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Abstract 

Background:  Upon environmental stimuli, ribosomes are surmised to undergo com‑
positional rearrangements due to abundance changes among proteins assembled into 
the complex, leading to modulated structural and functional characteristics. Here, we 
present the ComplexOme-Structural Network Interpreter ( COSNeti ), a computational 
method to allow testing whether ribosomal proteins (rProteins) that exhibit abundance 
changes under specific conditions are spatially confined to particular regions within 
the large ribosomal complex.

Results:  COSNeti translates experimentally determined structures into graphs, with 
nodes representing proteins and edges the spatial proximity between them. In its first 
implementation, COSNeti considers rProteins and ignores rRNA and other objects. 
Spatial regions are defined using a random walk with restart methodology, followed by 
a procedure to obtain a minimum set of regions that cover all proteins in the complex. 
Structural coherence is achieved by applying weights to the edges reflecting the physi‑
cal proximity between purportedly contacting proteins. The weighting probabilistically 
guides the random-walk path trajectory. Parameter tuning during region selection 
provides the option to tailor the method to specific biological questions by yielding 
regions of different sizes with minimum overlaps. In addition, other graph community 
detection algorithms may be used for the COSNeti workflow, considering that they 
yield different sized, non-overlapping regions. All tested algorithms result in the same 
node kernels under equivalent regions. Based on the defined regions, available abun‑
dance change information of proteins is mapped onto the graph and subsequently 
tested for enrichment in any of the defined spatial regions. We applied COSNeti to the 
cytosolic ribosome structures of Saccharomyces cerevisiae, Oryctolagus cuniculus, and 
Triticum aestivum using datasets with available quantitative protein abundance change 
information. We found that in yeast, substoichiometric rProteins depleted from translat‑
ing polysomes are significantly constrained to a ribosomal region close to the tRNA 
entry and exit sites.

Conclusions:  COSNeti offers a computational method to partition multi-protein com‑
plexes into structural regions and a statistical approach to test for spatial enrichments 
of any given subsets of proteins. COSNeti is applicable to any multi-protein complex 
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given appropriate structural and abundance-change data. COSNeti is publicly available 
as a GitHub repository https://​github.​com/​MSeid​elFed/​COSNet_i and can be installed 
using the python installer pip.

Keywords:  Structural systems biology, Ribosome structure, Omics integration, 
Specialized ribosomes, Ribosomal protein substoichiometry

Background
The function of cytosolic ribosomes is optimized to produce more ribosomes [1] through 
the translation of mRNAs. Translation creates ribosomal proteins (rProteins) that are 
used to produce functional ribosomes according to cellular needs. Moreover, translation 
builds the cellular machinery that initiates rRNA transcription and ribosome biogenesis, 
enabling processing of pre-ribosomes into translationally competent complexes [2–4]. 
Conceivably, ribosomes exist in various alternative forms, which vary structurally, and 
are functionally divergent, specialized complexes that meet translational requirements 
according to developmental or environmental cues [5–8]. Evidence for ribosome hetero-
geneity and specialization is rapidly growing across a wide variety of organisms [7, 9, 10].

Cytosolic ribosomes have a universal core that remained largely unchanged across 
evolutionary scales [11]. Compared to archaeal and bacterial ribosomes, metazoan 
cytosolic ribosomes logarithmically accumulated RNA expansion segments (ES) since 
approximately two billion years [11, 12]. Metazoan rProteins increased in number, 
duplicated, diverged, and acquired novel properties [13–17] which, when added to the 
accumulation of ES, implies extra potential to neo- and subfunctionalize. The ribosome 
considered as an entity is subject to selection and can be functionally specialized via het-
erogeneity of ES, rRNA modifications, substoichiometry of rProteins, i.e., the deviation 
from a canonical ribosomal proteome composition, the use of diverse rProtein paral-
ogs or post-translational modification of rProteins and rRNAs [18, 19]. An important 
source of heterogeneity is rProteins substoichiometry, which can affect groups of rPro-
teins [3]. In yeast, mutants deficient in individual rProteins can be defective in specific 
rRNA processing steps and consequently affect the assembly of multiple rProteins. Such 
defects are spatially constrained within the ribosome according to the sequence of ribo-
some assembly and thus depend on the overall location of the defective rProteins. Simi-
larly, we expect that triggered structural heterogeneity may influence the assembly of 
specific rProteins, paralogs or post-translationally modified rProteins. Thereby, vari-
ants of ribosome complexes may arise with spatially constrained structural heterogene-
ity that extends across multiple adjacent rProteins. We hypothesize that such concerted 
structural heterogeneity may be at the core of ribosome specialization and influence the 
mRNA preference of mature ribosome complexes.

Available ribosome structures make it possible to test for spatial rearrangement 
in ribosomal complexes as a mode of functional specialization in response to specific 
cues. Such a test offers the possibility of integrating atomic structures and omics meas-
urements of constituent ribosomal components. Integration of cryogenic or crystallo-
graphic atomic structures and omics data on abundances of structural components are 
part of the research field of structural systems biology [20] and begin with construct-
ing a coarse-grained simplified representation of the structure, often represented as a 
graph. Using graphs, one can assign and compare node and edge-properties in order to 

https://github.com/MSeidelFed/COSNet_i
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answer biological questions at a single protein level [21]. Similarly, at the multi-protein 
level, structural models of protein complexes can preserve protein-protein interactions 
as edges connecting single protein components as nodes. Such networks enable topo-
logical analysis and comparison of node- and edge-properties. More detailed informa-
tion on spatial relationships between proteins within a complex can be integrated by 
weighing the edges, where the edge weight describes specific properties of the interac-
tions [22]. The edge weights can encode diverse properties, ranging from physical prox-
imity to experimental evidence of said interaction. Using this approach, highly complex 
structures can be simplified to a network graph that represents essential structural infor-
mation within orthologous protein complexes, such as the diverse variants of cytosolic 
ribosomes.

Cytosolic ribosomes readily lend themselves to a graph-based representation. These 
complexes are mixed ribonucleoprotein entities that consist of two subunits, namely the 
large 60S (LSU) and the small 40S (SSU) that combine to form a functionally mature 
80S ribosome complex. Both subunits contain distinct ribosomal RNAs (rRNAs) as scaf-
folds for the binding of a multitude of rProteins [23]. If rRNAs, mRNA and tRNAs are 
excluded from the structural models, the outcome is an interconnected spatial array of 
rProteins that constitutes what we may call the structural ribosomal proteome (rPro-
teome). A graph interpretation of the rProteome generates a specific topology that is the 
product of protein-protein interconnectivity and RNA mediated structural interactions 
generating community gaps within the network. Proteins within this network comprise 
sub-structures of physically adjacent entities. Thus, graph properties such as modularity 
[24], i.e., a measure of the division of a network into modules or communities, could be 
exploited to yield approximate rProtein communities. Likewise, coherent rProtein sub-
sets can be sampled from these weighted rProteome networks. Random walks through 
weighted graphs are a well-documented procedure [25] capable of identifying communi-
ties within convoluted networks [26, 27] and correlations to hidden molecular functions. 
Community detection approaches enabled elucidating organizing principles of enzyme 
physical interaction networks and their relation to metabolic status [28]. Similarly, rPro-
tein physical interaction networks provide the basis to define structurally coherent rPro-
teome subsets that can be used to answer specific functional and biological questions. 
Going back to ribosome biogenesis, we may ask whether upon external cues, adjacent 
rProteins comprise significantly modulated sets of proteins.

Once coherent rProteome subsets are defined, these can be analyzed to identify local-
ized changes based on systems biology data. Transcriptomic measurements of rProtein 
gene expression changes can be considered as a first level of information integration, 
supporting prediction and hypothesis generation. On the other hand, measurements of 
rProteome composition can verify assumptions of localized changes within the ribo-
some complex. The spatial enrichment analyses proposed in this manuscript contrib-
ute to the prediction and verification of ribosome heterogeneity, e.g., substoichiometry 
of ribosome complexes or changes in rProtein paralog composition, and more impor-
tantly, add the aspect of concerted ribosome heterogeneity affecting sets of co-localized 
rProteins. Concerted heterogeneity can be expected, as ribosome biogenesis is a highly 
regulated sequential process that is far from random. Alternatively, post-assembly 
changes are conceivable but restricted to surface accessible rProteins. Modulation of 
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spatially-linked groups of rProteins rather than heterogeneity of single rProteins may be 
the basis of ribosome specialization and confer ribosome complexes the ability to influ-
ence the translational status of transcripts, favoring those that require active translation 
upon environmental or developmental cues, a concept known as the “ribosomal code” 
[29].

In the current study, we present a workflow enabled by the ComplexOme-Structural 
Network Interpreter ( COSNeti ) python module that decomposes cryogenic or crystal-
lographic atomic structures of multi-protein complexes into subsets of physically adja-
cent proteins and subsequently tests them for enrichment of concerted changes relative 
to other parts of the complex. Thereby we integrate structural information with read-
ily available omics-measurements from systems analyses. To achieve this integration, 
we subset protein interaction networks of multi-protein complexes derived from eluci-
dated structures using a random-walk sampling with restart. Structural coherence and 
region consensus is achieved by iterating the sampling procedure through a translated 
graph weighted by protein physical proximity as a proxy of traversal probability. We test 
the performance of COSNeti by comparing regional coherence with several graph com-
munity detection algorithms. We highlight as a novelty that COSNeti , unlike the tested 
algorithms, allows users to customize coherent regions for specific biological questions. 
Consequently, we describe a procedure to optimize parameters of our sampling and 
evaluation method using as case studies the cytosolic ribosome complexes of various 
metazoans. More specifically, we compare the relatively simple yeast ribosome to the 
more complex mammalian and plant counterparts and integrate available systems data 
of each species. To gather information on a previously unanswered biological question, 
we explore concerted localized rProtein heterogeneity that suggests ribosome specializa-
tion. We specifically ask whether changing physiological conditions affect rProtein het-
erogeneity in a way that is constrained to specific spatial regions of metazoan ribosomes.

Implementation
COSNeti is a python module organized based on a collection of scripts that allow any 
user to select coherent spatial neighborhoods of protein entities from a multi-protein 
complex in order to test whether these communities characterize a region within the 
complex that becomes significantly enriched upon any experimental procedure. The 
complete workflow is detailed in a step-by-step manner in Fig. 1 and Additional file 1.

Structural data preprocessing

RCSB PDB entries 6SNT, 6GZ5, and 4V7E were retrieved as PDBx/mmCIF files and the 
following pre-processing steps were implemented to ensure their usability for this study. 
Nonstandard amino acids labeled as “hetero atoms” (HETATMs) and duplicate atoms 
were removed from all proteins. rRNA, ions, tRNA, and mRNA components of the orig-
inal structure were ignored. The percentage of missing residues per ribosomal protein 
(rProtein) was noted (see Structure Quality Requirements section in the Discussion). 
Each rProtein sequence was verified as correctly labeled via BLAST [30] against the 
protein entry originally modelled into the Cryo-EM densities. Proteins were renamed 
according to the new rProtein naming scheme [31].
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Proximity network building

Translating ribosome atomic structures to rProtein proximity networks allowed char-
acterization of the overall topology and protein relative positions. The structural inter-
actions of rRNA and rProteins were not considered because the rRNA structures were 
ignored when building the network. Thus, the concept of proximity in the current study 
does not imply direct physical interaction between rProteins, rather a high potential for 
interaction due to physical proximity. The resulting network is an undirected graph, with 
nodes representing proteins and weighted edges between two proteins sharing at least 
one spatial contact at a given proximity threshold. To calculate contacts between pro-
teins, all amino acid residues belonging to both proteins were represented in the three-
dimensional space of coordinates of the given model by their geometric center of mass 
(i.e., coarse-grained to a single point). The Euclidean distances between each pair of 
amino acids from paired rProteins were calculated. The choice to coarse-grain at amino 
acid residue level enabled detection of potential interactions of extended non-globu-
lar proteins that branch out far across the ribosome, such as universal large ribosomal 
protein 4 (uL4) or eukaryotic large ribosomal protein 19 (eL19). Edges were accepted 
at different distance thresholds (e.g., dt = 5, 8, 12, or 20 Ångströms [Å]). Thereby, we 

Fig. 1  COSNet i  step-by-step detailed workflow. Also related to Additional file 1 where the two detailed 
examples from this manuscript were optimized and developed. COSNeti is divided in five steps that must be 
completed plus accessory functions that allow users to perform quality control checks or produce alternative 
outputs along the way. The input data is an mmCIF file. Step 1 extracts all the protein entities from the input 
file as PDBs using split_cif_by_entity.py. Additionally, Step 1’ allows checking the percentage of coverage 
of each modelled protein sequence as compared to its FASTA sequence using check_cif_completeness.py. 
Step 2 prepares the PDB files by building a list of combined names for each protein pair using combination.
py. In parallel the workflow offers as Step 2’ the opportunity to reindex the residues column inside PDBs in 
case there are disruptions in the structures that would lead to holes by using reindex_pdb.py or its batch 
counterpart batch_reindex_pdb.py. Step 3 takes the list of PDB combinations and fits distance matrices across 
each file pair using calculate_distance.py or its batch counterpart batch_calc_dist.py. Step 4 uses the distance 
matrices to build a list of contacts and a graph through the use of contacts_from_dist.py. Finally, Step 5.1 
integrates the Omics abundances into the graph analyses through intcryomics.py. Alternatively, if there is not 
a binary Omics file users may rely on Step 5.2 intcryomics_sigassign.py to manually select the protein entities 
that feature significant changes. Step 5.1’ returns customized graph files that can be used to highlight specific 
regions in the networks using pimp_my_network.py while Step 5.2’ allows users to investigate structural 
coherence in the regions selected through the existing graph community detection algorithm Infom​ap using 
Region_selection_infomap.py. mmCIF icon was taken from IUCr

https://github.com/mapequation/infomap
http://ww1.iucr.org/
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generated several proximity networks varying around the common consensus of 8 Å for 
residues to be considered in contact, according to the 8th Critical Assessment of Pro-
tein Structure Prediction experiment (CASP8) [32]. Weighting of edges was performed 
according to the proportion of inter-amino acid residue contacts found between two 
proteins as compared to all the inter-amino acid residue contacts from the source node-
protein. Networks were visualized with the R package igraph [33] and Cytoscape soft-
ware [34].

Structural region definition

Splitting ribosomes into separate structurally coherent regions allowed for targeted 
statistical testing of protein features within regions (Fig. 2—upper panel) and ensured 
that any regions of interest could be further validated by known biological domains. The 
main priority was avoiding pre-knowledge biases while selecting node associations. To 
achieve this, randomness was introduced when sampling nodes. In detail, a consensus 
random walk sampling procedure with restart methodology was implemented. The pro-
cedure (Fig. 2—lower panel) involved: (4.1) a proximity network was taken as input, and 
a walk length and iteration number were defined. The walk does not reverse and is com-
pletely memoryless. The walk length represented the number of steps a random walk 
takes before terminating, and the iteration number was the number of random walk 
restarts from a particular starting node. Edges between protein nodes were weighted 
based on the number of amino acid residues in contact normalized by the number of 
amino acid residues of the source node and transformed into a transit probability. Given 
two protein nodes, x and y, the probability of walking from node x to y is computed as 

Fig. 2  COSNet i  workflow emphasizing the novelties within our consensus random walk sampling procedure. 
Illustration of structural sampling and testing methodology used in COSNeti to test whether proteome 
heterogeneity is spatially confined in multi-protein complexes. The upper panel depicts the workflow, 
divided into three parts: proximity network building from structural data, consensus random walk sampling 
based on the input network, and statistical testing of the defined regions. The lower panel shows in-depth 
the novelties within the consensus random walk sampling procedure
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Px,y = wx,y/wx , where wx is the sum of all weights of all outgoing edges of node x. Thus, 
the probability corresponds to how many contacts there are between node x and y, rela-
tive to all other nodes connected to x. The random walk is no longer purely ’random’ in 
the strict sense, but has a higher probability to walk along an edge with a higher weight. 
(4.2) A collection of all walks for every start node for all nodes in the network was com-
piled. Exemplary sample walks for start nodes A and J were selected for illustration pur-
poses (Fig. 2—lower panel step 4.2). (4.3) For all sets of walks that share the same start 
node, (4.4) a count-based summary of node visits was calculated, where every instance 
of a visit to a node, even those within the same walk, was tallied. In our example (Fig. 2—
lower panel step 4.4), walks with start node A often visited nodes E and D, followed by 
visits to nodes C and H. (4.5) Pre-regions were defined for all start nodes, consisting of 
nodes that were visited with a frequency of at least half of the iteration number. Using a 
count-based consensus ensured that nodes, which were relatively far away from the start 
node and were visited by chance, were excluded from the pre-regions. As an example, 
the pre-region for start node A is A, E, D, C, H (Fig. 2—lower panel step 4.5). Steps (2-5) 
were carried out to ensure that the pre-regions were not biased towards a single walk 
from a certain start node and also that each node in the network served as start node. 
Thereby, all nodes were visited at least once. At this point, the number of pre-regions 
equaled the number of nodes in the network since each of the nodes served as starting 
point. The level of node overlap among the pre-regions varied, where two pre-regions 
with different start nodes could in one extreme case be fully distinct from one another 
or in the other extreme be identical. (4.6) Final regions were aggregated from the pre-
regions by calculating the minimum set cover that spanned the entire universe of pro-
tein nodes. This procedure gave the minimum number of final regions that spanned 
the entire node space, and returned a small set of regions with minimized redundance. 
Finding the minimum set cover gave preference to large and more complete regions that 
mapped to the entire node space, as opposed to a large number of small regions.

Testing of enriched relative changes within regions

The statistical testing procedure used the set of all known rProtein paralogs and aimed to 
discover whether there is an association between protein nodes being part of a structural 
region, and having changed in relative abundance (CRA) in response to experimental 
conditions. CRA was defined as differential stoichiometry between ribosomal complexes 
as determined by proteomics data. CRA was defined as a binary data-type, where a code 
of “1” indicates abundance changes and a code of “0” indicates otherwise. The testing 
scheme assumes a background hypergeometric distribution, and is thus equivalent to 
the Fisher’s exact test, with baseline probability of enrichment equal to the total frac-
tion of paralogs with CRA compared to all rProtein paralogs. The null hypothesis here 
states that there is no relationship between being part of a particular structural region 
and having the CRA property. In other words, the null hypothesis assumes that proteins 
exhibiting the CRA property are distributed randomly throughout the complex. For sta-
tistical testing, the SciPy implementation of the Fisher’s exact test was used [35]. Due to 
multiple testing, computed p-values generated by the Fisher’s exact test were adjusted 
via Bonferroni correction [36].
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Test case datasets

Three ribosome structures were used in order to optimize the parameters of our 
methodology. All datasets corresponded to metazoans ribosomes with varying 
complexities. More specifically, the ribosome structures of Saccharomyces cerevi-
siae—2.80 Å (https://​www.​rcsb.​org/​struc​ture/​6SNT), Oryctolagus cuniculus—3.50 
Å (https://​www.​rcsb.​org/​struc​ture/​6GZ5), and Triticum aestivum—5.50 Å (https://​
www.​rcsb.​org/​struc​ture/​4V7E) were used. The datasets varied in structural resolu-
tion, which allowed us to determine whether a relatively low resolution would pre-
clude the use of our method (see Structure Quality Requirements section in the 
Discussion). In agreement with these considerations only two exemplary structures 
were tested for spatial rearrangements of the riboproteome. The third (i.e., the only 
available plant cytosolic ribosome structure) one should be used carefully consid-
ering the parameters provided in COSNeti . We selected proteomics datasets that 
indicated substoichiometry of rProteins in mammalian cell cultures and yeast. The 
following selected datasets evaluated rProtein substoichiometry between pools 
of free non-translational subunits or monosomes and translationally competent 
polysomes:

1. Mammalian [37] taken from Shi et al. (2017). Species: Mus musculus. Cell line: 
Low-passage E14 mouse embryonic stem cells (mESCs). Riboproteome: Additional 
file 2 from Shi et al. (2017). rProteins that were significantly substoichiometric, i.e., 
P < 0.05 were set to “1”, similarly proteins that did not have a statistical change with 
P > 0.05 were set to”0”. Ribosomal protein coding genes and paralogs have been 
compiled from Supplementary Table  1 from Perry  (2005) [38] by translating the 
nomenclature into the common new rProtein family names [31]. If the sequence of 
significantly changed paralog rProteins within one family was identical, all paralogs 
were set to one.

2. Yeast [39] taken from Slavov et al., (2015). Species: Saccharomyces cerevisiae. 
Cell line: “prototrophic diploid strain (DBY12007) with an S288c background and 
wild-type HAP1 alleles (Slavov and Botstein, 2011)”. Riboproteome: Additional 
file 4, mmc5. Additional file 4 treated paralog ambiguities as a united rProtein fam-
ily response. Thus, the top substoichiometric rProteins, including all paralogs per 
family, with a larger than 0.5 absolute log2-fold change among translating polysomes 
loaded with different amounts of monosomes were set to “1”, the rest of the proteins 
were set to “0”. The complexes were isolated from glucose-fed yeast, growing at sta-
tionary rate, and recovered from ribosomal fractions corresponding to four loaded 
80S-ribosomes per mRNA. rProtein coding genes and paralogs have been compiled 
from the Saccharomyces Genome Database (SGD) by translating the nomenclature 
into the common new rProtein family names [31].

In both cases, the entire set of rProteins was considered as all the paralogs from 
the proteins that were available in the structural files. Therefore, to prevent false 
significances, the annotated peptides were verified against the FASTA sequences of 
paralogs within rProtein families to make sure that they were not redundant. In case 
of redundancy, both paralogs were considered to have contributed to the sequenced 
peptide identified protein and thus were set to “1” if significant.

https://www.rcsb.org/structure/6SNT
https://www.rcsb.org/structure/6GZ5
https://www.rcsb.org/structure/4V7E
https://www.rcsb.org/structure/4V7E
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Results
The COSNeti workflow, outlined in Figs. 1 and 2, can be generalized to accommodate 
any multi-protein complex as long as paired orthologous structures and differential 
omics abundances are available. Numerical parameters such as the structural proxim-
ity threshold ( dt ) and module-sampling related walking length need to be tuned based 
on prior analyses of size and resolution-quality of the studied complex. In the following 
sections, we use the cytosolic ribosome as a test case to exemplify the fine-tuning of 
those parameters. As is explained in our introduction, we aimed the method towards 
analysis of the rProteome, i.e., the compendium of structural rProtein components. 
Consequently, parameter optimization coped with the intrinsic proteome diversity that 
our test cases, the metazoan ribosomes, have. We analyzed structures from less com-
plex riboproteomes that contain only one to two paralogs per rProtein, i.e., the yeast 
and mammalian riboproteomes. As more complex cases, we selected the highly com-
plex plant riboproteome, which potentially harbors combinations of two to seven para-
logs per rProtein family in the dicot model plant Arabidopsis [40] or two to three per 
rProtein family in the monocot example, rice [41]. The canonical structures of ribosome 
complexes accommodate single copies of each rProtein. Therefore, we designed the pro-
cedure to perform regardless of the number of paralogs per rProtein family and organ-
ism. We chose to always test the whole set of annotated rProtein paralogs per genome, 
thereby using the near comprehensive information from omics studies.

Translating structures into graphs

The first critical parameter to obtain a weighted graph from an atomic structure is the 
definition of a distance threshold that determines the adjacency matrices between pro-
tein nodes, and ultimately influences the resulting network of nodes and edges. Accord-
ing to CASP8, the consensus distance for a residue-residue contact within a protein 
structure is 8 Å [32]. More specifically, residues in contact have their C β atoms ( β-car-
bon or C β , or C α for glycine) within a distance of 8 Å. Nevertheless, as many rProtein 
interactions are mediated by rRNA molecules, we tested whether the 8 Å threshold cor-
rectly reflects the structure of the ribosome in the obtained protein network. The aim 
of a network representation is to simplify the three-dimensional atomic models, while 
retaining structural and biological accuracy. Thus, the proximity network topology must 
reveal known ribosome structures as an internal means of validation. To investigate the 
biological accuracy of our networks, the clustering behavior within both ribosomal sub-
units, i.e. the LSU and SSU, was determined at different distance thresholds (Fig. 3). Our 
network layouts treated the edges between nodes as elastic springs. The springs organ-
ized themselves according to a force function influenced by the weight of each edge. The 
function minimized the sum of forces in the network, i.e. Edge-weighted Spring-Embed-
ded algorithm in Cytoscape [34]. This layout algorithm treats a network as an intercon-
nected structure of actual physical interactions. The rearranged network allowed us to 
describe topological features of the complexes that support biological knowledge (Fig. 3).

The topology of the proximity networks at varying distance thresholds ( dt = 5, 8, 12 
and 20 Å see Additional file 2) outlined structural features of the ribosome. A consen-
sus random sampling was done for one exemplary variable region, i.e., the polypeptide 
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exit tunnel (PET), characterized by at least the eL39 and eL37 protein families (PET 
in Fig. 3). It became evident that varying thresholds affected region coverage. Increas-
ing the distance threshold resulted in increasing variability of defined regions. In other 
words, a higher threshold included “outlier” proteins, which were not physically close to 
the canonical rProtein cluster of the region. By contrast, if the threshold was too small, 
the network contained separate islands with some expected nodes omitted from the net-
work. Hence, the outcome was a low connectivity among rProteins. An ideal distance 
threshold should produce a network, in which all the expected nodes or constituent pro-
teins of the structure link by at least one edge. The possible optimized outcomes are a 
compromise between connectivity and coverage (Table 1).

Considering the PET region, at dt = 5Å, the PET rProteins eL37 and eL39 were only 
visible in the wheat structure due to a single mutual link, while eL39 was not at all 
included in the yeast and rabbit networks (Fig. 2). Similarly, more than 15% of the rPro-
teins were omitted from the three networks at dt = 5Å (Table 1). At the other extreme, 
with dt = 20Å, the entire network is highly inter-connected. An indication of over-repre-
sented connectivity is the transition to an exponential rate at which the number of edges 
increases relative to the nodes with increasing dt (Table  1). Returning to our example 

Fig. 3  Ribosomal protein networks at different distance thresholds (dt) between amino acid residues in 
contact. Highlights of the polypeptide exit tunnel yielded region are outlined in black as a measure of 
structural and biological accurateness of the obtained networks. The networks were built using the COSNeti 
workflow (https://​github.​com/​MSeid​elFed/​COSNet_i) with default values from PDBx/mmCIF entries 6SNT, 
6GZ5, and 4V7E corresponding to Saccharomyces cerevisiae (bottom panel), Oryctolagus cuniculus (middle 
panel) and Triticum aestivum (upper panel) ribosome structures. The networks were analyzed as undirected 
graphs in Cytoscape [34], a larger node size indicates larger degree, the thickness of edges is defined as 
a transit probability between nodes calculated based on the number of contacts between each protein 
pair and the network layout is edge-weighted spring-embedded to simulate a real structurally connected 
network with forces acting upon it. The 60S subunit nodes have been highlighted in light blue/black, and the 
40S subunit nodes in light yellow, nodes that belong to the PET region of the 60S LSU (i.e., region containing 
eL39 rProtein family) have been highlighted in black. Note that as dt gets larger outlier proteins get into the 
defined regions while when dt is lower rProteins are not fully interconnected and many nodes are missing. 
Species icons were exported from BioRender (https://​biore​nder.​com/) under a paid license. The network 
interactions and weights have been compiled in Additional file 2

https://github.com/MSeidelFed/COSNet_i
https://biorender.com/
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(Fig.  3), the PET is a densely packed region that increased in size with increasing dt 
beyond the canonical PET definition and contained a large proportion of LSU proteins 
in the rabbit and wheat networks. Problems became apparent, too, with across struc-
ture interactions. For instance, rProteins found at opposite parts of the ribosome were 
included into the same region in wheat already at dt = 12Å, while this happened in the 
yeast case only at dt = 20Å. Inversely at dt = 8Å, the plant P-stalk proteins became dis-
connected from the network. Disconnection creates a bias in as much as at every sam-
pling step the P-Stalk will be an isolated region. Upon inspection of the wheat structure, 
we realized that this problem arises due to partially incomplete rProtein sequence cover-
age (see Structure Quality Requirements section in the Discussion). For this structural 
quality reason, we omitted the plant structure from the following analyses. The rabbit 
and yeast networks were 95% connected at dt = 12Å, without isolated sub-regions, while 
“outlier” proteins were still absent. We therefore identified dt = 12Å as the ideal dis-
tance based on which to define regions in the yeast and rabbit structures. Using the same 
concepts, in the wheat structure a dt = 8Å would be the preferred threshold, were we 
to proceed with this analysis as concurrently done [42]. The chosen distance thresholds 
covered at least 95% of the nodes in all three cases.

Defining spatial regions

Once a network is compiled, walking across the network requires a predefined num-
ber of random steps and definition of a starting node. The direction of each step of the 
walk is influenced by the edges weights and the node interconnectivity. The cluster-
ing coefficient of the starting node is a determinant of the defined regions. The clus-
tering coefficient is a measure of connectivity among neighbors of the starting node. A 

Table 1  Compromise between connectivity and coverage among networks fitted at varying 
distance (Å) thresholds

Italic style represents the node number and bold the edge number

Species Nodes Edges Threshold

Triticum aestivum 68 73 5 Å

75 131 8 Å

78 172 12 Å

79 203 15 Å

80 238 18 Å

80 263 20 Å

Oryctolagus cuniculus 59 49 5 Å

71 123 8 Å

75 164 12 Å

77 200 15 Å

77 232 18 Å

77 263 20 Å

Saccharomyces cerevisiae 60 57 5 Å

67 115 8 Å

68 146 12 Å

71 180 15 Å

71 207 18 Å

71 227 20 Å
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high clustering coefficient of the starting node means that a random walk will stay in 
the vicinity or may even return to the starting node. By contrast, if the starting node 
has a low clustering coefficient and high betweenness centrality, the walk will likely 
lead to one of the parts of the network that the starting node connects. The measure of 
betweenness centrality refers to node importance in a network. A node that often acts 
as a bridge within shortest paths across the network has high betweenness centrality 
and connects largely separate modules within a network. In this sense, our methodology 
defines densely packed regions or modules of nodes in the weighted graph. Hubs that 
connect modules are attached to the closest group of highly interconnected neighbors. 
In order to avoid bias of a single walk trajectory, we iterate the random walk follow-
ing a restart methodology from each node by a predefined number of times. The itera-
tion number has high impact in the reproducibility of obtained regions and increasing it 
achieves region consensus, e.g., our exemplary analysis of PET variability (Fig. 4). After 
each walk, we gather a consensus of the most visited nodes from each start node and 
form pre-regions. Initially, the number of pre-regions equals the number of nodes. The 
following steps reduce the number of regions to a minimum set that covers the whole 
network with minimum overlap between regions.

In general, a core PET region occurred in every consensus, with seven nodes in the 
yeast and twelve nodes in rabbit network. When the iteration number was small, outlier 
proteins that did not belong to the canonical regions tended to be part of them after the 
network sampling procedure. For example, five specific nodes for yeast and rabbit are 
only part of the consensus walk when the iteration number is smaller than 10 in Fig. 4. 
This exemplifies the necessity of iterating the consensus walk to increase the reproduc-
ibility in region picking. As the iteration number increased, fewer outlier proteins, prod-
uct of biased consensus walks, were found. Proteins from a consensus replaced outlier 
proteins from low iterated walks at higher iteration numbers. For instance, there were 

Fig. 4  Overlap between Obtained PET Regions of Yeast and Rabbit at Varying Iteration Number for 
Consensus. The intcryomics.py function was run using a default walking length of ∼ 1

4
 of the network nodes 

(i.e., walking length of ∼ 20 nodes) and 4, 9, 15, 21, or 50 iterations. The resulting regions that contained the 
PET signature rProteins, i.e., eL39 and eL37, were concatenated for a single run, and intersected with the 
resulting PET regions from other runs. The results from the intersection were visualized using Venn diagrams 
with the VennDiagram [74] package in R software [75]
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three and two proteins shared by Iteration No. 21 and Iteration No. 50 in the rabbit and 
yeast PET region, respectively (Fig. 4).

In addition to the iteration number, the walking length parameter (i.e.,  number of 
steps in a walk) influenced the size and number of regions identified as the minimum 
spanning set covering all nodes. Here, we exemplify how the resulting ribosomal regions 
varied due to taking different proportions of the total node set as walking length (Table 2 
and Additional file 3). Going beyond or below the proposed proportions may suit dif-
ferent computational needs and biological questions. In our case, we aimed at testing 
the relative proportion of significantly changed nodes in the resulting regions as com-
pared to the whole ribosome. Therefore, regions with varying degrees of overlaps are 
acceptable. If partially overlapping regions have a different significance p-value, it means 
that not all structurally related proteins from a given region are changed, rather a spe-
cific combination of rProteins needs to be changed in order to call a region significantly 
enriched.

Region size needs can vary with different biological questions. To cover variable 
regions sizes we introduced the walking length parameter, which, when increasing, pro-
gressively yields larger regions (Table 2 and Additional file 3). The defined regions could 
then be tested for enrichment based on abundance changes of their constituting pro-
teins. In the ribosomal example, we optimized the region size to match the significant 
proportion of nodes. In other words, regions had to be large enough for a single node 
to be proportionally equivalent to the percentage of significant nodes in the network. 
For instance, if 20% of the nodes in the network were significantly changed, i.e., showed 
evidence of changed abundance, then the region must be at least five nodes in length in 
order to have one significant node meeting the background proportion. Smaller regions 
imply that a changed node may be interpreted as a local enrichment of changed abun-
dance in the multi-protein complex. This becomes especially relevant when the percent-
age of significant nodes in the network is low. The proportion of significant nodes in our 
ribosome test cases varied (Additional file  4). Therefore, we tuned the average region 

Table 2  Tuning the walking length enables yielding region sizes needed for specific biological 
questions

Species Node 
proportion/
set

0.5 0.33 0.25 0.2 0.17 0.14 0.13 0.11 0.1

Oryctolagus cuniculus 77 39 26 19 15 13 11 10 9 8

Region number 8 11 12 14 15 19 17 21 21

Average region length 15 12 10 8 7 7 6 5 5

1st quartile 10 10 8 7 6 6 5 4 4

Median 17 12 9 8 7 7 7 5 5

3rd quartile 19 14 12 9 8 7 7 6 6

Saccharomyces cerevisiae 71 36 24 18 14 12 10 9 8 7

Region number 13 12 13 15 16 18 19 20 22

Average region length 17 13 11 9 8 7 6 6 5

1st quartile 15 11 10 8 6 6 5 4 5

Median 17 14 11 9 8 7 7 7 5

3rd quartile 18 15 13 10 8 8 7 7 6
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sizes to contain at least the number of rProteins that would make a single unit equiva-
lent to the baseline proportion of significances. This enabled us to test whether rProtein 
dependent ribosome specialization is locally enriched in ribosomal regions.

Building a ribosomal protein network

The consensus networks for our ribosomal test case were built with a threshold of 12 Å 
that allowed a coverage > 95% of the nodes corresponding to 75 and 68 nodes (proteins) 
in the rabbit and yeast networks, respectively. Secondly, we made sure that the region 
selection did not contain outlier proteins by iterating the region consensus 50 times. 
Finally, a random walk length equal to 0.13 times the node set was selected. This pro-
portion achieved regions sizes that enabled us to match the baseline probability of sig-
nificances for the prioritized test cases (see Testing the Spatial Constraints of Ribosome 
Specialization and Additional file 4) in both networks, yeast and rabbit. Subsequently, 
we compared the resulting optimized ribosomal networks (Fig. 5). We uncovered inter-
connected paths, highly or poorly interconnected rProtein neighborhoods, dense mod-
ule and inter-module connective hubs, bridges between important structural features 
and biological details that where either conserved or different between the investigated 
organisms (Fig. 5).

Both networks separated into 60S LSU and 40S SSU. Subunits were connected via 
nodes with a high betweenness centrality and a low clustering coefficient. There were 
four interface paths connecting both subunits. Path number one conserved rProtein 
families uL3, eL24 and eS6 as the main transit nodes. In yeast, there was an additional 

Fig. 5  Optimized yeast and rabbit ribosomal protein networks. a Saccharomyces cerevisiae network, b 
Oryctolagus cuniculus network built at a contact threshold ( dt ) of 12 Å between amino acid residues. The 
network layout is Edge-weighted Spring-Embedded. The weights of edges correspond to the number of 
contacts between two rProteins and in that sense are proportional to the transit probability defined as the 
main influence during COSNeti random walk. A larger node size corresponds to a larger node degree. Nodes 
belonging to the 60S large subunit (LSU) have been colored blue and nodes belonging to the 40S small 
subunit (SSU) have been colored yellow. Note that there are three conserved/sampled interface pathways 
between rProteins from the two subunits (Table 3). The network representations have been created in 
Cytoscape [34]
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edge connection between eL24 and uL3 via uL23, which was replaced in the rabbit net-
work by uL14. Path number two conserved rProtein families uL5 and uS13. The connec-
tion in yeast was bridged via uL11. Path number three conserved two connective edges, 
eL30-uS15 and eL19-uS17. Finally, path number four conserved the connection between 
uS1, and nodes eL2 and eL8. The latter had lower weights between the interconnected 
edges. Each subunit had highly interconnected neighborhoods that formed around hubs, 
i.e., nodes with high degree and high interconnectivity among neighbors (high cluster-
ing coefficient). The conserved center of the LSU and node with largest degree was uL4. 
The PET stemmed right from uL4 and elongated to interface path number three. Next to 
uL4, nodes uL30 and eL20 acted as hubs to connect other highly interconnected neigh-
bors from the LSU. Node eL20 connected the P-Stalk structure and its surrounding area, 
while uL30 connected both eL20 and uL4. The conserved centers of the SSU were uS3 
and uS5. Both centers connected rProtein-condensed regions. Additionally, in the rab-
bit network, uS8 was the SSU node with the highest degree. Node uS3 positioned in the 
edge path stemming towards interface path number two while uS5 toward interface path 
number one and three. Overall, regions in the SSU were more compact and separated 
from each other as compared to regions in the LSU, which were evenly interconnected 
impairing visual separation.

As a verification step, we assessed the extent of defined regions and their match to bio-
logically known ribosomal features outlined in the network topologies (Table 3), which 
gave us a clear understanding of the constraints and potential of our method during 
coherent regional definitions.

The defined regions (Fig. 5) reflected the overall structural organization of ribosomes. 
First, there were inter-subunit connective paths, which comprised interface regions 
defined on three highly weighted paths in yeast and rabbit (Table 3). There was a fourth 
path, characterized by eS1, which had a lower relative weight of the edges that connect 
subunits. Thus, the eS1 inter-subunit path was not defined as a region by our method. 
Within the subunit mainland, LSU in both test cases contained more regions than SSU, 
reflecting a higher edge number between nodes. Consequently, LSU regions contained 
more overlaps and less unique nodes. The SSU, on the other hand, formed communities, 
subsetting the SSU node-set into a less overlapped set of regions. In brief, defined LSU 
regions were structurally related to the PET, a central region, interface-adjacent regions 
and a subunit top-region. The latter positioned itself besides the P-Stalk. SSU regions 
divided into a central hub (i.e., uS3-containing region), a bottom tail that stemmed from 
the central hub, a central region that contained uS5 and interface adjacent regions. The 
center was defined as a separate region in the rabbit network but in the yeast network 
was attached to the interface regions.

Subsetting structures from multi-protein complexes into regions as performed by 
COSNeti is equivalent to detecting communities inside of a network. Therefore, we com-
pared the performance of COSNeti to pick coherent regions or communities to that of 
publically available algorithms. Three types of algorithms were tested. One based also on 
random walks, i.e., walkt​rap, a second one based on the map equation, i.e., Infom​ap, and, 
in addition, a third one based on eigenvectors, i.e., eigen​vecto​r based​ models. The three 
tested algorithms (see tests details in Additional file 5 for walktrap and eigenvector models, 
and in Region_selection_infomap.py for Infomap) have a crucial conceptual difference with 

https://www.rdocumentation.org/packages/igraph/versions/0.5.1/topics/walktrap.community
https://github.com/mapequation/infomap
https://www.rdocumentation.org/packages/igraph/versions/0.4.3/topics/leading.eigenvector.community
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COSNeti , which is that nodes may not be redundant within communities, with the con-
sequence that community size varies considerably (Additional file 6). This feature may be 
more or less desirable depending upon the experimental or biological question. Walktrap 
finds 11 communities both in the rabbit and yeast networks, varying in size from two to 

Table 3  Matching of coherent regions with biologically known network topologies

Regions rProteins Region identifiers

Rabbit—60S rProteins IntCryOmics_6gz5_dt12_IN50_WL10

 Region 1 eL32 uL4 eL14 eL20 eL6 uL13 eL28 eL33 LSU-TopRegion

 Region 2 eL13 eL15 eL36 uL15 uL29 uL23 eL8 uL2 LSU-Center.2

 Region 10 eL13 eL31 uL22 eL39 eL37 uL29 uL4 LSU-PET.1

 Region 11 uL11 eL40 uL10 uL6 LSU-P-Stalk

 Region 12 eL18 uL4 eL39 uL24 eL28 uL30 LSU-PET.2

 Region 17 eL20 eL21 eL29 uL30 uL18 LSU-Interface2Adjacent.1

 Region 16 eL13 eL15 eL36 uL15 uL1 uL29 eL8 LSU-Center.1

 Region 19 eL14 eL20 eL21 uL16 uL18 LSU-Interface2Adjacent.2

Subunit interface rProteins

 Region 5 eL13 eL15 uL5 eL42 eL21 uS13 uL18 Interface2

 Region 6 uS12 eS8 eL19 uS15 uS17 uS8 Interface3.2

 Region 8 eL27 eL30 eL43 uL2 eL34 uS15 Interface3.1

 Region 9 uL3 eL24 eS6 uL14 Interface1

 Region 18 uS12 eS8 eL19 eL22 uS17 Interface3.2

40S rProteins

 Region 3 eS24 eS4 eS30 uS2 eS21 uS4 uS5 uS8 SSU-Interface3Adjacent

 Region 4 eS25 uS7 eS28 eS1 uS9 eS26 uS11 SSU-Interface1Adjacent

 Region 7 uS10 eS10 uS14 uS3 eS17 uS2 SSU-CentralHub

 Region 13 eS7 uS15 eS21 eS27 uS5 uS8 SSU-Center

 Region 14 eS12 uS3 eS31 eS10 SSU-BottomTail

 Region 15 uS7 uS19 eS19 uS13 uS9 SSU-Interface2Adjacent

Yeast—60S rProteins IntCryOmics_6snt_dt12_IN50_WL9

 Region 2 eL8 uL2 eL28 eL36 uL13 uL15 eL43 LSU-Interface3Adjacent.1

 Region 3 eL31 uL22 eL6 eL20 eL33 uL14 uL16 LSU-TopRegion.1

 Region 6 eL39 eL37 uL29 uL4 eL28 uL13 uL18 LSU-PET

 Region 11 eL20 eL21 uL10 uL30 uL5 LSU-Interface2Adjacent.1

 Region 12 eL6 eL20 eL40 uL14 uL16 uL6 LSU-TopRegion.1

 Region 15 eL34 eL27 eL30 uL2 eL43 LSU-Interface3Adjacent.2

 Region 16 eL20 eL21 uL30 eL29 uL5 LSU-Interface2Adjacent.2

 Region 17 eL6 eL33 uL14 uL16 eL32 LSU-TopRegion.3

 Region 18 uL24 uL30 uL4 eL28 uL13 uL18 LSU-Center

Subunit interface rProteins

 Region 1 eL19 uS12 eS7 uS17 eS8 uS5 uS15 Interface3.2

 Region 4 eL21 uL11 uL5 uS13 uS7 eL42 eS25 Interface2

 Region 5 eL24 eS6 uS2 uS4 eS24 eS4 eS30 Interface1

 Region 8 eS7 eS21 eL27 eL30 eS27 uS5 uS15 Interface3.1

 Region 13 eS6 uL23 uL3 eL24 Interface1

40S rProteins

 Region 7 uS10 eS10 uS14 uS3 eS17 SSU-CentralHub

 Region 9 eS1 uS7 eS26 uS11 eS28 SSU-Interface3Adjacent

 Region 10 uS8 eS19 uS13 uS7 uS9 eS25 SSU-Interface2Adjacent

 Region 14 eS10 eS12 uS3 eS31 SSU-BottomTail
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17 nodes. The eigenvector method finds eight communities both in the rabbit and yeast 
networks, varying in size from one to 24 nodes, and Infomap finds 11 and nine communi-
ties in the rabbit and yeast networks, respectively, varying in size from three to 17 nodes. In 
terms of network topology, the regions or communities match to those reported in Table 3 
by conserving the same node kernels or region core, with the main difference being the 
number of nodes per region. As an example, the PET region (highlighted green in Addi-
tional file 6), characterized at least by nodes eL39 and eL37, varies considerably in size and 
composition with each algorithm even though it conserves the same node core. For rabbit, 
the PET regions are always consistent with COSNeti PET 1 and 2 but also reach beyond to 
borrow nodes from the adjacent central LSU regions. For yeast, the PET regions are pro-
nouncedly variable in size and reach all over the LSU adjacent regions.

Testing the spatial constraints of ribosome specialization

Multi-protein complexes such as ribosomes can undergo changes in their associated 
structural rProteome. Variability from a canonical rProteome composition is known as 
substoichiometry. Deviations that qualify as substoichiometry can relate to subtractional 
heterogeneity, i.e., lost rProteins [43], also to exchanged rProtein paralogs [7, 18], to dif-
ferential composition of immature and mature complexes [44], among others. In our test 
cases, rProtein substoichiometry has been linked to specialized ribosomal roles. Thus, we 
used the reported significantly substoichiometric rProteins as positive (“1”) binary input 
in our method while the rest of the ribosomal proteome was set to negative (“0”) or not 
changed.The percentage of total significantly changed rProteins was 22% and 15% for the 
mammalian and yeast systems, respectively (Additional file 4). In mammalian ribosomes, 
three subcategories could be created that comprise 8% (total substoichiometric rProteins), 
4% (substoichiometric rProteins in non-translational ribosomal complexes) and 3% (sub-
stoichiometric rProteins in translational ribosomal complexes). With an 8% background 
significance, 13 rProteins per region are needed to test significances, implying a large num-
ber of steps in the walking length. This is already at the boundary of node proportion for 
test sampling. Going below 8% required a random walk of more than 50% of the nodes and 
thus neglected the capability of our method by picking up the entire subunits as coherent 
regions. In the yeast test case, two subcategories could be created that comprised 7% each 
of background significance ([1] significantly enriched and [2] depleted). Seven percent of 
background significance needs defined regions of 14 rProteins in average and thus the node 
proportion is still acceptable. Thus, the prioritized tests (see Code Chunk 1), two for mam-
malian and three for yeast, avoided those that had a low background significance in the 
mammalian system. The test specifics: region average size (RAS), background significance 
(BS), walking lengths (WL) and threshold ( dt ) are compiled in Code Chunk 1. The binary 
columns used to run the intcryomics.py function are reported in Additional file 4. Statisti-
cally relevant results from testing the binary files on the optimized rabbit and yeast net-
works (see Building a Ribosomal Protein Network) are outlined in Fig. 6.
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Code chunk 1

## total significantly changed rProteins mammalian (WL = 13%, dt = 12, BS =
22%, RAS = 4)

python3 Python_Modules/intcryomics.py edges_with_weights_6gz5_t12.txt Data/
significance_file_6gz5 10 50 > IntCryOmics_6gz5_t12_WL10_BP22.txt

## total substoichiometric rProteins mammalian (WL = 33%, dt = 12, BS = 8%,
RAS = 13)

python3 Python_Modules/intcryomics.py edges_with_weights_6gz5_t12.txt Data/
significance_file_6gz5_SbSt 26 50 > IntCryOmics_6gz5_t12_WL26_BP8.txt

## total significantly changed rProteins yeast (WL = 13%, dt = 12, BS = 15%,
RAS = 7)

python3 Python_Modules/intcryomics.py edges_with_weights_6snt_t12.txt Data/
significance_file_6snt 9 50 > IntCryOmics_6snt_t12_WL9_BP15.txt

## enriched rProteins yeast (WL = 33%, dt = 12, BS = 7%, RAS = 14)
python3 Python_Modules/intcryomics.py edges_with_weights_6snt_t12.txt Data/

significance_file_6snt_enriched 24 50 >
IntCryOmics_6snt_t12_WL24_BP7_enr.txt

## depleted rProteins yeast (WL = 33%, dt = 12, BS = 7%, RAS = 14)
python3 Python_Modules/intcryomics.py edges_with_weights_6snt_t12.txt Data/

significance_file_6snt_depleted 24 50 >
IntCryOmics_6snt_t12_WL24_BP7_dep.txt

We found spatially constrained rProtein substoichiometry in the yeast network. More spe-
cifically, in the subcategory of depleted substoichiometric rProteins. Our results support the 
notion that depleted rProteins from actively translating polysomes as compared to mono-
somes, in glucose fed yeast growing at stationary rate, are significantly constrained to the 
40S SSU region adjacent to the mRNA and tRNA entry points. The structural coherence 
of the resulting region is evident when multiple graph community detection algorithms are 
used in the yeast rProtein network (highlighted in yellow in Additional file 6). Infomap-, 
walktrap-, and eigenvector-based models all yielded the same 40S SSU region, namely con-
sisting of nodes uS3, uS14, eS10, eS17, and uS10. The difference with the COSNeti-derived 
regions is the lack of some significantly changed nodes, such as eS1, in the alternative algo-
rithms, which further emphasizes the importance of COSNeti ’s flexibility during region 
definition.

Two more regions exhibited significant p-values, but were no longer significant after the 
stringent Bonferroni correction. The regions both belonged to the yeast test case, one at the 
total substoichiometric category, and the other at the enriched substoichiometric category. 
The regions were overlapping heavily, the total constituent rProteins were: [‘eL31’, ‘uL22’, 
‘eL6’, ‘eL20’, ‘eL33’, ‘uL14’, ‘uL16’, ‘uL6’, ‘eL32’, ‘eL40’], The p-values went from 0.025 and 0.016 
to 0.477 and 0.177 after Bonferroni correction. In the mammalian system, no significant 
p-values were obtained.
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Discussion
COSNeti contributes to the field of structural systems biology [20], where structural and 
system biology approaches converge to contextualize shifts in omics abundances from 
molecular species that belong to a multi-protein complex. COSNeti translates multi-
protein complex atomic structures into weighted graphs. Typically, these type of net-
work analyses have been used to capture inter-residue interactions and provide structure 
to function insights in individual protein structures [21] [45–47]. Here, we extend the 
approach to study interactions between proteins that belong to multi-protein complexes. 
In order to avoid prior-knowledge biases during region selection, the defined interac-
tions are a proximity probability and not inferred based on domain knowledge of the 
proteins that comprise the studied complex. A random walk with restart methodology is 
used to define structurally coherent regions as opposed to regions of biological interest 
defined based on known domains and accessory proteins (Example of the latter in Wool-
ford et al. [3]). Regarding the integration to systems biology omics data, we propose a 

Fig. 6  Spatial confinement during ribosome specialization: a test case of the COSNet i  workflow. Optimized 
conditions were used to test whether the distribution of substoichiometric proteins is significantly 
constrained to specific ribosomal regions in yeast and mammalian systems. The weighed graph used to 
select regions was optimized as detailed in Fig. 5. The code commands used to produce our results are 
outlined in Code Chunk 1. The mammalian and yeast systems were tested and only the yeast depleted 
substoichiometric rProteins were significantly localized in a SSU region (colored in yellow shades) after 
Bonferroni correction of the Fisher exact test p-values (i.e., Region 2: P = 0.00004, Padj = 0.0005). The mRNA 
has been colored red to outline its relative location as compared to the region enriched in depleted proteins. 
Ribosomal structures are rotated 90◦ in the y-axis at a time in order to visualize the boundaries of the 
significantly changed region
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structural contextualization that goes beyond estimating significances of protein abun-
dance changes. An initial mapping of protein changes onto structures of complexes can 
already indicate whether the changed components are spatially adjacent or may have 
any obvious functional implications. Our goal was to devise a methodology that enables 
asking whether relevant protein changes are significantly confined to specific parts of a 
complex. The proposed approach is built under the null hypothesis that the proportion 
of changes between the whole complex and randomly selected regions are not different. 
In other words, that the significantly changed molecular species are randomly scattered 
across the structure. To test deviations from the background proportion of significances, 
COSNeti uses the Fisher exact test [48, 49]. This test allows for the significance value of 
mean deviations to be calculated exactly.

Structure quality requirements

COSNeti starts its procedure from an experimentally elucidated complex structure. The 
structure needs to fulfill quality parameters, especially those regarding accurate place-
ment of the protein features. Accurate representation of the protein positions within 
a multi-protein complex is influenced by the cryogenic or crystallographic resolution. 
Atomic models can be effectively built at resolutions below to 4 Å [50–53]. Additionally, 
at low resolutions the models tend to overfit the data. This is a recognized problem that 
has been addressed in multiple ways [54]. The implication for mmCIF/PDBx files is that, 
when overfitted, there might not be sufficient sequence coverage for some of the proteins 
that are actually modelled onto the structure. In order to evaluate this, we provide users 
the quality assessing script check_cif_completeness.py. The script compares the coverage 
of the modeled sequences relative to the original FASTA sequence of the protein. As a 
working example of the ribosomal test case, the Triticum aestivum 80S structure can 
be taken, which is relatively poorly resolved as compared to the yeast and rabbit coun-
terparts. A threshold of 12 Å does not achieve connectivity of the P-Stalk feature, while 
outlier proteins already appear in the defined regions (Fig. 3). Thus, a good consensus 
between connectivity and lack of outlier proteins or island regions seems unlikely for the 
wheat ribosome structure. Additionally, when the model was interrogated by check_cif_
completeness.py, it became clear that many rProteins have a low sequence coverage in 
this structure (Additional file 7A and Fig. 7).

We recommend users inputting into the method the best available resolved structure 
for the investigated complex. Accurate protein densities will translate into a reliable 
weighted graph that allows structure-directed region selection. Additionally, we recom-
mend that users make use of the check_cif_completeness.py in order to assess the general 
quality of the protein features modelled onto the initial structure densities. The pre-
ferred outcome would be modeled protein sequences that fully overlap with the FASTA 
sequences that are reported for those proteins, just as what we report here for the yeast 
and rabbit modelled rProteins (Additional file 7B and C).

Optimization of region definition

The random walk procedure used by COSNeti belongs to the most standard types of 
stochastic walks, i.e., moving through a network with a probability that equals the edge 
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weights [55]. COSNeti subsets the original graph and tests properties of the subset-
nodes as compared to the node set as a whole. Thus, the region selection procedure 
must not violate the independence assumption implicit to the proportion test [56]. The 
assumption is not violated because networks are based on spatial distances and not simi-
larities or dissimilarities between empirically measured omics data. The latter produces 
indirect protein interaction networks that outline relationships of shared functionality 
and interdependence [57]. Thus, COSNeti samples node clusters independently without 
any bias from shared functionality.

Defined regions are based on an adjacency matrix of protein-protein interactions 
calculated at a distance threshold of predefined Ångströms (Å). The distance thresh-
old can be selected based on the quality of the resulting regions, e.g., connectiv-
ity, biological accuracy, lack of outlier node-components. Thus, a quality metric to 
assess the quality of defined regions is their resemblance to characterized features 
of the investigated complex. Additionally, users can rely on the established consen-
sus distance of 8Å between amino acid residues within a protein structure [32] or, 
equally legitimate, on elucidated contacts from empirical evidence. The structure-
translated graph features edges that are weighted by the percentage of contact cover-
age among nodes indicating a transit probability, which probabilistically guides the 
random-walk path trajectory. Edge weights are the single most influencing attribute 
in the outcome of a random walk through a weighted graph [58] and as such are 
the attribute that enables structural coherence in our method. This property of the 
edges bounds the region-definition process to the network topology [59], which ulti-
mately depends in the original structure.

Other parameters influencing the region definition process are the walking length 
and the iteration number. Generally, increasing the iteration number achieves region 
consensus in the defined regions (Fig. 4). Regarding the walk length, in our test case 
we propose optimizing it according to the omics data to be tested. More specifically, 
since the walking length affects the region size, we aimed at an average region size 
that allowed for a single feature within a selected region to equal in proportion the 
baseline proportion of significances. In this way, we avoided overweighting a single 

Fig. 7  Violin plots of rProtein sequence percentage coverage in interpreted Cryo-EM densities of cytosolic 
ribosomes. Structures are derived from PDBx/mmCIF entries 6SNT, 6GZ5 and 4V7E corresponding to 
Saccharomyces cerevisiae (bottom), Oryctolagus cuniculus (middle) and Triticum aestivum (upper) ribosome 
structures. The percentage of coverage per rProtein was calculated using the check_cif_completeness.py from 
the COSNeti methodology
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significance beyond its actual importance. In practice, going beyond the test case 
provided will allow users to vary the walk length for different inquiries. For instance, 
increasing the walking length implies uncovering structural features of the network 
[55, 60] that identify central nodes, edges or other community substructures [61] in 
the original network. Thus, our algorithm can be used without any omics tests in 
order to investigate the very nature of node communities at different scales within 
the entire graph.

Graph community detection algorithms [62, 63], as those used here to compare to 
COSNeti , are suited for the detection of non-overlapping coherent regions. These 
regions or communities can be used to validate observations made with COSNeti 
about the network topology. This validation in turn reveals robust topological 
aspects of the biological networks under study. At the same time, due to the intrin-
sic nature of the alternative algorithms, the selected communities tend to be largely 
of different sizes, so that a quasi-standardized number of nodes is  unlikely to be 
obtained. This feature precludes their further use with COSNeti if the background 
significances require a specific region size. Nevertheless, there are many experi-
mental scenarios that are not limited by background significance. In these cases, the 
non-overlapping set of regions can even be used to follow up the COSNeti algorithm. 
The synergy of the innovations implemented by COSNeti and the capabilities of the 
existing graph community detection algorithms creates a comprehensive set of tools 
for studying decomposed networks from multi-protein complexes.

In our test case, it is necessary to consider the biology of ribosome specialization, 
in which different sub-populations of rProtein-enriched ribosomes can selectively 
translate transcripts [7, 10]. In this context, approximately equally-sized ribosomal 
regions with the right combinations of rProteins might be more relevant than analy-
sis of strictly non-overlapping regions of highly diverse size to study the phenom-
enon of specialization. Therefore, continuing the COSNeti workflow with a minimal 
set of overlapping regions as defined in our method would be the first choice. Addi-
tional information on ribosomal protein networks and their internal community 
topology may then be inferred from the comparison to regions obtained by existing 
graph community detection algorithms.

Ribosomal networks

RNA physically mediates many contacts in the interaction network of ribosomes [23]. 
Thus, the 8 Å consensus, a catch-all type of threshold under which Van der Waals, 
hydrogen bonding, electrostatic interactions can occur, can be increased to include 
those rRNA-mediated contacts as edges. A threshold of 12 Å achieves more than 95% of 
interconnected nodes in the yeast and rabbit networks while avoiding outlier proteins. 
Regarding the random walk parameters: (1) an iteration number of 50 consensus sam-
plings avoided bias towards outlier rProteins. (2) A customized walking length to the 
conducted tests allowed increasing the step number until covering 33% of the node set 
in a single walk. The ribosomal networks represented as weighted graphs resemble the 
topology and relative distribution of rProteins in the actual 3D structure. This becomes 
clearer when the layout is deterministically defined by minimizing the weight (edge) 
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total force on the networks (Fig. 5) according to the Kamada-Kawai Algorithm [64] as 
applied in Cytoscape [65]. Thus, the selected thresholds become further validated.

In the two tested ribosomal networks, degree distributions are heavy-tailed and almost 
identical (Fig.  8). “Heavy-tailed” means that density histograms from degree distribu-
tions will reach zero later than expected by an exponential function [66]. This implies 
that several nodes with high degrees dominate the tail of the distribution histograms. 
Upon inspection, these nodes are hubs in densely packed graph subsets, and as such, 
could influence their surroundings rather than be affected individually by any regula-
tory mechanism. Hub removal could cause major disruptions to the structural stability 
of ribosomes, which can be aggravated by the propensity of rProteins to aggregate [67]. 
Promiscuous binding into aggregates occurs due to the rProtein own basic nature that 
enhances rRNA binding [68, 69].

The tested ribosomal networks also share interconnected paths through similar edges, 
i.e., influential hubs that connect modules or communities. Thus, the topology seems to 
be well conserved between yeast and rabbit cytosolic rProtein networks. From an evo-
lutionary perspective, both networks should be conserved since the main rProteome 
acquisitions are shared [12]. An exception is that higher metazoans (except plants) share 
an increase of basic LSU rProtein components as compared to lower eukaryotes [14]. 
Importantly, in such a conserved system, COSNeti finds equivalent regions when the 
parameters are tuned equally. The resulting regions contain shared rProteins, especially 
in the highly interconnected neighborhoods. Overlaps imply that significantly changed 
regions after Bonferroni correction of the initial Fisher test p-values do not represent 
a fixed, isolated region. Rather, significance might be tied to the right combination of 
interconnected rProteins, which could be targeted by non-random complex remodeling 
or de novo synthesis of components.

Spatially enriched ribosomal protein substoichiometry

Using the COSNeti workflow, we tested previous claims of rProtein-dependent 
ribosome specialization in mammalian [37] and yeast [39] systems. We aimed at 
uncovering if the specialized complexes feature spatially enriched regions in substoi-
chiometric proteins. We found that significantly depleted substoichiometric rProteins 
in yeast polysomes are spatially constrained. The interrogated polysomes correspond 
to four monosomes loaded into an mRNA. Thus, the substoichiometric complexes 
were translationally competent, and as such, an altered ribosomal region in those 
complexes might signal functional features that feedback on translation. Interest-
ingly, substoichiometric rProteins were constrained to a region in the 40S SSU that 
lies at the tRNA exit and entry sites and is adjacent to the mRNA entry channel. 
This observation increases the possibility of the regulation found being a targeted 
response to modify translational preferences toward certain transcripts. Moreover, 
the same region seems to be depleted in rProteins, according to quantitative struc-
tural analyses, in yeast shifted from glucose to glycerol medium [70]. Ribosomes 
with depleted proteins were already visible in glucose-fed yeast, but increased when 
shifted to glycerol. The previous observation was made in enriched ribosomal pellets 
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with contributions from polysomes and monosomes. Conversely, the exemplary yeast 
dataset presented here accounts for substoichiometry of heavily loaded polysomes as 
compared to monosomes. Thus, the most likely linking explanation is that a balance 
between rProtein-depleted translationally competent complexes and monosomes that 
are not depleted from the mentioned rProteins, is necessary upon shifting yeast from 
glucose to glycerol as a carbon source. In order to evaluate whether the findings out-
lined in Sun et  al. [70] are significantly constrained to the same region outlined in 
Fig. 6, we deliver a variation of the intcryomics.py function named intcryomics_sigas-
sign.py, the function only needs as input an edge list, a walking length and an iteration 
number. The output are defined regions, which the user can then select and input 
which proteins are significantly changed. Finally, the Fisher test is performed, p-val-
ues are adjusted and the function returns as output a logical string accompanied by 
Bonferroni p-adjusted values indicating whether the input proteins are significantly 
constrained to the selected region. The test determined that rProteins uL16(RPL10), 
eS1(RPS1), uS11(RPS14A/B)) and eS26(RPS26A/B), lacking in 80S ribosomes as 
detailed in Sun et al. [70], are significantly constrained to the same region outlined in 
Fig. 6 with a Bonferroni p-adjusted value always below 0.005.

Different possibilities could explain significantly depleted rProteins as a functional 
mechanism to modulate translation: (1) rProteins that cannot be associated with actively 
translating ribosomes because they imply translational restrictions for some transcripts. 
Functional depletion of rProteins has been described as subtractional heterogeneity [43]. 
(2) Alternatively, rProteins could be tightly bound to other ribosome associated factors 
that assist mRNA recruiting (e.g., [71]). Tight interactions could cause force on rPro-
tein links during ribosome purification, and rProteins could then be systemically lost 
from polysomes. (3) Another alternative is that rProteins have extra-ribosomal functions 

Fig. 8  Histograms summarizing the node degree statistics of the optimized rabbit and yeast ribosomal 
protein networks. Networks were analyzed in Cytoscape [34]. Distributions of node degrees were plotted 
in Pareto-scaled histograms featuring the number of nodes on the left y-axis and the proportion of nodes 
on the right y-axis. Note that in both cases a heavy-tailed distribution peaking at a range of 2.5–4.5 degree 
characterizes more than 30% of the nodes in both networks. As in other figures and supplemental tables, the 
rabbit network (6GZ5) is identified by red font and the yeast network (6SNT) is identified by black font
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directly or indirectly involved in mRNA recruiting (e.g., [72, 73]), for which they could 
be depleted from polysomes while involved in the formation of initiation complexes.

Conclusion
COSNeti achieves a structure-directed partitioning into regions within any multi-protein 
complex for which a sufficiently resolved structure exists. A plant cytosolic ribosome 
structure is needed to increase the quality of the current rProtein network without com-
promising isolated regions. By contrast, the yeast and rabbit ribosomal networks could 
be successfully used to optimize the COSNeti parameters. Optimization of distance 
threshold to call proteins to be in contact, walking length to define regions and con-
sensus sampling iterations largely depend on the type of multi-protein complex inves-
tigated and the structure resolution. The optimization makes use of prior knowledge 
of the investigated complexes and is influenced by the observed number of significant 
abundance changes. Finally, using the COSNeti fully optimized method, we scrutinized 
previous claims of specialized ribosomes. More specifically, we tested whether the rPro-
tein-dependent claims could be traced to a specific ribosomal region being modulated. 
For this purpose, we used the minimal set of overlapping regions covering most rProtein 
nodes, as inferred by COSNeti , instead of using non-overlapping different sized regions, 
as determined by existing graph community detection algorithms. The latter set of 
regions or communities allowed us to validate the topology of the ribosomal protein net-
works. We found that indeed subtractional heterogeneity is confined to the tRNA exit 
and entry sites in actively translating yeast polysomes. Furthermore, based on valida-
tion by three independent graph community detection algorithms, we conclude that the 
regulated region is structurally coherent. Thus, the constraint might signal functional 
features of translation, i.e., depleted spatially related structural rProteins influencing the 
translational status of transcripts in yeast fed with different carbon sources. Our method 
has been made publicly available as a GitHub repository (https://​github.​com/​MSeid​
elFed/​COSNet_i) and can be installed using the python package installer pip.

Availability and requirements

Project name: COSNeti—ComplexOme-Structural Network Interpreter
Project home page: https://​github.​com/​MSeid​elFed/​COSNet_i
Operating system(s): Platform independent
Programming language: Python
Other requirements: Python-3.6.5 or higher, numpy 1.18.1 or higher, biopython 1.78 
or higher, os-sys 2.1.4 or higher, scipy 1.5.2 or higher, networkx 2.5 or higher, mat-
plotlib 3.3.1 or higher.
License: BSD 2-Clause “Simplified” License.
Any restrictions to use by non-academics: None.

https://github.com/MSeidelFed/COSNet_i
https://github.com/MSeidelFed/COSNet_i
https://github.com/MSeidelFed/COSNet_i
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Additional file 1. COSNeti python module USAGE.md file for the integration of relative changes obtained by 
omics-technologies into Cryo-EM or crystallography based randomly sampled interaction networks of multi-protein 
complex structures. The module is composed of independent components, written as python scripts (found in the 
Modules folder), which can be run in batch with bash or python scripts (bash scripts are found in the Batch files’ 
folder).

Additional file 2. Nodes and edges structure of ribosomal networks from mmCIF entries 6SNT, 6GZ5 and 4V7E 
corresponding to Saccharomyces cerevisiae (Column N-S), Oryctolagus cuniculus (Column H-M) and Triticum aestivum 
(Column B-G). Each cell corresponds to one string representing a single contact that can be separated by the space 
character. The first element of the string is the source node, the second element the target node, the third element 
the number of contacts between them (edge weights), the fourth and fifth columns are color identifiers for the 
nodes in the networks as outlined in Figure 3.

Additional file 3. Defined ribosomal regions at different walking lengths (WL). Optimized parameters were used, the 
°Angström threshold was 12, and the iteration number of the consensus sampling was 50 iterations. Tab A contains 
regions derived from the 6SNT yeast ribosome structure. Tab B contains regions derived from the 6GC5 rabbit ribo‑
some structure. Both tabs contain the selected regions at varying walking lengths, from which Table 2 was built.

Additional file 4. Baseline proportions for statistical testing of spatial enrichment in ribosome multiprotein com‑
plexes test case. (Columns F-H) Mammalian binary input necessary for intcryomics.py featuring changed rProtein 
paralogs with 1 and non-changed with 0. (Columns K-N) Yeast binary input necessary for intcryomics.py featuring 
changed rProtein paralogs with 1 and non-changed with 0. Non-tested cases are signaled with grey font. Prioritized 
and tested case are signaled with black font.

Additional file 5. Community Detection within Graphs. R implementation of walktrap and eigenvector based 
models algorithms.

Additional file 6. Modules or communities found in optimized ribosomal networks from mmCIF entries 6SNT and 
6GZ5 corresponding to Saccharomyces cerevisiae (Column H-M) and Oryctolagus cuniculus (Column B-G). Three differ‑
ent contrasting algorithms were used to find communities across optimized ribosomal protein graphs. Namely, Info‑
map, walktrap and eigenvector based models. The resulting regions were then used to compare to those obtained 
from the COSNeti procedure as outlined in Table 3. Green highlights the exemplary PET region as was picked out by 
each algorithm.

Additional file 7. Percentage of sequence coverage modelled into the exemplary mmCIF/PDBx structures used to 
optimize the COSNeti workflow. (A) The yeast (Saccharomyces cerevisiae PDB ID: 6snt), (B) rabbit (Oryctolagus cuniculus 
PDB ID: 6GZ5) and (C) plant (Triticum aestivum PDB ID: 4v7e) ribosomal complexes. The assessment can be replicated 
in any structure using the python function check_cif_completeness.py as documented in (https://github.com/
MSeidelFed/COSNet_i).
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