now, to construct the nine-
qubit Shor code with three photons, we use two more DoFs per
photon associated with the path and orbital angular momentum
(OAM). Using additional DoFs is not only resource efficient in
terms of the number of photons required but also enables us to
use deterministic CNOT gates using linear optical elements only
(see SI Appendix for details).

Experimentally, the creation of the Shor code (Fig. 2) begins
by applying Hadamard gates on the polarization DoF of each
photon using a half-wave plate (HWP) at 22.5◦. This transforms
the GHZ state to

|ψ′4〉= (|H 〉|+〉⊗3 + |V 〉|−〉⊗3)/
√

2, [3]

where |±〉= (|H 〉± |V 〉)/
√

2 and |−〉= (|H 〉− |V 〉)/
√

2 denote
the diagonal and antidiagonal polarization, respectively. The
other DoFs are initially in their |0〉 state. Then two consecutive
CNOT gates are applied, where the polarization always acts as
the control, and the other two DoFs act as the target qubits.
With the control qubit |±〉 and target qubits |0〉, a three-qubit
GHZ state |0, 0, 0〉± |1, 1, 1〉 is generated on each photon. We
have thus generated the desired 10-qubit physical–logical QECC
entangled state |Φ+〉= (|H 〉|0〉L + |V 〉|1〉L)/

√
2, ending the first

stage.

The second stage of the experiment concerns the teleportation
of the state |ϕ〉=α|H 〉+β|V 〉 on its own independent physi-
cal qubit into the QECC protected logical qubit, as depicted in
Fig.1B. Here we use a photon (photon 5) prepared in a separate
β-barium borate (BBO) crystal (heralded by the second photon
of the pair) to encode an arbitrary single-qubit state into the
polarization DoF using half- and quarter-wave plates. A BSM
to implement the teleportation is carried out with a 50/50 beam
splitter and subsequent coincidence measurement on that polar-
ization encoded qubit and the physical qubit from the entangled
resource |Φ+〉. Usually, this method projects the two photons
onto the antisymmetric Bell state |ψ−〉; however, by transforming
the state before the beam splitter using HWPs, we project onto
the symmetrical (|HH 〉+ |VV 〉)/

√
2 state (38), which, ideally,

results in the following logical state:

|ϕ〉L =α|0〉L +β|1〉L. [4]

The third and final part of the experiment consists of the logi-
cal state’s |ϕ〉L readout and error syndromes detection. Ideally,
one should use ancilla qubits to measure the error syndromes
and use those results to correct any errors before measuring the
state of the logical qubit. This would require extra photons and
active feed-forward correction techniques. Instead, here we post-
select on results that lie within the error-protected code space;
see ref. 30 as an example. As displayed in Fig. 2, a bit flip of
one of the nine physical qubits encoding the logical qubit |ϕ〉L
results in a change of the error syndrome measurements (see
SI Appendix) and thus can be excluded. The Shor code can also
detect phase flips or linear combinations of bit and phase flips
that form arbitrary unitary transformations.

Finally, we can independently measure and read out each
DoF for photons 1, 2, and 3 without disturbing or destroy-
ing the quantum information encoded in the other DoFs (39).
In our experiment, the DoFs of polarization, paths, and OAM
are measured step by step. The qubit encoded with polariza-
tion and paths is directly read out with standard polarization
analyzers and Mach−Zehnder interferometers. For the OAM
encoded qubit, a swap gate is used to transfer the OAM
state to a polarization one where it can be measured with
another polarization analyzer. These measurements give us
access to the complete logical qubit, consisting of three pho-
tons in three different DoFs, and access to the complete Shor
code space of nine physical qubits. Further details are described
in SI Appendix.

Experimental Results
The crucial ingredient for our experiment is the generation of
the maximally entangled quantum state between the physical
and logical qubit. It is important to first evaluate the quality of
this entangled resource state. Typical quantum state tomography
on 10 qubits is unfeasible due to the number of measurements
involved. However, the code structure allows us to eliminate this
daunting task to evaluate it at the physical level. The logical
level evaluation perfectly serves our purpose, and so we instead
measure the state fidelity and the Clauser–Horne–Shimony–Holt
(CHSH) inequality to evaluate the entanglement between the
logical and physical qubits. The density matrix of |Φ+〉 can be
expressed as

ρ=
1

4
(I ⊗ Ics +X ⊗X cs

L −Y ⊗Y cs
L +Z ⊗Z cs

L ), [5]

involving the usual Pauli operators for the physical and logi-
cal qubit. Measuring the fidelity is equivalent to determining
the expectation values of all four observables above, requiring
4× 28 = 1,024 settings in total. Fortunately, the expectation val-
ues of the Pauli matrices I ,Z can be obtained with equal settings.
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Further owing to special features of the Shor code stabilizers,
the number of settings can be further reduced to 250 in total
(see SI Appendix). For each setting, we record fourfold coinci-
dences for 10 s, yielding a coincidence rate of ∼150 s−1. We
obtain a fidelity for the ideal state |Φ+〉 as F = 0.703(2). This
clearly surpasses the genuine entanglement 0.5 threshold. How-
ever, this fidelity F is insufficient to violate a CHSH inequality
with 〈CHSH〉= 1.974(3)< 2 experimental determined. Detailed
measurement results for the estimation of the fidelity and CHSH
inequality are shown in Fig. 3.

Next, we exclude the influence of correctable errors by con-
fining the state of the logical qubit to the actual code space
using the projectors Ics to the code space (see SI Appendix
for details). Experimentally, the overlap results in 〈I ⊗ Ics〉=
0.808(2), representing the overlap between the logic qubit pre-
pared in our experiment and the code space. This is then used to
exclude all errors that can be detected by the stabilizers, yield-
ing an error-corrected state fidelity F = 0.870(3) and 〈CHSH〉=
2.443(3)> 2 violation within the code space (Fig. 3). Further-
more, the encoded state fidelity F = 0.870> 0.85 would enable
magic state distillation with error-corrected Clifford gates. Our
results clearly demonstrate the effectiveness of QECC in our
approach, but unity fidelity was not achieved, due to multipair
emissions and nonfactorizable joint spectral amplitudes within
the SPDC process utilized for generating the |Φ+〉 state. Such
errors cannot be corrected by our encoding, as they sit inside the
code space (see SI Appendix for details).

With the entangled resource state characterized, we now need
to explore the operation of teleporting a physical qubit into the
logical qubit space. For such a quantum system, it is necessary
to show its performance, comprehensively exceeding any classi-
cal methods. Thus, in our experiment, we select eigenstates with
eigenvalue +1 of three Pauli matrices X , Y , and Z , denoted
as |0〉, |+〉, and |R〉, respectively, and measure their teleported
fidelity. We measure 125 settings for |0〉 , |R〉 and 98 settings
for |+〉. For each setting, we accumulate, on average, ∼60 coin-
cidences in 1,200 s, which corresponds to a count rate of ∼
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Fig. 3. Characterization of the entanglement teleportation resource state.
In A, we show the measured expectation values of X⊗XL, Y ⊗YL, and
Z⊗ ZL without (orange bars) and with (green bars) correction. One can
determine the fidelity of entangled state as F = 0.703(2) before and F =

0.870(3) after correction. Similarly, B shows the measured correlation func-
tions required for the CHSH inequality without (orange bars) and with
(green bars) error correction. The physical qubit is measured in the E1,2 =

(Z±X)/
√

2 basis, while the QEEC is measured with XL, ZL, respectively.
The four correlation functions C1, C2, C3, and C4 denote E1⊗XL, E2⊗XL,
E1⊗ ZL, and E2⊗ ZL, respectively. Then 〈CHSH〉= C1− C2 + C3 + C4 gives
1.974(3) before and 2.443(3) after correction. All reported measurements
are without background or accidental count subtraction, while the stated
measurement errors are obtained using Monte Carlo simulation with an
underlying Poissonian distribution of photon counting statistics.

Fig. 4. Experimental teleportation of an arbitrary single-qubit state. Here
we show the teleportation results of three representative states |H〉, |+〉,
and |R〉 that are eigenstates of σz, σx, anb σy, respectively, with eigen-
value +1. For each state, the fidelity with and without correction is shown
together with the projection probability. After correction, the averaged
fidelity of the three teleported states is 0.786(17), well exceeding the 2/3
classical limit shown as a red dashed line.

0.05 Hz. The achieved experimental fidelities (with and with-
out correction) and the projection probabilities Ics are shown
in Fig. 4.

The averaged fidelity of the three logic states is 0.520(7),
while, after projection into the code space, it increases to
0.786(17). This is well above the classical limit of 2/3. Fur-
thermore, in our experimental arrangements, the teleportation
fidelity of any state of the form (|0〉+ e iφ|1〉)/

√
2 is inde-

pendent of the phase φ. For example, the fidelities of φ=
0 and φ=π/2 are consistent in 1 SD, as shown in Fig. 4.
The obtained results demonstrate the ability of our approach
to write via quantum teleportation arbitrary quantum states,
including the magic state φ=π/4 for T gate, from a sin-
gle physical qubit into the logical code space consisting of
nine physical qubits. Moreover, the postselected error correc-
tion scheme employed here significantly increases the observed
average fidelities from ∼ 52 to ∼ 78% limited only by noncor-
rectable errors stemming from multipair emissions of the SPDC
processes.

Discussion and Conclusion
In summary, we have demonstrated the teleportation of a physi-
cal qubit into a logical qubit formed from a QECC. This is a key
step for optical quantum calculation on a larger scale. Although
the results achieved are far from the fault tolerance threshold,
our work is still far reaching. It demonstrates the ability to intro-
duce well-developed quantum teleportation to the QIP at the
logical level within current technology, and, as such, represents a
crucial step toward fault-tolerant QIP. Such an ability is essential
for probabilistic gate operations to be performed on an unknown
state in a scalable manner. More specifically and importantly, it
allows for magic state injection, a critical task in error-corrected
quantum computation. Our experiment can be further modi-
fied to adapt the fault-tolerant manner. Moreover, within the
theoretical scheme, it can be further concatenated with indepen-
dently developed modules, such as magic state distillation and
transversal logical operation block, that may become a useful
part of future implementations of fault-tolerant quantum com-
puter. For a global quantum internet based on optical fibers, it
will be necessary to employ quantum repeaters to overcome the
intrinsic losses in the optical fibers. To distribute quantum entan-
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glement in such a network, QECC is potentially necessary. In this
sense, our presented scheme could be useful in a future quantum
internet.

In addition, the demonstrated quantum entanglement
between a physical qubit and a logical qubit is a versatile building
block for many novel quantum information tasks. It enables
a teleportation-based divide-and-conquer method to realize
deep-depth quantum computing similar to the strategy used in
long-distance quantum communication, which is exponentially
resource efficient (40). It is also a basic structure to simulate
quantum gravity. The quantum correlation between the central
physical qubit and the logical qubit in the boundary is an
implementation of the holographic principle, which is the basic

rule to understand the space−time structure in quantum gravity
from the view of quantum entanglement (41). Our high-fidelity
transport of quantum state between the bulk and boundary
qubits demonstrates a kind of holographic equivalence.

Data Availability. All study data are included in the article and
SI Appendix.
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