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Schwann cells (SCs), the glial cells of the peripheral nervous system (PNS),

do not only form myelin sheaths thereby insulating the electrical signal

propagated by the axons, but also play an essential role in the regeneration

of injured axons. SCs are inextricably connected with their extracellular

environment and the mechanical stimuli that are received determine their

response during development, myelination and injuries. To this end, the

mechanobiological response of SCs is being actively researched, as it can

determine the suitability of fabricated scaffolds for tissue engineering and

regenerative medicine applications. There is growing evidence that SCs

are sensitive to changes in the mechanical properties of the surrounding

environment (such as the type of material, its elasticity and stiffness), different

topographical features provided by the environment, as well as shear stress. In

this review, we explore how different mechanical stimuli affect SC behaviour

and highlight the importance of exploring many different avenues when

designing scaffolds for the repair of PNS injuries.

KEYWORDS
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Introduction

The nervous system of vertebrates consists of the central
nervous system (CNS) and the peripheral nervous system (PNS).
Both are made up of neurons and glial cells, with neurons
being responsible for receiving and transmitting electrical and
chemical signals and glial cells providing the necessary support
and protection for neurons. In the PNS, the glial cells are
known as Schwann cells (SCs) and are responsible for the

creation of myelin sheaths that protect and insulate the axons
of peripheral neurons (Belin et al., 2017). They are also essential
and indispensable for axon regeneration in the event of injury
(Rosso et al., 2017) and as such, their role and function are under
much investigation.

One of the main differences between the CNS and
PNS is their capacity for regeneration. Injuries in the PNS
are more easily repaired, as broken myelin sheaths can
be phagocytosed and removed from the area of injury
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(Yao and Priyadarshani, 2018), while in the CNS, there are a
number of limiting factors—including glial scar formation and
the presence of inhibitory molecules—that make regeneration
next to impossible (Huebner and Strittmatter, 2009). In the case
of the PNS, when an injury is quite small, it can be repaired by
suturing the two ends of the severed nerve together. Autografts
have been considered the standard method of countering PNS
injuries with slightly larger gap lengths, while commercially
available nerve guides have been successful for nerve gaps of
20 mm or more (Bell and Haycock, 2012). However, despite
the fact that there are treatments available for PNS injuries,
there are still factors that limit their application, such as donor
nerve shortage or immunological issues, and they have displayed
moderate success (Millesi and Tsolakidis, 2005; Vindigni et al.,
2009; Mahumane et al., 2018). As a result, there is a constant
ongoing effort to find alternative treatment options by utilising
the principles of tissue engineering.

Neural tissue engineering takes advantage of a large number
of different biofabrication techniques, as well as biomaterials
in order to create three-dimensional scaffolds and structures
that can be used to facilitate regeneration (Boni et al., 2018;
Papadimitriou et al., 2020; Doblado et al., 2021; Scaccini et al.,
2021). The aim when creating scaffolds for such purposes
is to mimic the physiological environment as closely as
possible and provide the necessary cues to promote repair
while ensuring that no localised toxicity or immune reaction
is induced (Crupi et al., 2015; Doblado et al., 2021). It
is well known that SCs are inextricably connected to their
extracellular environment (Rosso et al., 2017). Characteristics
of their physiological microenvironment include—but are not
limited to—specific mechanical properties (such as elasticity
and stiffness), different topographical features, as well as
shear stress. All these factors are taken into account when
designing scaffolds targeting PNS injuries, either individually
or collectively.

Mechanobiology is related to how cells, tissues and organs
sense the surrounding mechanical and physical signals and
how are these signals converted into specific cellular responses
such as adhesion, spreading, migration, gene expression, and
cell-cell interactions in multiple cell types (Jansen et al.,
2015; Belin et al., 2017). Mechanobiology relies on two
main players within the cell: (i) mechanosensors, that allow
cells to sense the mechanical signals provided by their
environment; and; (ii) mechanotransducers, which enable cells
to convert mechanical cues into biochemical signals. Various
mechanosensors and mechanotransducers from both intra-
and extracellular compartments have already been identified
(Jansen et al., 2015). In the case of peripheral nerves and SCs,
their identities are still emerging, with research focusing on
how physical signals can be transmitted in SCs through the
extracellular matrix (ECM), cell adhesion molecules (CAMs)
and internal structures, such as the cortical cytoskeleton and the
nucleus.

In this review, we explore how the different extracellular
stimuli affect SC behaviour and highlight the importance of
exploring many different avenues when designing scaffolds for
the repair of PNS injuries.

The effect of the microenvironment
on Schwann cell behaviour

The effect of mechanical properties

Schwann cells in peripheral nerves are physiologically
exposed to mechanical stimuli such as shear and compressive
and tensile stress, which can occur due to injuries or diseases, as
well as during development and adulthood (Zhang et al., 2015;
Belin et al., 2017). Peripheral nerves possess great elasticity in
order to propagate action potentials throughout developmental
growth (Simpson et al., 2013), mechanical compression and
stretches while performing daily activities (Phillips et al., 2004).
SCs are very sensitive to the surrounding stiffness and possess
great plasticity. In case of injury of the peripheral nerves,
myelinated SCs can dedifferentiate and guide the regeneration
of peripheral axons (Jessen and Mirsky, 2016; Boerboom et al.,
2017). Generally, in peripheral nerves, myelinated fibres are
surrounded by 6–15 layers of connective tissue, which shield
the SCs and the axons from mechanical forces originating from
the external environment. It is known that the relative elasticity
or stiffness of the peripheral nerves can affect the mechanical
cues that the SCs are exposed to, while SC architecture and basal
lamina integrity play key roles in the SC response to mechanical
stress (Belin et al., 2017). In vitro studies have shown that
mechanical stimulation at low levels may activate SC mitogenic
pathways, independently of the regulation occurring between
SCs and axons after axonal injury (Salzer and Bunge, 1980).

The mechanical properties of the ECM are defined mainly
by elastin and collagen fibres that provide resilience (elasticity)
and tensile strength. In peripheral nerves, there are more
collagen fibres in comparison to elastin fibres (Sunderland,
1965), which contribute to the elastic properties of peripheral
nerves. The main mechanotransducers that have been identified
in SCs are responsible for the transmission of signals through
the ECM and the SC basal side. Various studies report
that SCs interact with axons on their apical side, where the
biochemical signals from neurons are critical for SC migration,
proliferation, survival, polarisation, differentiation, and gene
expression (Monk et al., 2015; Salzer, 2015). SC function
depends on the formation of adhesion complexes (through
CAMs) between SCs with both axons and the ECM. All
these stimuli are then transduced into biological responses,
by YAP/TAZ, MRTF or LINC (Poitelon et al., 2016). In
addition, forces such as mechanical compression can act on
the actin cytoskeleton, leading to deformation of the nucleus
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and influencing chromatin organisation (Hernandez et al.,
2016), while the nuclear envelope and the actin cytoskeleton
work as mechanotransducers between the inner membrane of
the cell and the nucleus (Plessner et al., 2015). Rosso et al.
(2022) showed that the intrinsic physiological plasticity of SCs,
which change their phenotype in response to physiological
and patho-physiological changes in their microenvironment, in
conjunction with their demonstrated mechanosensitivity, render
them powerful targets for cell-based regenerative therapies.

In the field of peripheral nerve engineering, there is a wide
range of biomaterials, both natural and synthetic, applied to the
supporting cells involved in the repair process, such as neurons,
SCs, macrophages, and blood vessels (Gregory and Phillips,
2021; Powell et al., 2021). Synthetic polymers are popular as
their mechanical properties can be fine-tuned and they can be
adapted to improve cell adhesion (Shahriari et al., 2017). Natural
materials (typically derived from ECM components and found
in hydrogel form) give the benefit of structural integrity for
supporting regenerating axons, whilst maintaining the materials’
viscoelastic properties and their capability to further improve
function (Bhatnagar et al., 2016). They can also be adapted to
possess additional functionalities, such as controlled drug release
to in situ gel formation. They can also be easily adjusted to fit
defects with complicated geometries, such as that of the spinal
cord. Multiple biomaterials such as chitosan (Li et al., 2014),
collagen (Dalamagkas et al., 2016; Yeh et al., 2020), hyaluronic
acid (Thomas et al., 2017), polycaprolactone (PCL; Chew et al.,
2008; Mobasseri et al., 2014), poly (lactic acid; PLA; Miller
et al., 2001; Mobasseri et al., 2014), poly (lactide-co-glycolide;
PLGA; Babaliari et al., 2018a), and others (Gu et al., 2011;
Bell and Haycock, 2012; Lotfi et al., 2019) have been assessed
for scaffold fabrication. One of the most common materials
used for hybrid polymeric conduits is gelatin/polycaprolactone
(PCL), which has been shown to provide great support
for in vitro neurite outgrowth and SC proliferation
(Boni et al., 2018).

The surrounding ECM and microenvironment play a
significant role in peripheral nerve tissue regeneration. Studies
have shown that the regularity of a scaffold surface can guide
migration and promote the maturation of SCs, and consequently
direct the growth of dorsal root ganglion (DRG) neuritis (Ning
et al., 2018; Petcu et al., 2018). In another study, Chen and
co-workers evaluated the effects of cyclic tensile stimulation on
the neural differentiation capabilities of human SCs. The auxetic
hydrogels were found to withstand up to 20% tensile strain
without tears, while only losing about 10% weight after being
immersed for 14 days. The tensile forces were able to enhance
cell viability and proliferation compared to static culture (Chen
et al., 2020). Mechanical stimuli can also affect the remyelination
of injured axons, with factors such as surface area, porosity,
and surface structuring playing an important role in supporting
and regulating SCs and directly influencing myelin-related gene
expression (Liu et al., 2019; Park et al., 2021).

From the above, it can be seen that when it comes to
assessing scaffold requirements for peripheral nerve tissue
engineering, one must always take into account: (a) the static
mechanical properties of the scaffolds whose aim is to imitate
nerve tissue stiffness; (b) the dynamic nature of the nerve tissue;
and (c) the time-varying mechanics relating to the stress gradient
responses in the native tissue.

The effect of topography

The effect of topography —the surface spatial features of
tissues or biomaterials—on SCs has attracted a lot of attention
in the fields of neuron regeneration and regenerative medicine
(Lotfi et al., 2019). Topographical cues in the micro-and nano-
scale affect key SC responses such as migration, alignment,
proliferation, and differentiation. The importance of these
effects is highlighted by the fact that SCs provide structural
support, remove debris, and direct axon regrowth in diseases
associated with the PNS. Researchers attempt to mimic the
natural environment of SCs to provide all the necessary cues
that will enhance SC performance when developing strategies
to counter neurodegenerative diseases, trauma, and disorders
(Gu et al., 2011; Bell and Haycock, 2012; Lotfi et al., 2019).
Fabrication of suitable scaffolds for SC seeding is gaining more
popularity as a means to develop grafts that can be used as
transplants for SC culture and neuron regeneration for in vivo
trials (Gu et al., 2011; Deng et al., 2021).

Various topographical features have been investigated in
literature (Lotfi et al., 2019). These features include but are
not limited to, micro- and nano-scale surface topography and
patterning (Miller et al., 2001; Schmalenberg and Uhrich, 2005;
Li et al., 2014; Yiannakou et al., 2017; Angelaki et al., 2020),
cell imprinted topography (Moosazadeh Moghaddam et al.,
2019), scaffold geometry (grooves, filaments, wells, pillars etc.;
Schmalenberg and Uhrich, 2005; Chew et al., 2008; Mitchel
and Hoffman-Kim, 2011; Mobasseri et al., 2014; Tonazzini
et al., 2015; Chen et al., 2019), hydrophilicity (Mobasseri
et al., 2014), and roughness (Simitzi et al., 2015; Babaliari
et al., 2021; Huang et al., 2021) and porosity (Li et al., 2014).
Moreover, topographical characteristics are not investigated
in a qualitative manner exclusively. For instance, grooves
of different dimensions and spacing have been reported to
have different effects on SCs (Schmalenberg and Uhrich,
2005; Li et al., 2014; Tonazzini et al., 2015). It has been
shown that surface coating further mimics the ECM, which
in turn boosts SC performance in axon regeneration. In 2001,
Miller et al. (2001) seeded SCs and DRGs on laminin-coated
poly(D, L-lactic acid) micropatterned grooves with varied groove
spacing and depth and reported the effects of topography
alongside the benefit of SC presence as a biological cue
for neurite outgrowth and alignment. Another study reports
the use of laminin-coated poly (dimethylsiloxane; PDMS)
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grooves for SC alignment as a means of directing neuron
regeneration (Schmalenberg and Uhrich, 2005). Mobasseri
et al. (2014) developed PCL/PLA films as scaffolds and
reported the combined effect of different groove geometries
and shapes along with scaffold wettability on SC interactions.
Ahmed and Brown have also reported differential SC responses
such as adhesion, alignment and migration on fibronectin
fibres by comparing different combinations of substrates of
fibronectin, laminin, and poly (L-lysine) and highlighting
the directed orientation and enhanced speed, cell extension
and cell area SCs exhibited on fibronectin fibres compared
to the respective responses on non-topographical substrates
(Ahmed and Brown, 1999).

Although the importance of topography cannot be
understated, it is more common to investigate the topographical
effects alongside other stimuli, such as electrical conductivity,
shear stress, and use of growth factors, and examine their
synergistic or antagonistic effects on SC behaviour. For
instance, Huang et al. (2021) have developed reduced
graphene oxide electrospun fibres that exhibit electrical
conductivity and are suitable for SC electrical stimulation
(ES). In another study, SCs combined with glial-derived
neurotrophic factor (GDNF) on laminin-coated filaments
exhibited significant and unidirectional axonal growth in
the graft environment, reducing the inflammatory response,
astrogliosis and tissue damage compared to non-coated
filaments or coated filaments lacking SCs/GDNF. This
demonstrated that the combination of laminin-coating and
the use of SCs/GDNF was key to the success of the approach
(Deng et al., 2021).

Another point of interest pertains to studies that have
focused on co-culturing neurons alongside SCs since the
nervous system is very complicated and multiple parameters
should be taken into account for the successful application of
scaffolds as in vivo transplants (Angelaki et al., 2020; Kordas
et al., 2022). One such study utilised a substrate with combined
morphology including both micro-cones and nano-ripples for
the co-culture of SCs and neuronal cells. The authors were able to
show that SCs adhesion was affected by the underlying pattern,
which in turn also influenced neuronal cell behaviour (Angelaki
et al., 2020).

Additionally, the focus has been directed not only on
morphology, directionality and axon regeneration, but also on
other key responses such as remyelination, myelin-related gene,
and neurotrophic factor regulation, and examination of markers
of immature or aged SCs. For example, Chew et al. (2008)
used electrospun fibrous scaffolds to study SC alignment and
investigate the regulation of various selected genes, myelin-
specific proteins and immature SC markers. Follow-up work
also highlighted the importance of topography on the spatial
organisation of SCs, which in turn influenced myelination as well
as neurite alignment (Siddiqui et al., 2021). Another study also
used electrospun scaffolds and investigated topographical effects

on myelin-related genes such as myelin-associated glycoprotein
(MAG) and myelin protein zero (P0) via qRT-PCR, enabling
the creation of a gene expression profile during the myelination
process on scaffolds with specific alignment (Radhakrishnan
et al., 2015).

It is evident that topography is one of the major factors
that influence SC behaviour and plays a pivotal role in nerve
regeneration applications. Topography can influence major
cell responses such as adhesion, migration, alignment, and
proliferation, while also affecting the regulation of multiple genes
related to myelination and neurodegenerative diseases. As such,
it is essential that it is taken into account and integrated into
potential solutions.

The effect of shear stress

When studying cell-material interactions, more often
than not conventional cell culture techniques are used, which
means that the cells are cultured in flasks, Petri dishes,
and other surfaces under static conditions (Coluccio et al.,
2019), where they also have limited cell-cell interactions.
However, within a multicellular organism, cells interact with
a number of materials with different mechanical properties
and topographical characteristics and are surrounded by
fluid and nutrients (Zhang and Van Noort, 2011; Babaliari
et al., 2018b). In order to better understand biological
problems, it is important to assess cellular behaviour
under conditions that reflect more closely the in vivo
conditions with cell-cell, cell-matrix, and cell-soluble factor
interactions (Hui and Bhatia, 2007). To achieve a more
realistic environment for biological research, microfluidic
devices are routinely used, as they can offer precise control
over the microenvironment that influences biochemical and
mechanical factors in a cell and, thus, cell functionality, such as
changes in the flow-induced shear stress, the pH or O2 levels
(Zhang and Van Noort, 2011).

Although shear stress—the external force acting on an
object or surface parallel to the slope or plane in which
it lies—is a critical component of the natural environment
for the regeneration of axons (Chafik et al., 2003), the use
of such systems for the study of neuronal cell behaviour is
not widespread and there are very few studies available. One
such study investigated the use of different substrate coatings
for the use of SCs in microfluidic culturing environments,
as shear stress significantly affected the effectiveness of
surface coatings (Chafik et al., 2003). Gupta and co-workers
studied the effect of shear stress on SC proliferation and
genetic expression profiles and were able to find that under
constant laminar fluid flow SCs had increased proliferation
rates but displayed downregulation of MAG and myelin basic
protein (MBP; Gupta and Steward, 2003; Gupta et al., 2005).
Babaliari et al. (2021) have studied the combined effect of
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FIGURE 1

Mechanobiology and the Schwann cell response. SCs are
affected by the mechanical properties of the engineered
microenvironment, the underlying topography, and shear stress
forces, which can determine their adhesion profiles, their
ability to migrate and/or elongate, as well as their capacity to
differentiate. Created with BioRender.com.

shear stress and topography on SC behaviour under dynamic
culture conditions attained via continuous flow. Experiments
using a precise flow-controlled microfluidic system which
incorporated laser-microstructured microgrooved polyethylene
terephthalate (PET) substrates revealed that, depending on
the relation of the direction of the flow with respect to the
topographical features (parallel or perpendicular), wall shear
stress gradients act in a synergistic or antagonistic manner to
topography in promoting a guided morphological cell response
(Babaliari et al., 2021).

It is thus evident that flow-induced shear stress also
affects neuronal behaviour. As a result, the necessity of
developing in vitro biomimetic cell culture systems simulating
shear stress, together with the micro/nano topography of
the in vivo environment is mandatory. By utilising such
systems to study the mechanobiology of peripheral glial
cells, there would be a great benefit for various applications,
including the creation of autologous graft substitutes for nerve
tissue regeneration.

Conclusion and future perspectives

Over the past decades, there has been great interest
in trying to understand the function of SC cells in order
to fully utilise their potential in tissue engineering. As
with all cells, SC function is inextricably connected to the
microenvironment and it must not be ignored when attempting
to understand PNS injury and disease. In this review, it has
been highlighted how different aspects of the microenvironment
(mechanical properties, topography and shear stress) can
influence SC behaviour (Figure 1). It must be noted that
all of these properties are so interconnected that integral

parts of the process can be missed when they are not all
taken into account. Due to the complexity of the nervous
system, it is more beneficial to assess and investigate all
cues provided by the natural microenvironment and apply
this knowledge to the fabrication of biomimetic scaffolds. By
integrating different mechanobiological aspects into scaffold
design, potential synergistic, or antagonistic effects that could
affect scaffold performance can be investigated. In addition,
by using a multifaceted approach in scaffold design, the
immunogenicity can also be modulated. By selecting materials
with appropriate chemical and mechanical characteristics, as
well as carefully designing the 3D architecture of the scaffolds,
the immune response could be controlled and thus, lead to
the reduction of adverse effects, such as scar formation (Crupi
et al., 2015; Andorko and Jewell, 2017). Scaffolds that combine
such features are gaining more ground as candidate conduits
for in vivo PNS regeneration (Bell and Haycock, 2012; Liu
et al., 2021). Hence, by choosing the appropriate materials, as
well as topographical, mechanical, and chemical properties for
potential scaffolds, while also utilising stimuli such as electrical
stimulation and shear stress, more comprehensive solutions can
be offered, which will pave the way for future state-of-the-
art scaffolds to counter injuries and neurodegenerative diseases
(Tupone et al., 2021).
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