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A B S T R A C T

Structural neuroimaging has been applied to the identification of individuals with Alzheimer’s disease (AD) and
mild cognitive impairment (MCI). However, these methods are greatly impacted by age limiting their utility for
detection of preclinical pathology.
We built linear models for age based on multiple combined structural features using a large independent

lifespan sample of 272 healthy adults across a wide age range from the Human Connectome Project Aging study.
These models were then used to create a new support vector machine (SVM) training model in 136 CE and 268
control participants based on residues of fit from the expected age-effects relationship. Subsequent validation
assessed the accuracy of the SVMmodel in new datasets. Finally, we applied the classifier to 276 individuals with
MCI to evaluate prediction for early impairment and longitudinal cognitive change.
The optimal 10-fold cross-validation accuracy was 93.07%, compared to 91.83% without age detrending. In

the validation dataset, the classifier for AD obtained an accuracy of 84.85% (56/66), sensitivity of 85.36% (35/
41) and specificity of 84% (21/25). Classification accuracy was improved when using the lifespan sample as
opposed to the classification sample. Importantly, we observed cross-sectional greater AD specific biomarkers, as
well as faster cognitive decline in MCI who were classified as more ‘AD-like’ (MCI-AD), and these effects were
pronounced in individuals who were late MCI. The top five contributive features were volumes of left hippo-
campus, right hippocampus, left amygdala, the thickness of left and right middle temporal & parahippocampus
gyrus.
Linear detrending for age in SVM for combined structural features resulted in good performance for re-

cognition of AD and AD-specific biomarkers, as well as prediction of MCI progression. Such procedures may be
used in future work to enhance prediction in samples with atypical age distributions.

1. Introduction

Alzheimer's disease (AD) is the most common cause of dementia in
older adults and is characterized by abnormal pathologic proteins (e.g.
amyloid and tau) that are presumed to promote neural injury (Jack
et al., 2018). Compared to pathological biomarkers of amyloid and tau

that can be visualized by positron emission tomography (PET) or
quantified in cerebrospinal fluid (CSF), structural MRI is less costly, less
invasive and available in most clinical settings. Thus, the utilization of
structural MRI in the accurate and sensitive detection of AD or even AD
pathology is an important goal.
Various structural features obtained from simple T1 weighted MRI
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are impacted by typical aging as well as the degenerative processes of
AD (Jefferson et al., 2015; Lindemer et al., 2015, 2017a; Coutu et al.,
2016; Belathur Suresh et al., 2018) and such features have been used in
statistical classification of individuals with a clinical diagnosis of AD
(Chetelat and Baron, 2003; Teipel et al., 2013; Park and Moon, 2016;
Belathur Suresh et al., 2018). The patterns of atrophy measured by
computational models of cerebral cortical thickness can provide spa-
tially distinct features to be utilized in classification models (Eskildsen
et al., 2013; Raamana et al., 2015; de Vos et al., 2016). Similarly,
subcortical volumetric atrophy can provide metrics that are sensitive to
neurodegenerative processes in AD as well as the impact of typical
aging, with the hippocampus, amygdala, and thalamus being particu-
larly affected in AD (Gosche et al., 2002; Kwak et al., 2018). In addition
to morphometric properties, additional ‘microstructural’ features can be
obtained from standard structural MRI through quantification of signal
properties such as the gray to white matter signal intensity ratio (GWR)
at each point along the cortical surface. The GWR is regionally in-
creased with age particularly throughout frontal regions demonstrating
a reduction in the gray-white matter contrast (Salat et al., 2009). The
GWR in temporal and limbic tissue is selectively associated with de-
creased hippocampal volume in AD (Salat et al., 2011). Additionally,
white matter signal abnormalities (WMSAs; aka white matter hyper-
intensities) are presumed to be due to small vessel disease (Fazekas
et al., 1988; Salat, 2014), more highly prevalent in individuals with AD
(Lindemer et al., 2017a, 2017b; Nasrabady et al., 2018), and known to
impact clinical trajectories as well as potentially modulate clinical
status for a given level of primary AD pathology (Lindemer et al.,
2018). In summary, these results demonstrate the range of structural
features that can be obtained from standard T1 imaging and used in the
classification of individuals with AD pathology as well as the trajectory
of cognitive decline. However, given the overlapping nature of aging
and AD-related effects on these features, careful modeling is required to
assure that classifications are not influenced by the strong contributing
factor. This is particularly true in the extremes of the age-range as the
models may not have adequate data to model those segments appro-
priately.
Support vector machine (SVM) is currently the most widely used

procedure in neuroimaging studies to classify AD (Cuingnet et al., 2011;
Aguilar et al., 2013; Salvatore et al., 2016; Belathur Suresh et al., 2018).
It is possible that such procedures using simple structural imaging can
provide initial screening to determine whether follow up assessment
with more direct, yet costly and invasive biomarker procedures are
necessary. Given the impact of age on structural imaging measures, it is
possible that age effects influenced prior results and need to be con-
sidered more carefully. For example, we previously found that SVM
using regional structural imaging features that show statistical differ-
ences between AD and controls (entorhinal cortex, precuneus cortex,
fusiform gyrus, banks of the superior temporal sulcus, inferior parietal
cortex, supramarginal gyrus, superior frontal gyrus, inferior temporal
gyrus, superior parietal cortex, superior temporal gyrus, middle tem-
poral gyrus, rostral middle frontal gyrus, caudal middle frontal gyrus,
and pars opercularis) resulted in older control individuals being more
likely to be classified as AD (Belathur Suresh et al., 2018). Additionally,
several prior studies have relied on clinical labels for the determination
of classification accuracy. Important recent work describes the utility of
a biological framework for AD (Jack et al., 2019) that includes in-
formation across major disease biomarker categories: β-amyloid (Aβ,
A), pathological tau (T), and neurodegeneration (N). Thus, novel
methods for classification must be assessed using this biomarker in-
formation as well as information about cognitive trajectories in addi-
tion to the clinical diagnosis for a full understanding of performance.
In this work, we implement linear detrending of structural MRI

features for age in a large independent lifespan sample prior to SVM
classification. We validated the classifier on a third independent dataset
of AD and control participants. In addition, we applied the classifier to
mild cognitive impairment (MCI) to evaluate its recognition for Aβ (by

18F-florbetapir PET, labeled “A” biomarker), CSF phosphorylated tau
(p-tau, labeled “T” biomarker) and neurodegeneration (by 18F-fluor-
odeoxyglucose (FDG) PET, labeled “N” biomarker). Finally, we ex-
amined longitudinal cognitive trajectories in MCI to further validate the
classification results.

2. Materials and methods

2.1. Dataset

2.1.1. Dataset one for linear detrending models (D1)
We used structural MRI data from 272 healthy adults in the Human

Connectome Project Lifespan-Aging cohort (HCP-A) (146 women, age:
36 -> 100). T1 weighted multi-echo MPRAGE with prospective navi-
gator motion correction MRI parameters included TE = 1.8/3.6/5.4/
7.2 ms (multi-echo), TR = 2500 ms, field of view = 256 × 256 mm2,
number of slices = 208, voxel size = 0.8 × 0.8 × 0.8 mm3, and flip
angle = 8° (Harms et al., 2018; Bookheimer et al., 2019).

2.1.2. Dataset two for training and testing classifier (D2)
T1-weighted images from AD and control (CN) participants from the

Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset (ad-
ni.loni.usc.edu) were used for training the classifier. A total of 404
participants (268 CN and 136 CE) were considered in this study similar
to description in our prior work (Belathur Suresh et al., 2018). MRI was
performed on 3.0 T scanners with the following parameters described
by ADNI-2 protocols. Siemens (54% AD and 60% CN): 3D Magnetiza-
tion Prepared-Rapid Gradient Echo (MPRAGE), TR = 2300 ms,
TE = 2.98 ms, flip angle = 9°, voxel size = 1 × 1 × 1.2 mm3. Philips
(20% AD and 18% CN): 3D MPRAGE, TR = 6.8 ms, TE = 3.1 ms, flip
angle = 9°, voxel size = 1 × 1 × 1.2 mm3. GE (26% AD and 22% CN):
3D inversion‐recovery spoiled gradient‐recalled (IR-SPGR),
TR = 2300 ms, TE = Min Full, flip angle = 11°, voxel
size = 1 × 1 × 1.2 mm3.
PET data were acquired using 18F florbetapir (AV45) for imaging

Aβ. The standardized uptake value ratios (SUVR) were calculated as the
average of the uptake values of the frontal, angular/posterior cingulate,
lateral parietal, and temporal cortices divided by the mean uptake va-
lues of the cerebellum, following a standardized pipeline (Landau et al.,
2013). The Aβ positivity was derived using SUVR cut-off of 1.11 as
described previously (Landau et al., 2014). Among the 136 CE and 268
CN included in our study, 119 of AD were Aβ + and 181 of CN were
Aβ-. The 119 CE and 181 CN were defined as D2-plus for these con-
firmatory analyses (Table 1).

2.1.3. Dataset three for validation (D3)
We evaluated 66 participants using a whole-body PET/MR scanner

(Biograph mMR; Siemens Healthcare, Erlangen, Germany) with an 8-
channel head/neck coil in Shanghai Jiao Tong University affiliated
Ruijin Hospital, China. The Aβ SUVR was calculated as D2 plus by 18F
florbetapir PET. The simultaneous MR models: MPRAGE,
TR = 1900 ms, TE = 2.44 ms, angle = 9°, 192 slices (gap, 0.5 mm)
covering the whole brain, FOV 256 × 256 mm, matrix 256 × 256,
voxel size = 1.0 × 1.0 × 1.0 mm3. All patients performed Mini-Mental
State Examination (MMSE, Chinese Version) (Katzman et al., 1988),
Beijing version of Montreal cognitive assessment (MoCA), the Chinese
version of Addenbrooke's cognitive examination-revised (ACER) (Fang
et al., 2014), and global clinical dementia rating. Forty-one participants
were diagnosed as AD according to the National Institute on Aging-
Alzheimer’s Association (NIA-AA) workgroups (Jack et al., 2018). This
part was approved by the Ethics Committee, Shanghai Jiao Tong Uni-
versity affiliated Ruijin Hospital, China. Notably, these participants
differed in primary racial composition from the D1 and D2 datasets, and
therefore provide additional cross-racial validation.
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2.1.4. MCI dataset
To determine the utility of the classification procedures with earlier

disease, we examined 180 early MCI (EMCI) and 96 late MCI (LMCI)
patients as defined by ADNI with complete baseline and follow-up
neuropsychological assessments. Baseline imaging was performed as for
D2. AV45 PET, FDG-PET and CSF p-tau assessments were used for
biological validation of classification results (Jagust et al., 2015). We
applied classifiers from D2 to the MCI dataset to evaluate predictive
performance in this earlier disease sample.
We additionally examined whether MCI classified as AD had a dif-

ferent longitudinal trajectory in cognitive scores relative to MCI clas-
sified as control across available visits: baseline, month 6, month 12,
month 24, month 36 and month 48. Patients were evaluated by MMSE,
MoCA, Alzheimer’s Disease Assessment Scale Cognitive Subscale
(ADAS-13) (Mohs et al., 1997), Rey’s auditory verbal learning test
(RAVLT) learning and forgetting score, and trail making test-B (TMT-B)
in each visit. Demographics for the entire study are presented in Table 1
and Table 2.

2.2. Structural features

The preprocessing pipeline of structural images was performed
using FreeSurfer version 6.0 (https://surfer.nmr.mgh.harvard.edu/)
(Dale et al., 1999; Fischl et al., 1999; Fischl and Dale, 2000). As de-
scribed in our prior publications (Belathur Suresh et al., 2018), after
spatial and intensity normalization and skull stripping, the resulting
volume was segmented into grey matter, white matter, and CSF, and a
deformable surface algorithm was used to identify the pial surface.
Cortical thickness was determined by measuring the distance between
the white matter and pial surfaces.
Subcortical segmentation volumes: Automatic subcortical segmen-

tation of a brain volume was based upon the existence of an atlas
containing probabilistic information on the location of structures
(Fischl et al., 2002). Estimated total intracranial volume (eTIV) and
volumes of 16 regions of interest were extracted, including cerebral
white matter, cerebral cortex, thalamus, caudate, putamen, pallidum,
hippocampus and amygdala in each hemisphere. The WMSAs were

labeled using a probabilistic procedure subsequently extended to label
white matter lesions. Total WMSA (hypointensity) volume was then
calculated for each hemisphere; these were averaged together to create
a single WMSA volume for each participant.
Gray-white matter ratio (GWR): The gray matter values as a ratio to

bordering white matter values provided a unit that was normalized for
the local imaging environment. As described previously (Salat et al.,
2009, 2011), tissue intensities were measured 30% through the thick-
ness of the cortical ribbon, normal to the gray/white border for gray
matter, and 1 mm subjacent to the gray/white border along the surface
normal for white matter. The 30% sampling procedure was utilized to
be conservatively close to the gray/white border and the white matter
sampling voxel (which should minimize potential spurious effects that
could arise in sampling from more remote locations) and was ad-
ditionally able to adjust in regions of low cortical thickness (as opposed
to using a constant value across the entire border which could be
problematic for thinner cortical areas).
We extracted averaged cortical thickness and GWRs in 74 labels per

hemisphere from the Destrieux atlas (Destrieux et al., 2010) respec-
tively, and thus each participant had 296 features from the brain sur-
face. The subcortical segmentation volumes (16 ROIs, eTIV, WMSA)
were log-transformed because volume ratio data did not conform to a
Gaussian distribution (Szabo et al., 2003). Finally, a total of 314 fea-
tures for each participant were prepared for analysis.

2.3. Feature selection by linear detrending for age

Linear regression models were created between age and each
structural feature from D1. We evaluated all linear regression models
(n = 314), and preserved the coefficients (β) and offsets (x0) only when
the feature significantly correlated with age at p < 0.05 without
correction.

= × +feature age x0

Then ages from D2 and D3 were put into the corresponding linear
models, and then we calculated the residual of fit as the difference
between the actual feature and predicted one by coefficients (β) and

Table 1
Participants demographics from the three datasets.

Dataset 1 Dataset 2 (ADNI) Dataset 2-plus (ADNI) Dataset 3

HCP AD CN AD CN AD CN

N 272 136 268 119 181 41 25
Sex (F/M) 146/126 57/79 148/120 55/64 87/94 19/22 12/13
Age (year) 62.7 ± 16.8 74.2 ± 8.2 72.9 ± 6.0 73.8 ± 8.2 71.9 ± 5.9 68.7 ± 9.0 68.5 ± 6.1
Education (year) 15.3 ± 4.5 15.7 ± 2.5 16. 6 ± 2.5 15.6 ± 2.5 16. 8 ± 2.4 12.3 ± 3.3 13.2 ± 3.1
MoCA 26.2 ± 2.6 17.2 ± 4.5 25.8 ± 2.4 17.2 ± 4.5 25.9 ± 2.5 16.2 ± 6.8 27.2 ± 1.8
MMSE – 23.0 ± 2.1 29.1 ± 1.1 23.1 ± 2.1 29.1 ± 1.2 20.7 ± 6.2 27.9 ± 2.0
ACE-R – – – – – 60.5 ± 21.9 84.6 ± 18.6

HCP, human connectome project; AD, Alzheimer’s disease; CN, cognitively normal; F, female; M, male; MMSE, mini-mental state examination; MoCA, Montreal
cognitive assessment; ACER, Addenbrooke's cognitive examination-revised.

Table 2
Classification performance of models based on age detrending from different samples.

Model Detrending model from D1 Detrending model from sub-D1 Detrending model from D2 control Detrending model from D2-plus control

N 272 134 268 181
Age span 36 - > 100 55–85 56–90 56–89
Accuracy within SVM 392/404 (97.03%) 395/404 (97.77%) 384/404 (95.05%) 285/300 (95.00%)
Sensitivity within SVM 128/136 (94.12%) 129/136 (94.85%) 119/136 (87.50%) 107/119 (89.92%)
Specificity within SVM 264/268 (98.51%) 266/268 (99.25%) 265/268 (98.88%) 178/181 (98.34%)
Accuracy in D3 56/66 (84.84%) 53/66 (80.30%) 51/66 (77.27%) 54/66 (81.82%)
Sensitivity in D3 35/41 (85.36%) 33/41 (80.49%) 29/41 (70.73%) 32/41 (78.05%)
Specificity in D3 21/25 (84.00%) 20/25 (80.00%) 22/25 (88.00%) 22/25 (88.00%)

SVM, support vector machine.

B. Li, et al. NeuroImage: Clinical 28 (2020) 102387

3

https://surfer.nmr.mgh.harvard.edu/


offsets (x0) in each model. The following m is the number of significant
models evaluated above.

= × +feature ( age x )m m m m0

After detrending, each participant had a vector of m residuals which
represented the features without linear age effect. We had a 136 × m
matrix for the AD group and 268 × m matrix for controls in D2, as well
as 66 × m matrix for all participants in D3. For MCI, we had 180 × m
matrix for EMCI and 96 × m matrix for LMCI from their baseline MRI.

2.4. Support vector machine classifier

Support vector machine (SVM) is a commonly utilized supervised,
multivariate classification method. The SVM classifier finds a hyper-
plane maximizing the margin between groups. The problem of AD de-
tection in D2 using SVM was formulated as a binary classification
problem. In this study, we used the SVM implementation publicly
available in LibSVM (csie.ntu.edu.tw/cjlin/libsvm). The cost parameter
C and kernel parameter γ of the nonlinear Gaussian function in the SVM
classifier were optimized using cross-validation via the grid-search
approach (Chang and Lin, 2011). The grid search was performed over
the ranges C = 2-5, 2-4, …215, γ = 2-15, 2-14, …, 25. The optimized set of
parameters was then used to train the SVM classifier by the input of

features after linear detrending from D2. We used the 10-fold cross-
validation to obtain an estimate of the classifier performance. During
each fold the classifier was developed using data from 90% of the
participants and tested using data from the remaining 10% of the
participants.
In this study, we adopted the F-score method in the libsvm feature

selection tool to further evaluate feature contribution for classification.
The F-score method has been generally used in pattern recognition
systems to select the optimal feature subset (Polat and Güneş, 2009;
Chen and Li, 2010). A larger F-score value indicates that the feature has
more discriminative power. For validation, we used the SVM classifier
with optimized parameters to predict each participant in D3, EMCI and
LMCI by using their residual matrices mentioned above. The overall
accuracy, specificity and sensitivity were reported as the generalization
of the classifier. We also compared the results by including only “cor-
tical thickness”, “GWR”, “subcortical volumes” or “WMSA” into the
SVM classifier to determine performance for individual structural
classes.

2.5. Statistics

Statistical analyses were performed with R (Version 3.6.2). Group
differences were assessed using independent t-tests for continuous and

Fig. 1. Different residuals from regression in AD and controls. Left: In each heatmap, columns represented participants, and rows represented regional difference
between the actual measure and predicted one from age regression line (each row rescaled by max–min normalization across two groups, with the maximum= 1 and
minimum = 0). The darker color showed relatively more negative residual, while lighter color suggested more positive residual when rows were compared between
AD and controls from D2. Right: Averaged difference between value of each row in two groups from the left heatmap (normal controls - AD). The regions that the
rows represented were marked on the right. AD, Alzheimer’s disease; GWR, ratio of gray to white matter signal intensity.
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Chi-squared tests for nominal data. All t-tests were assessed by the
“RVAideMemoire” package in R, with 10,000 permutations for multiple
comparison correction. We used a generalized linear model to control
age, sex and education effect in the MCI baseline comparison. To
compare the longitudinally cognitive changes in MCI, we performed a
mixed model procedure for repeated measures, and evaluated the in-
teraction between classified group and follow-up timelines. All tests
were 2 tailed, and values of corrected p < 0.05 were considered sta-
tistically significant unless specified.

3. Results

3.1. Linear detrending for age in D1

Among the 148 surface parcellations, cortical thickness in 10 re-
gions was not significantly correlated with age and excluded from de-
trending, including middle-anterior part of the cingulate gyrus and
sulcus, long insular gyrus and central sulcus of the insula, inferior
temporal gyrus, anterior transverse collateral sulcus in the left hemi-
sphere, fronto-marginal gyrus and sulcus, cuneus, orbit gyrus, and
pericallosal sulcus in the right hemisphere, and bilateral short insular
gyri. In the 16 subcortical segmentations, only left caudate was ex-
cluded from the first-level selection. The GWR in 148 parcellations were
all found correlated with age and included, in addition to WMSA and
eTIV. The p values for each regression here were not corrected for
multiple comparisons as the primary goal of this analysis was to de-
termine age trends for each structure. In all, 303 age-related features
were found, and their coefficients with age and corresponding offsets
were used for calculating residuals of the fit in AD and controls.

3.2. Patterns of residual in D2

The residual matrix of AD was 136 × 303, and that of controls was

268 × 303 (138 features in thickness, 148 in GWRs, 15 in subcortical
volumes, WMSA and eTIV). In the heatmap, each column represented
one participant, and each row represented regional difference between
the actual measure and predicted one from age regression best-fit line
(Min-max normalization across two groups, Fig. 1). Among 138 surface
regions, as expected, cortical thickness of AD deviated (lower residuals)
more negatively than that of controls in 126 regions (mean error dif-
ference: − 0.478 to − 0.029, p < 0.05), while the residuals were
similar in the remaining 21 regions. AD also deviated more negatively
in the age-subcortical volume best-fit line in 8 regions, except left
pallidum. AD had more positive residuals from the age-GWR fit line in
129 surface regions (mean error difference: 0.003 to 0.005, p < 0.05)
and from age-WMSA line as well (Tables S1–S3).

3.3. Performance of SVM classifier

To illustrate the performance of the SVM classifier, residuals in 138
parcellations of mean cortical thickness, 148 GWRs, 15 subcortical
volumes, WMSA and eTIV were extracted from the 404 participants in
D2 and used as features. A total of 303 features were used for classifi-
cation. The sensitivity, specificity, and accuracy were calculated to
measure the performance of the SVM classifier. Sensitivity is defined as
the proportion of true positives that are correctly identified by the test
and specificity is defined as the proportion of true negatives that are
correctly identified by the test. Accuracy is calculated as the proportion
of true results (both true positives and true negatives) by the test. In D2,
the optimal cross-validation accuracy of 93.07%, total accuracy of
97.03%, sensitivity of 94.12% (128/136), and specificity of 98.51%
(264/268) were obtained using the SVM classifier. Without linear de-
trending for the age before SVM, the optimal cross-validation accuracy
was 91.83%, total accuracy 96.29%, sensitivity 91.91% (125/136), and
specificity 98.51% (264/268).
The top 5 features whose F-score values were>0.4 were volumes of

Fig. 2. Mapping of most contributive features for classification. Maps of subcortical volumes and cortical thickness with F-score> 0.3, in the SVM classifier from the
controls and AD groups in D2.
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left hippocampus (F-score, 0.696), right hippocampus (0.605), left
amygdala (0.572), thickness of left (0.550) and right (0.414) middle
temporal & parahippocampus gyrus. The volume of right amygdala
(0.382), left middle temporal gyrus thickness (0.366), left and right
temporal pole thickness (0.356), and volume of left superior temporal
gyrus (0.311) ranked from 6 to 10 (Fig. 2). The greatest impacts from
GWR were in left (0.275) and right (0.228) medial temporal & para-
hippocampus gyrus.
The optimal cross-validation accuracy decreased to 90.84% when

only cortical thickness was included in the D2 SVM model, to 84.65%
when only GWR included, to 89.10% with only subcortical volumes,
and to 83.17% with only WMSA. Similarly, the total accuracy also
decreased by 0.74% (3/404), 3.47% (14/404), 6.93% (28/404),
13.86% (56/404) with only one of the above measures in the D2 SVM
model.
In D3, we had 41 ADs with positive β amyloid deposition and poor

cognitive performance and 25 controls with negative β amyloid and
normal cognition. When we applied the classifier to D3 for validation,
the classifier reported an accuracy of 84.85% (56/66), sensitivity of
85.36% (35/41) and specificity of 84.00% (21/25). Similar to D2,
overall accuracy also decreased when only one of these structural
measures included in the classifier, by 3.03%, 15.1%, 9.10%, 21.21%
respectively.
We repeated the SVM based on D2-plus, which was only composed

of AD with Aβ + and CN with Aβ-. Within the SVM, the optimal ac-
curacy was 99.00%, sensitivity 98.32% (117/119), and specificity
99.45% (180/181) demonstrating the superior performance when
taking biomarkers into account for classification. In D3, the new clas-
sifier reported an accuracy of 84.85% (56/66), sensitivity of 95.12%
(39/41) and specificity of 68.00% (17/25). As ADNI participants were
scanned by three scanner vendors, we did vendor-wise normalization to
minimize potential cohort effects. The normalization did not greatly
improve classifier performance and caused lower accuracy when we
applied to D3 (accuracy: 75–80%, Table S4). Thus, we used raw data
derived classifiers for the following validation.
We also examined and compared age detrending models based on

different samples (D1, D1 with age 55–85, D2 controls, and D2-plus
controls). The detrending model based on the full set of D1 which was
widely distributed on the age range led to better classification perfor-
mance and generalizability in D3 (Table 2).

3.4. Prediction of MCI by the classifier

Based on D2 derived classifier, in the 180 EMCI, 29 patients were
classified as AD (16.1%) (EMCI-AD), and in the 96 LMCI, 41 were
classified as AD (42.7%) (LMCI-AD). The classified groups were similar
in age, sex and education years. The EMCI-AD and LMCI-AD both had
worse performance in MoCA and ADAS-13 at baseline compared with
EMCI and LMCI classified as control (EMCI-CN, LMCI-CN) respectively
(p < 0.001, after adjusting for age). LMCI-AD additionally performed
worse in baseline MMSE, learning of RAVLT and TMT-B (p = 0.006,
0.009, and 0.015 after adjusting for age, Fig. 3). For ATN assessments,
EMCI-AD and LMCI-AD both had significantly lower FDG SUVR (EMCI:
β = −0.52, p = 0.008; LMCI: β = −1.06, p < 0.001, Table 3) after
controlling for age, sex and education. Moreover, LMCI-AD had higher
amyloid SUVR (β = 0.84, p < 0.001) and CSF p-tau level (β = 0.69,
p = 0.002).
Longitudinally, EMCI-AD had a greater decline in ADAS-13 and

learning of RAVLT by month 36 compared to EMCI-CN, and LMCI-AD
had a more significant decrease in ADAS-13 and MoCA by month 24
(Table 2). To perform a more conservative analysis further minimizing
age effects in the classification results, we examined only age and
education matched EMCI-CN/AD and LMCI-CN/AD cases. Similar ef-
fects of classification were found on cognition measured by MoCA and
ADAS-13 by month 48 in EMCI and MoCA, MMSE and ADAS-13 by
month 24 in LMCI (Table 4).

Based on the D2-plus derived classifier, in the 180 EMCI, 32 patients
were classified as EMCI-AD (17.8%), compared to 29 (16.1%) were
classified as as EMCI-AD from D2 derived classifier. In the 96 LMCI, 43
(44.8%) were classified as LMCI-AD compared to 41 (42.7%) classified
as LMCI-AD using the D2 derived classifier. Similar to D2 derived
classifier, EMCI-AD and LMCI-AD had lower FDG SUVR (EMCI:
β = −0.59, p < 0.002; LMCI: β = −1.25, p < 0.001). Moreover,
LMCI-AD had higher amyloid SUVR (β = 0.56, p = 0.007) and bor-
derline greater CSF p-tau level (β = 0.69, p = 0.08).

4. Discussion

Given the correspondence between patterns of cerebral atrophy
measured by MRI and the pathological processes of AD, it is theoreti-
cally possible to use these cost-effective and accessible measurements in
the early detection of individuals with AD neuropathology. Prior stu-
dies have identified regional atrophy patterns in patients with AD
(Falahati et al., 2014; de Vos et al., 2016), and subsequently used as
features in machine learning models for patient classification (Belathur
Suresh et al., 2018). Although applied effectively in prior work, ad-
vances towards greater generalization of models are necessary. Here we
explored the impact of different types of age correction on models va-
lidated using AD biomarkers and longitudinal cognitive trajectories.
The classifiers showed improved performance based on using a large
independent lifespan dataset for age correction. Although performance
decreased in an additional independent validation dataset with a sub-
stantially different racial composition, the classifier retained high ac-
curacy demonstrating the robustness of the procedures implemented.

4.1. Age correction approaches

Age is one of the most consequential factors limiting generalizability
in classification of AD based on brain imaging features. In prior studies,
younger AD patients were more likely to be misclassified as controls, as
smaller age-related changes may have masked disease effects, while
older healthy brains were more likely to be misclassified as patients due
to age-related atrophy (Dukart et al., 2011; Falahati et al., 2016). Thus,
it is possible that enhanced forms of age correction could benefit clas-
sification procedures when test cases are outside of the typical age
range. Age may also partially mask other disease-related factors such as
downstream effects of ApoE genotype, global cognitive impairment and
sex (Falahati et al., 2016). Sex may be less impactful for measures used
here. Although sex differences in cortical thickness are reported during
adolescence, these differences are less apparent in later ages (Sowell
et al., 2007; Gennatas et al., 2017). Thus, we primarily focused on
correction for age effects in this work to enhance classification perfor-
mance.
The linear model was widely used for estimating the relationship

between age and brain features. Different to age prediction studies,
chronological age was used as a predictor and assumed of no errors. It is
unlikely that non-Gaussian distribution of predictor would cause much
bias in the linear model framework (Smith et al., 2019).
In our age-feature models, we used linear fits from an independent

lifespan sample. The D1 cohort had the widest age-span (from 36
to > 100) and was informative for mapping the full age trajectory. Our
results supported that the detrending coefficients from D1 worked best
for the classifier compared to use of control participants from the D2
sample. These results demonstrated the benefit of more accurate age
modeling achieved from a large lifespan sample.

4.2. Feature selection for AD recognition

We obtained mean cortical thickness and GWR from anatomical
parcellations instead of voxel or vertex, to minimize and smooth
random variations from multi-site measurements. The features that
greatly contributive to our classifier were similar to ‘AD signature’
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(Schwarz et al., 2016). Moreover, it is suggested that MRI-based mor-
phometric estimates (cortical thickness in ‘AD signature’ regions, hip-
pocampal volume and global atrophy) parallel CSF neurofilament light
chain protein in differentiating individuals across the AD continuum on
neurodegeneration status (Allison et al., 2019). Voxel-wise information
could be preferable to summary features directly from the image as
opposed to summary measures and given that voxel maps have been
demonstrated to generalize well (Kloppel et al., 2008). However, we
were able to achieve high accuracy across samples with generally ac-
cessible automated features, as well as decrease the likelihood of
overfitting from large feature/sample ratio (Baumes et al., 2006). On-
going work will examine the costs and benefits of the voxel compared to
summary features.
The present study explored the way of merging brain structural

features for detecting AD and predicting MCI progression. Among the
features we included, the most prominent classification power was
provided through volumes of hippocampus and amygdala. The results
were consistent with observations from clinical practice and several
prior research studies demonstrating early and profound atrophy in
these regions with MCI and AD (Fischl et al., 2002; Desikan et al., 2009;
Wachinger et al., 2016; Tentolouris-Piperas et al., 2017; Sengoku,
2019). In typical AD, medial temporal atrophy affects the amygdala and
the hippocampus is usually accompanied by temporal horn enlarge-
ment and higher hazard ratio for disease progression (Desikan et al.,
2010). Stronger atrophy in the amygdala and hippocampus predicted
conversion to AD, and the linear discriminant analysis on the principal
component values of hippocampus, amygdala, and ventricular volume
provided classification 86%–88% for cognitive impairment (Tang et al.,

2014).
We had cross-validation accuracy of 89.1% with only subcortical

features included, however, the accuracy increased with the addition of
cortical thickness. Cortical thickness measures provided essential in-
formation for enhancing performance, especially in bilateral middle
temporal and parahippocampal gyrus, as well as temporal pole. The
pattern of cortical atrophy was partially consistent with the relationship
between cortical thickness and cognition in AD dementia
(Ossenkoppele et al., 2019). Given the relative accessibility of the fea-
tures used in this work, the inclusion of the full feature set did not limit
general utilization of the procedures.
GWR was reported as age- and AD-related (Salat et al., 2009, 2011;

Westlye et al., 2009; Grydeland et al., 2013), while its value for clas-
sification was unclear. We previously examined the utility of GWR in
identification of MCI progression (Jefferson et al., 2015). In the present
study, the GWR measures improved accuracy compared to the struc-
tural features alone and the specificity increased in the classifier with
only GWRs, while overall accuracy and sensitivity decreased. Compared
with cortical thickness and subcortical volumes, the GWRs also had
much lower F-scores. In all, we suggested GWRs less sensitive than
other structural measures, but still helpful due to its specificity for AD
classification.
White matter lesions measured as WMSA on MRI are commonly

seen in normal aging and AD (de Leeuw et al., 2001), and histopatho-
logical studies have indicated a mix of heterogeneous findings that
correlate with WMSA including demyelination and gliosis (Gouw et al.,
2011). Individuals with AD have a higher total and greater regional
volumes of WMSA regardless of age (Lindemer et al., 2015, 2017a,

Fig. 3. Longitudinal changes in classified MCI. Boxplot of cognitive performance at each visit for MCI. MMSE, mini-mental state examination; MoCA, Montreal
cognitive assessment; ADAS: Alzheimer’s Disease Assessment Scale Cognitive Subscale; RAVLT, Rey’s auditory verbal learning test; TMT-B, trail making test-B; EMCI,
early mild cognitive impairment; LMCI, late mild cognitive impairment; CN, control; bl, baseline; m, month. *** p < 0.001, ** p < 0.01.
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2017b) and white matter lesions are associated with more rapid cog-
nitive decline across time in MCI and AD (Coutu et al., 2017). In the
present study, we found that the residual of total WMSA from age-

regression line only had a minor impact on the SVM classifier (F-score
0.023). This may be due to the fact that WMSA volume is highly cor-
related with other prominent features of AD such as hippocampal

Table 3
The classification of MCI and longitudinally cognitive changes.

EMCI LMCI

AD CN P-value AD CN P-value

N 29 151 – 41 55 –
Age 72.9 ± 6.0 70.2 ± 6.9 0.031 73.3 ± 6.4 69.0 ± 7.3 0.002
Sex (F/M) 12/17 66/85 0.978 23/18 26/29 0.516
Amyloid PETa 1.2 ± 0.2 1.2 ± 0.1 0.861# 1.2 ± 0.2 1.4 ± 0.2 < 0.001#

FDG PETb 1.2 ± 0.1 1.3 ± 0.1 0.008# 1.1 ± 0.1 1.3 ± 0.1 < 0.001#

p-tau (ng/l) 24.4 ± 13.7 25.6 ± 14.9 0.518# 39.8 ± 15.0 27.7 ± 14.4 0.002#

Education 16.5 ± 3.0 16.5 ± 2.6 0.407 16.9 ± 2.6 16.2 ± 2.6 0.167

EMCI# LMCI#

Interaction* (p-value) Effect estimate (Beta) 95% CI of Beta Interaction* (p-value) Effect estimate (Beta) 95% CI of Beta

ADAS-13 m36 (0.020)
m48 (< 0.001)

3.60
8.84

1.25–5.95
6.38–11.3

m24 (< 0.001)
m36 (< 0.001)
m48 (< 0.001)

5.07
9.32
11.2

2.10–8.03
6.10–12.5
7.64–14.8

MMSE m06 (0.003)
m12 (0.006)
m24 (0.004)
m36 (< 0.001)
m48 (< 0.001)

−1.32
−1.21
−1.31
−2.10
−2.33

−2.20 to −0.45
−2.08 to −0.33
−2.20 to −0.41
−3.02 to −1.17
−3.29 to −1.36

m24 (0.002)
m36 (< 0.001)
m48 (< 0.001)

−2.00
−4.71
−6.55

−3.30 to −0.71
−6.12 to −3.31
−8.11 to −4.98

MOCA – – – m24 (0.001)
m36 (< 0.001)
m48 (< 0.001)

−2.25
−3.62
−4.49

−3.63 to −0.88
−5.10 to −2.13
−6.16 to −2.80

RAVLT-learning m36 (0.047) −1.14 −2.26 to −0.01 – – –
RAVLT-forgetting m12 (0.002)

m24 (0.013)
m36 (0.013)

−1.92
−1.61
−1.69

−3.16 to −0.67
−2.88 to −0.33
−3.02 to −0.35

– – –

TMT-B – – – m12 (0.024)
m24 (< 0.001)
m36 (< 0.001)
m48 (0.030)

27.3
57.6
48.8
35.8

3.62–51.1
33.0–82.2
21.5–76.0
3.51–68.0

* Interaction between follow-up and classification, with baseline as reference, only shown with p < 0.05.
Data are given in mean values (standard deviation, SD), if not otherwise specified. m, month of follow-up; M, male; F, female. AD, Alzheimer’ disease; CN, cognitively
normal; EMCI, early MCI; LMCI, late MCI; N, number of subjects; p-tau, phosphorylated tau in cerebrospinal fluid; MMSE, mini-mental state examination; MoCA,
Montreal cognitive assessment; ADAS: Alzheimer’s Disease Assessment Scale Cognitive Subscale; RAVLT, Rey’s auditory verbal learning test; TMT-B, trail making
test-B.
a Global neocortical uptake relative a composite reference region in florbetapir PET.
b Global neocortical uptake relative a composite reference region in fluorodeoxyglucose PET.
# Adjusted for age, sex and years of education.

Table 4
Cognitive changes in age and education matched group for EMCI-AD and LMCI-AD.

EMCI LMCI

AD CN P-value AD CN P-value

N 29 29 – 41 41 –
Age 72.9 ± 6.0 73.6 ± 7.2 0.702 73.3 ± 6.4 71.6 ± 6.0 0.234
Sex (Female/Male) 12/17 12/17 0.978 23/18 18/23 0.377
Education 16.5 ± 3.0 15.9 ± 2.6 0.406 16.9 ± 2.1 16.7 ± 2.4 0.735
MMSE-Baseline 28.3 ± 1.6 28.3 ± 1.6 0.933 27.0 ± 1.7 28.0 ± 1.7 0.007
Follow up* Ns – m24

m36
m48

0.003
<0.001
<0.001

MOCA-Baseline 21.9 ± 2.4 24.5 ± 2.7 < 0.001 20.6 ± 2.5 23.6 ± 3.1 <0.001
Follow up* m48 0.054 m24

m36
m48

0.008
<0.001
<0.001

ADAS-Baseline 17.0 ± 5.9 12.0 ± 5.0 < 0.001 22.3 ± 5.8 16.4 ± 6.3 <0.001
Follow up* m48 0.007* m24

m36
m48

<0.001
<0.001
<0.001

*Significant interaction between follow-up and classification, with baseline as reference; m, month of follow-up. AD, Alzheimer’s disease; CN, cognitively normal;
EMCI, early MCI; LMCI, late MCI; N, number of subjects.
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volume (Coutu et al., 2016).

4.3. Classifier optimization and validation

In the SVM, we set the residuals from the best fit lines as potential
features as input. Thereby, age-related effects on MRI data were mini-
mized and we focused on how far a person deviated from age-predicted
measures (the residuals of the age regression for each feature).
Although relatively successful for age correction, reviews of prior work
demonstrated SVM model accuracy ranging from 85 to 91% (Dukart
et al., 2011; Falahati et al., 2016; Belathur Suresh et al., 2018). Cortical
thickness in AD signature regions, hippocampus volume and global
atrophy discriminated between AD and controls with sensitivity from
80 to 90%, specificity from 85 to 90% (Allison et al., 2019). Using age-
detrended features, we had an increase in model accuracy of 2–8%
(mean cross-validation accuracy: 93.1%, total accuracy: 97.0%, sensi-
tivity: 94.1%, specificity: 98.5%). Critically, using a novel dataset with
substantial differences from the training dataset (differing in clinical
sample, racial composition, and scanner type and imaging protocols), a
biomarker confirmed accuracy of 84.8% was achieved demonstrating
generalization at least across these conditions.
We created a biomarker-based classifier using only patients positive

for Aβ and controls negative for Aβ which in theory should provide
more pure classification based on pathology. This biomarker classifier
had the same accuracy, higher sensitivity (95.1%) and lower specificity
(68.0%) than the classifier based on clinical diagnosis. The clinically
diagnosed D2 from ADNI-2 promoted a more balanced sensitivity and
specificity while the amyloid confirmed D2-plus may be more useful as
a sensitive tool in the clinical setting.
The critical validation in the present study was provided through

examination of the cross-sectional ATN biomarkers and longitudinal
cognitive trajectories in the sample of MCI. The EMCI-AD had lower
FDG-PET metabolism. In the ADNI-2, LMCI had more severe episodic
memory impairment than EMCI (Aisen et al., 2015). Among these
LMCI, our classifiers (both from D2 and D2-plus) could find individuals
with higher level of amyloid accumulation, tau pathology and neuro-
degeneration. In line with the predictive role of AD pathology in cog-
nitive decline (Varatharajah et al., 2019), we could find the MCI-AD
that would decline faster. The EMCI-AD and LMCI-AD were older than
patients classified as controls. This may still be expected given the in-
crease in prevalence of AD with increasing age and given potential age
interactions with this condition (Yao et al., 2012). We conservatively
performed an additional matching of the MCI groups and still observed
significantly greater cognitive decline in both EMCI-AD and LMCI-AD
compared to matched MCI classified as more control-like. Moreover,
the LMCI-AD showed longitudinal differences earlier than EMCI-AD
supporting their later stage of impairment.

4.4. Limitations

Several limitations of the current work are being explored in on-
going research. First, we corrected age effect based on the cross-sec-
tional dataset and the relationship between structural features and age
could be ambiguous due to subject variability. Although linear regres-
sion is widely used in age-brain analysis, non-linear detrending for age
could also be considered with longitudinal datasets. Second, although
cross-sectional data perform well as described in the manuscript, they
are limited in not providing within individual change measures, and
longitudinal measures could be more sensitively trained to expected
trajectories across time which would have important prognostic value.
Third, we could not fully exclude the “healthy” older adults in D1 who
may also have some underlying AD pathology. However, the similar
accuracy from D2 and D2-plus provides some confidence that to some
extent structure from cognitively normal controls could be regarded as
that from Aβ- controls. Finally, improvement for the proposed method
could involve the inclusion of clinical variables that are also associated

with structural measures in the linear detrending model prior to SVM.

5. Conclusions

The major conclusions from current work are as follows: (a) Linear
detrending for age and followed SVM for combined structural measures
provided good performance in AD recognition. (b) Compared to other
structural measures, the volumes of hippocampus and amygdala, as
well as the cortical thickness in medial and superior temporal gyrus,
had more important influence on classification accuracy after removal
of age effect. (c) The classifier could help recognition of cross-sectional
ATN biomarkers, and prediction of longitudinal cognitive decline in
MCI. Future work will examine the degree to which both cross-sectional
and longitudinal pathology can be determined from more specific
structural features.
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