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The underlying premise of current theories of cognitive decline with age tend to be
primarily cognitive or biological explanations, with relatively few theories adequately
integrating both aspects. Though literature has also emphasized the importance of
several factors that contribute to cognitive aging including: (a) decline in sensory abilities;
(b) the effect of motor speed on paper-pencil measures of cognitive speed; (c) the impact
of level of education and physical activity; and (d) molecular biological changes that
occur with age, these factors have seldom been implicated into any single theoretical
model of cognitive aging. Indeed, such an integrated bio-cognitive model of aging has
the potential to provide a more comprehensive understanding of attention, perception,
learning, and memory across the lifespan. Thus, the aim of this review was to critically
evaluate common theories of age-related cognitive decline and highlight the need for a
more comprehensive systems neuroscience approach to cognitive aging.

Keywords: cognitive aging, cognitive decline, theories of aging, biological aging, cardiovascular health,
systems neuroscience

INTRODUCTION

Many theories of cognitive aging have been proposed to account for the declines observed in
cognitive performance across the healthy lifespan, where slowing of processing speed is one of
the most common markers of cognitive aging (Salthouse, 1996; Ebaid et al., 2017; Brown et al.,
2019). Some explanations are predominantly cognitive, while others have described a more
biological basis to account for the decline in cognitive performance (Baltes and Lindenberger,
1997). To date however, no single explanation has incorporated all these aspects of biological
change to adequately and appropriately account for the decline in cognitive processing seen in
healthy aging. With the increase of life expectancy, understanding the changes that would be
expected to affect cognitive processing during a healthy lifespan has become a public health and
socioeconomic priority. Thus, this review will critically evaluate prominent theories of cognitive
aging, which are primarily based on the frameworks of cognitive psychology, and then highlight
the need for a newer more comprehensive systems neuroscience approach to cognitive aging
(Table 1 provides a summary of theories discussed in this review). The biological changes with
age discussed in this review were chosen based on their well-documented relationship with
age-related cognitive decline, and include hypertension (De Silva and Miller, 2016), hyperlipidemia
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(Cheng et al., 2014), obesity (Dahl and Hassing, 2013)
and anxiety (Gulpers et al., 2016). These factors were also
chosen due to their associated risk for cardiovascular disease
which is the leading cause of mortality worldwide (World
Health Organisation, 2019). Though several additional biological
changes with age exist and have been well-documented in the
aging literature, the current review will only focus on a select
few, to discuss them in the context of cognitive aging. Thus,
some factors examined in this review only apply to a subset
of older adults who suffer from the particular health condition
being discussed.

SENSORY SYSTEM DECLINE

The Sensory Deprivation Hypothesis, the
Information Degradation Hypothesis, and
the Common-Cause Hypothesis
The Sensory Deprivation Hypothesis, the Information
Degradation Hypothesis, and the Common-Cause Hypothesis
collectively suggest a strong interaction between declines in the
visual and auditory sensory systems and a decline in cognitive
performance (see Figure 1).

The Sensory Deprivation Hypothesis suggests that a lack of
adequate sensory input over a prolonged period is likely to
result in cognitive deterioration due to the preceding neuronal
atrophy (Oster, 1976; Valentijn et al., 2005). Similarly, the
Information Degradation Hypothesis states that when perceptual
signals are weakened or degraded, either due to experimental
manipulations or age-related impaired perception, higher-
order cognitive processes are in turn affected (Schneider and
Pichora-Fuller, 2000) presumably because the cognitive load
is greater for weak perceptual signals, and thus requires
more cognitive resources to interpret the signal, which
compromises cognitive performance (Zekveld et al., 2011). The
Common-Cause Hypothesis (Baltes and Lindenberger, 1997)
suggests concurrent peripheral and central decline occurring
simultaneously with declines in aspects of conscious cognition,
and proposes that sensory and cognitive function are both
likely to be an expression of the ‘‘physiological architecture of
the aging brain’’ (p. 13). More specifically, the premise of this
hypothesis is that as age increases, a common biological factor
can account for much of the age-related variance in sensory,
sensorimotor and intellectual functioning, where dopaminergic
functioning, has been proposed as that common factor (Li
and Lindenberger, 1999). In particular, Li and Lindenberger
(1999) have suggested that age-related differences in pre-synaptic
markers such as the binding potential for the dopamine (DA)
transporter (Erixon-Lindroth et al., 2005) and post-synaptic
markers such as D1receptor densities (Wang et al., 1998)
and D2 (Bäckman et al., 2000; MacDonald et al., 2009)
may explain significant proportions of age-related variance
in executive functioning, episodic memory and processing
speed (Bäckman et al., 2010). However, as the whole body
is aging, it is not surprising that age-related changes in the
autonomic nervous system (ANS) have also been implicated
in cognitive aging (Parashar et al., 2016; Baker et al., 2018).

FIGURE 1 | Current theories suggesting an interaction between sensory
system decline and impaired cognitive performance. Note that the premises
behind these theories share substantial overlap.

Specifically, age-related changes in the ANS and particularly
the balance between the sympathetic nervous system (SNS)
and the parasympathetic nervous systems (PNS) that affect the
pupils in the eyes and all other non-central nervous systems
(CNS) organs including the heart, lungs, gut and mucous
membrane (Pfeifer et al., 1983; McLean and Le Couteur, 2004;
Shimazu et al., 2005; Parashar et al., 2016; Strickland et al.,
2019) and interact closely with stress hormones (i.e., cortisol)
of the hypothalamus-pituitary-adrenal (HPA axis; Gupta and
Morley, 2011; Gaffey et al., 2016) have also been implicated.
Interestingly, age-related changes in the functioning of the
SNS have only recently begun to be discussed in relation to
explaining cognitive decline (Beer et al., 2017; Knight et al., 2019;
Dalise et al., 2020).

Neurocomputational work on the triad between aging,
cognition, and DA has suggested that reduced DA activity
increases neuronal noise (i.e., random electrical fluctuations
generated within neuronal networks that are not associated with
encoding a response to stimuli; Li et al., 2001). Increases in
neuronal noise have been suggested to have various functional
consequences, including less distinctive neuronal representations
of perceptual stimuli, increased interference between different
functional networks (Li and Sikström, 2002) and impaired
interactions between intrinsic neuronal and perceptual noise
which may collectively result in impaired performance on
cognitive tasks (Li et al., 2006; Bäckman et al., 2010). This
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suggestion is in line with several other sensory theories of
aging and cognitive decline i.e., the Information Degradation
Hypothesis described above (Schneider and Pichora-Fuller,
2000). Despite the commonly reported role of the dopaminergic
system in cognitive performance (Li and Sikström, 2002; Aalto
et al., 2005; Bäckman et al., 2010), the implication that it
is the cause of cognitive decline seen across the lifespan
must be interpreted with caution. Moreover, the observations
of altered DA levels during cognitive-behavioral tasks have
been scrutinized in a systematic review by Egerton et al.
(2009), who noted that uncontrolled head movements during
behavioral tasks may ultimately confound the conclusions
relating to regional cerebral blood flow changes during task
performance. Furthermore, although DA is often considered as
the neuromodulator affecting noise signals in neural systems
(Li and Lindenberger, 1999; Erixon-Lindroth et al., 2005)
there are many other monoamines such as noradrenaline and
serotonin that modulate neural network activation (Jacob and
Nienborg, 2018) and must eventually be researched before
an entirely comprehensive model of cognitive aging can
be achieved.

The Association Between Perceptual
Abilities and Decline in Cognitive
Performance
The association between perceptual abilities and cognitive
performance was demonstrated in a study conducted by
Lindenberger and Baltes (1994) who reported that sensory
variables such as visual acuity, auditory acuity, as well as
balance-gait, predicted 59% of the total variance in general
intelligence. Similarly, a study conducted by Humes et al.
(2013) indicated that the relationship between age and cognitive
performance (measured with WAIS subsets) was mediated by
sensory function when the factor was based on a composite
measure of auditory, visual and tactile perception. On the other
hand, a study by Füllgrabe et al. (2015) failed to find any
age group differences in the auditory forward and backward
digit span tasks in a sample of healthy young and older
participants who were audiometrically matched, highlighting
the correlation between reduced speech intelligibility and
performance on auditory based cognitive measures. Most
recently, age-related physiological and behavioral changes in
the visual system have been demonstrated using both flicker
fusion thresholds as a behavioral measure of the function
of the fastest conducting Magnocellular (M) pathway and
multifocal Visually Evoked Potentials (mfVEPs) as a measure
of retino-cortical latency of the two major M and Parvocellular
(P) subcortical visual pathways. Multifocal VEPs showed
increases in latency with the age of both the M and P
pathways, though the M generated peak latency increases were
greater than those associated with the slower P pathways
(Brown et al., 2019).

Despite the association between perceptual abilities and
cognition being well-documented, some inconsistent findings
remain (see Gennis et al., 1991; Hofer et al., 2003). In a
review conducted by Roberts and Allen (2016), the authors

strongly recommended assessing perceptual abilities beyond
simple measures of visual and auditory acuity to corroborate the
link between perception and cognition. Specifically, the use of
more complex measures of suprathreshold temporal perceptual
processing was recommended when investigating the cognitive
decline in healthy aging (Roberts and Allen, 2016).

It is important to note that most of the literature assessing
perceptual abilities and cognitive aging tend to focus on
visual and auditory processing and neglect other sensory
systems such as olfaction and somatosensory processing.
Indeed, olfactory dysfunction is reported in >50% of older
adults aged over 65 years and has been associated with
impairments in cognitive abilities such as memory decline (see
Attems et al., 2015 for a review). Similarly, the somatosensory
system is reported to decline in healthy aging (Heft and
Robinson, 2017; Strömmer et al., 2017) though somatosensory
processing and its association with cognitive aging has not been
extensively studied. Though generalized explanations specific
to sensory integrity as described above have been influential
in the aging literature, they also neglect other biological
factors of aging which are related to cognition, including
vascular hypertension-related changes (Liu et al., 2018).
Furthermore, few studies have considered the contribution
or confounds of long term blood pressure medication or the
increasing evidence that cerebral small blood vessel disease
(CSVD) is emerging as a principal risk factor for cognitive
impairment in apparently healthy adults (Liu et al., 2018;
Jiménez-Balado et al., 2019).

THE PROCESSING SPEED THEORY

Theories postulating that processing speed underlies the
observed decline in complex cognitive abilities were pioneered
as early as the 1960s by Birren (1965) who observed that
processing rate for a broad range of cognitive tasks increased
as a function of older age. This theory was validated and
expanded through an extensive body of work conducted by
Salthouse (1985, 1996), who postulated the influential theory
of cognitive aging, namely, the Processing Speed Theory of
Adult Age Differences in Cognition (Salthouse, 1996). This
theory suggests that a slowing in the speed at which cognitive
processes can be executed, underlies the decline observed in
more complex cognitive functions, including memory, problem-
solving and reasoning (Salthouse, 1996). Specifically, Salthouse
(1996) proposed that older adults have impairments in two
interconnected mechanisms relating to processing speed, i.e., a
limited time mechanism, and a simultaneity mechanism, which
together underlie the deficits observed in higher-order cognitive
abilities. The limited-time mechanism suggests that older adults
require more time to process early operations of a cognitive
task than do younger individuals and consequently greatly
restrict performance on later operations, as a large portion of
available time is already occupied. The simultaneity mechanism
is based on the notion that products of early processing may
no longer be available i.e., information is forgotten by the
time later processing is complete (Salthouse, 1996). This theory
has been influential in the cognitive aging literature, and its
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fundamental underpinnings remain relevant to modern-day
experimental research, particularly as a means to explain
age-group differences in cognitive performance (Salthouse, 2000;
Costello et al., 2010; Eckert, 2011; Ebaid et al., 2017; Ebaid
and Crewther, 2018, 2019; Brown et al., 2019). A major
limitation of this body of work is the predominant use of
paper-pencil tasks with aged populations, which inextricably
introduces the confounding element of motor speed (Ebaid
et al., 2017). This is even more prominent in populations
with neurological impairments, i.e., following a stroke, which
significantly impairs motor ability (Langhorne et al., 2009).
For example, the Digit Symbol Substitution test from the
WAIS-R (Wechsler and De Lemos, 1981) was one of the
measures utilized in Salthouse (1992) to inform the premise
of his Processing Speed Theory (Salthouse, 1996). Though
psychomotor speed as a factor contributing to scores was
acknowledged in early research by Salthouse, no data has
been provided where motor speed was statistically covaried.
Instead, the premise of the argument has assumed that even
though motor speed may be a factor influencing paper-pencil
performance on cognitive tasks, such tasks were adequate
measures and were not substantially confounded by motor
processes (Salthouse, 1992, 1996). Since then, several other
studies based on findings from paper-pencil measures from
the Processing Speed Index (PSI) of the WAIS without explicit
consideration of hand-motor speed confounding results, have
supported findings in line with the Processing Speed Theory
(i.e., Joy et al., 2000; MacDonald et al., 2003; Lu et al.,
2011). Furthermore, although the Processing Speed Theory has
considerable supporting evidence in explaining the age-related
decline in cognitive performance, it is important to acknowledge
that the assumptions provided are broad, particularly when
inferring cognitive skills from motor reaction time measures
given that they are reliant on general sets of cognitive (usually
visual) and motor skills. Considering this, tests that rely
on a manual response are less able to dissociate specific
cognitive processes such as selective and temporal attention
and perceptual rate of processing without being confounded by
motor performance.

Alternative non-motor assessment of cognitive processing
speed can be achieved via psychophysical Inspection Time
(IT) tasks which measure early cortical perceptual speed by
estimating threshold exposure duration required to successfully
discriminate and identify a familiar visual stimulus (Vickers,
1970; Wilson et al., 1992). Similarly, a Change Detection
(CD) task (Becker et al., 2000; Rutkowski et al., 2003)
without a motor component, can also provide useful data
regarding exposure time needed to complete an IT array
task, embedding of the array in short term memory plus an
additional working memory task requiring a decision as to
whether a second visual array is the same or different to first
presented. Indeed, such psychophysical IT and CD tasks can
serve as effective tools for measurement of information/cognitive
processing time without the confounding factor of motor
slowing which often accompanies paper-pencil measures of
speed (Ebaid et al., 2017; Ebaid and Crewther, 2018, 2019;
Crewther and Ebaid, 2019).

THE INHIBITORY DEFICIT HYPOTHESIS

The Inhibitory Deficit Hypothesis (Hasher and Zacks, 1988)
is an attention-based model of age-group differences in
cognitive abilities. The premise of the Inhibitory Deficit
Hypothesis is that good task performance requires efficient
processing of relevant information while simultaneously
inhibiting irrelevant information, and that any deficit in
this inhibitory-regulation process will result in heightened
distractibility and sustained access to irrelevant information,
greater reliance on environmental cues, reduced working
memory capacity, and poorer retrieval of task-relevant details
(Hasher and Zacks, 1988). The Inhibitory Deficit Hypothesis
suggests that age-related declines in cognitive tasks are a
result of older adults being less efficient in maintaining
selective attention to task-relevant stimuli while simultaneously
inhibiting task-irrelevant information. As a result, goal-irrelevant
information occupies the limited attention and working memory
capacity, at the expense of relevant information, thus resulting in
worsened task performance by older adults (Hasher and Zacks,
1988). Though this argument has strong theoretical merit and
has been supported in several studies (i.e., Kramer et al., 1994;
Andrés et al., 2008; Verhaeghen, 2011), an age-related inhibition
deficit has not been consistently reported (Ludwig et al., 2010;
Rey-Mermet and Gade, 2018).

Several suggestions have been put forward to account for the
discrepancy in results. Such suggestions include the possibility
that differences in cognitive functioning and cognitive reserve
in the older adult sample varied from study to study and
those with more preserved cognitive function attenuated the
inhibition deficit (Rey-Mermet and Gade, 2018). It has also
been suggested that task-to-task discrepancy which supposedly
measure inhibitory control, as well as the differences in methods
used by researchers to assess and statistically account for
processing speed, elucidate different results across studies (see
Rey-Mermet and Gade, 2018 for a recent meta-analysis on this
issue). Furthermore, tasks used to measure inhibitory control
often rely on accuracy and response speed on a computerized
task, or verbal reaction times i.e., Stroop-tasks (Stroop, 1935),
which again introduce the potential confound of hand motor
speed or slower orofacial movement in an aged population. A
less commonly used measure is eye-tracking, despite its known
usefulness and robustness in measuring cognitive domains such
as attention and inhibition (Harkin et al., 2012; Crewther and
Ebaid, 2019). More specifically, oculomotor functions including
visual fixations and saccade duration are surrogate measures
of visual attention shifting (Mohler et al., 1973; Wurtz and
Goldberg, 1989) and are known to be affected by eye movements
and rate of conduction of major retino-cortical pathways i.e., the
M pathway from stimulus onset to arrival in the cortex (Brown
et al., 2019).

THE SCAFFOLDING THEORY OF AGING
AND COGNITION (STAC)

The Scaffolding Theory of Aging and Cognition (STAC; Park
and Reuter-Lorenz, 2009) integrates evidence from structural
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and functional neuroimaging to provide a conceptual model
of cognitive aging. The model proposes that the level of
cognitive functioning that an older individual achieves, is a
consequence of both neural/functional deterioration as well
as ‘‘compensatory scaffolding’’ which is utilized to attenuate
the adverse effects of the neural and functional decline. The
neural and biological deterioration that occurs with normal
aging has been recently shown to include latency of visual
information conduction from retina to cortex (Brown et al.,
2019) and has been suggested to include cortical thinning,
regional atrophy, loss of white matter integrity, DA depletion,
decreased memory-related recruitment of medial temporal
lobe regions (Cabeza et al., 2004; Gutchess et al., 2005) and
dysregulation of the default mode network (Park and Reuter-
Lorenz, 2009). Authors describe compensatory scaffolding as
a ‘‘positive’’ or adaptive form of plasticity that enables older
adults to engage supplementary neural circuits that provide
the additional computational support required to preserve
cognitive function in the face of neurofunctional decline.
For example, the theory postulates that increased frontal
activation exhibited by healthy older adults when working on
the same cognitive task as younger adults is a marker of an
adaptive brain which engages in ‘‘scaffolding’’ in response to
declines posed by deficits in the efficiency of neural structures
(Park and Reuter-Lorenz, 2009).

Despite such suggestions, it is unclear exactly how
compensatory or scaffolding mechanisms are utilized, and
how much these compensatory pathways contribute to
‘‘better’’ performance. According to the theory, the scaffolding
mechanisms are suggested to be protective in the aging brain,
and the ability for older persons to use such mechanisms are
reportedly strengthened by factors including higher levels of
education, physical activity, and exercise (Erickson and Kramer,
2009), while depression is reported to impair scaffolding abilities
(Tsai, 2003). However, from the viewpoint of the STAC, it
is still unclear as to how such lifestyle factors strengthen the
‘‘scaffolding’’ mechanisms. If lifestyle factors had this type
of positive impact, it can be assumed that increased level of
education and physical activity may protect against cognitive
decline using cognitive reserve and healthy vascular systems
with minimal associated neuroinflammation, however, mixed
results still exist within this realm (Stern, 2002; discussed in more
detail below).

THE COGNITIVE RESERVE HYPOTHESIS

The Cognitive Reserve Hypothesis postulates that individuals
who possess a greater ability to recruit and utilize particular
brain regions are better able to cope with a greater level
of age-related brain pathology i.e., that associated with mild
cognitive impairment (MCI) before a clinical diagnosis is reached
(Stern, 2002). It has also been suggested that this is enabled
using neural compensation and recruitment of additional
brain regions that lead to unimpaired behavioral performance
(Stern, 2002). This notion stems from the observation of
individuals who were functioning below levels of clinical
impairment, despite brain pathology that other individuals

who demonstrated clinical impairments also showed (Davis
et al., 1999; Riley et al., 2002). Methods of quantifying
‘‘cognitive reserve’’ typically involve inferring reserve from
proxy measures such as educational attainment or current
occupation (Jones et al., 2011) which are suggested to
‘‘supply reserve in the form of a set of skills or repertoires
that allows some people to cope with pathology better than
others’’ (Scarmeas and Stern, 2003, p. 625). Indeed, several
studies have supported the notion that greater educational
attainment can slow the trajectory of age-related cognitive
decline and can promote the capacity to process tasks more
efficiently (Bennett et al., 2003; Cabeza et al., 2016). Additional
factors contributing to cognitive reserve are also reported
to include complex occupation attainment (i.e., professional
occupations or managerial positions), physical and leisure
activity (Darwish et al., 2018), as well as dietary patterns
(Bowman and Scarmeas, 2019). Though this theory has been
influential in providing a framework for intact cognitive
function in the face of pathology, the body of research is
based on proxy measures of ‘‘cognitive reserve’’ which vary
from study to study. More specifically, ‘‘cognitive reserve’’ is
not merely represented using one accepted measure across
the scientific literature. Rather, the measures chosen to
represent ‘‘cognitive reserve’’ in the literature, depends on
the researchers’ theoretical concept of what reserve means
(Stern, 2002). Anatomical measures including brain size, head
circumference, dendritic branching, and synaptic count have
been suggested as effective measures of reserve (Stern, 2002),
though are seldom utilized in cognitive aging research. Although
the Cognitive Reserve Hypothesis has provided insight into
cognitive aging, caution must be taken when interpreting
such findings.

THE FRONTAL AGING HYPOTHESIS

The Frontal Aging Hypothesis (Jackson, 1958; Dempster, 1992)
is based on the notion that selective frontal lobe pathology in
the form of reduced volume, metabolism and a simultaneous
decline in gray matter (Raz et al., 2005) and white matter
integrity (Barrick et al., 2010) underlie the cognitive deficits
observed in healthy aging, which has mainly been demonstrated
using functional magnetic resonance imaging (fMRI) or positron
emission tomography (PET; Jackson, 1958; Dempster, 1992;
West, 2000). This notion is also fundamental to the view
that age-related ‘‘involution’’ initiates in the frontal lobe, in
turn leading to cognitive decline in apparently healthy aging
(Dempster, 1992). The basis of this theory is still relied upon
in recent aging literature (i.e., Calso et al., 2019), with some
research even concluding that ‘‘the prefrontal cortex leads most,
if not all, other areas in the aging process’’ (Dempster, 1992,
p. 51). In line with the Frontal Aging Hypothesis, research
suggests that unlike anterior cortical regions, posterior brain
regions are spared through the aging process (Hartley, 1993). The
theory that frontal areas of the brain are particularly vulnerable
to insult has even extended to theories into the origins of
Alzheimer’s disease (AD; Rapoport, 1990). However, criticisms
to this theory were pioneered as early as the year 2000 by

Frontiers in Aging Neuroscience | www.frontiersin.org 5 May 2020 | Volume 12 | Article 114

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles


Ebaid and Crewther Biological Contributions to Cognitive Aging

Greenwood (2000) who provided a thorough critical review of
the Frontal Aging Hypothesis and highlighted that healthy older
adults are also impaired in cognitive abilities that are largely
independent of prefrontal areas, such as visuospatial attention,
face recognition, and repetition priming. Furthermore, most
recent literature particularly that associated with whole-brain
imaging demonstrates that additional cortical areas including the
temporal and parietal lobes also show compromised integrity
with age (McGinnis et al., 2011; Farina et al., 2017; Fukuda et al.,
2018; Klöppel et al., 2018; Grassi et al., 2019). Such findings
argue against localizing general cognitive decline to the frontal
lobe, given that most cognitive functions rely on networks of
regions (Greenwood, 2000; Farina et al., 2017; Fukuda et al.,
2018; Klöppel et al., 2018; Grassi et al., 2019). Indeed, it has since
been suggested that a network-based approach is a better way
to conceptualize cognition and cognitive aging, as this approach
also emphasizes the role of broader neural networks without
minimizing the role of the frontal lobes (see Greenwood, 2000).
A substantial body of work in this area has been conducted by
Mesulam (1990, 1994, 2009).

THE HEMISPHERIC ASYMMETRY
REDUCTION IN OLDER AGE (HAROLD)
MODEL

The Hemispheric Asymmetry Reduction in Older Age
(HAROLD) model (Cabeza, 2002) is based on the premise
that age is related to decreases in lateralization of brain function,
which stem from fMRI observations that young and older adults
recruit different neural networks during the same cognitive task
(particularly episodic and working memory tasks). Specifically,
it has been reported that young adults display left Prefrontal
Cortex (PFC) activation during verbal working memory tasks
and right PFC activation during spatial working memory tasks
(Reuter-Lorenz et al., 2000), whereas older adults demonstrate
bilateral activation of the PFC while engaging in both verbal
and spatial working memory tasks (Reuter-Lorenz et al., 2000).
The age-related decreases in lateralization proposed by this
model are suggested to occur due to neural changes and a
global reorganization of neurocognitive networks which result
in bilateral activation during cognitive tasks, which may be
reflective of compensatory processes (Cabeza, 2002). It is
important to note that the HAROLD model has been exclusively
described for the PFC, and insight into this model has come from
studies predominantly using episodic and working memory tasks
(for a review see Berlingeri et al., 2013). Again, such explanations
are limited to specific brain regions and neglect the more
commonly accepted neural network-based perspective of the
human brain.

THE COMPENSATION-RELATED
UTILIZATION OF NEURAL CIRCUITS
HYPOTHESIS (CRUNCH)

The CRUNCH model is based on the concept of neural
compensation and attempts to explain the distinctiveness

of neural representations between young and older adults
while performing the same cognitive task (Reuter-Lorenz and
Cappell, 2008). Specifically, the CRUNCH model suggests that
declines in neural efficiency across the lifespan results in older
adults recruiting more neural resources predominantly in the
dorsolateral PFC compared to young adults when task demands
are low (Reuter-Lorenz and Cappell, 2008). However, as task
demands increase, neural activation for younger adults exceeds
that of older adults, and task performance for older adults is also
impaired. Put simply, when task demands exceed a certain level
of difficulty, the aging-brain ‘‘falls short’’ of sufficient activation
levels, and task performance declines compared to the younger
adults, and this trade-off underpins the premise of the CRUNCH
model (Reuter-Lorenz and Cappell, 2008). This may be due to
older adults’ neural resources being limited by the bioenergetics
of the mitochondria of neurons that are known to decrease in
number with age (see Haas, 2019). Task demands have also
recently been shown to alter time perception of task duration,
whereby the duration of a low-cognitive demand task is perceived
as substantially shorter than objective time in healthy young and
older adults (Ebaid and Crewther, 2018).

Models such as the STAC, HAROLD and the CRUNCH
are based on neural compensation in one way or another, and
postulate that older adults can perform as well as young adults
on cognitive tasks depending on the capacity to recruit additional
neural networks, which are often indicated by increased effort
i.e., increases in energy/neural activation. Another important
consideration which opposes the notion that increased activation
is indicative of an adaptive brain stems from the Neural
Efficiency Hypothesis (Haier et al., 1988) which postulates that
more efficient brain functioning is indicated by lower brain
activation compared to less intelligent individuals while working
on the same cognitive task (predominantly memory tasks). This
phenomenon was first described by Haier et al. (1988) using
PET. More specifically, Haier et al. (1988) demonstrated that
healthy young adults with a lower non-verbal IQ score on the
Ravens Advanced Progressive Matrices (RAPM) showed more
cortical activity throughout the brain when working on the same
cognitive task, compared to those individuals with higher RAPM
scores. However, this hypothesis was based on a relatively small
sample of 30 right-handed healthy young male volunteers and
has not been explicitly translated to the healthy aging literature.

THE CARDIOVASCULAR SYSTEM AND
AGE
Hypertension
Cardiovascular system integrity decreases with age (Xu et al.,
2017), with Western lifestyle risk factors such as overeating,
obesity, and lack of exercise contributing to worse cardiovascular
health (Casas et al., 2018) including hypertension (Singh et al.,
2017; Trudel et al., 2019). In Australia, more than 40% of
adults aged 65 and above have uncontrolled hypertension,
with prevalence rates as high as 51% for adults above
85 years (Australian Institute of Health and Welfare, 2019).
Hypertension is considered a worldwide epidemic and affects
∼1.13 billion adults globally (World Health Organisation,
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TABLE 1 | Summary of theories pertaining to age-related cognitive decline.

Theory/Hypothesis Reference/s Summary General limitations

The Common-Cause
Hypothesis

Baltes and
Lindenberger (1997)

• A common biological factor can account for
the age-related variance in sensory,
sensorimotor and intellectual functioning.

• The focus on one common biological factor
neglects much evidence and constructs
associated with comprehensive network-based
approach to cognitive functioning.

• Dopaminergic functioning has been
proposed as that “common factor” (Li and
Lindenberger, 1999).

• Does not consider the role of other
monoamines such as noradrenaline and
serotonin that modulate neural network
activation and neglects other age-related
molecular changes.

The Sensory Deprivation
Hypothesis

Oster (1976) and
Valentijn et al. (2005)

• A lack of adequate sensory input over a
prolonged period results in neuronal atrophy, in
turn impairing cognitive function.

• Localises cognitive decline to the neural
networks dedicated to visual and auditory
processing.
• Neglects a comprehensive neural
network-based approach to cognitive
functioning.

The Information
Degradation Hypothesis

Schneider and
Pichora-Fuller (2000)

• Perceptual signals are weakened or
degraded due to age-related impairments,
resulting in impaired cognitive processing.

• Age-related differences on cognitive tasks
are still demonstrated when sensory deficits (in
vision and hearing) are corrected (Hall et al.,
2005; Anstey et al., 2006).
• Neglects a comprehensive neural
network-based approach to cognitive
functioning.

The Processing Speed
Theory of Adult Age
Differences in Cognition

Salthouse (1996) • A reduction in the speed at which cognitive
operations can be executed, underlies the
decline observed in more complex cognitive
functions, including memory, problem solving
and reasoning.

• Based on findings from paper-pencil
measures used with aging populations, without
consideration of the confound of motor
impairment with age.

The Inhibitory Deficit
Hypothesis

Hasher and Zacks
(1988)

• An attention-based model which suggests
that good cognitive task performance requires
efficient processing of relevant information
while simultaneously inhibiting irrelevant
information.

• Attention and inhibition of stimuli are highly
variable and dependent on the cognitive task
(Rey-Mermet and Gade, 2018).

• Age-group differences in task performance
are due to older adults being less efficient in
selectively attending to task-relevant stimuli
while simultaneously inhibiting task-irrelevant
information.

• Tasks used to measure inhibitory control
often rely on motor accuracy and response
speed on a computerised task, or verbal
reaction times, which introduce the potential
confound of hand motor speed or slower
orofacial movement in an aged population.

The Scaffolding Theory of
Aging and Cognition (STAC)

Park and Reuter-Lorenz
(2009)

• The STAC integrates evidence from structural
and functional neuroimaging to provide a
conceptual model of cognitive aging.

• Unclear exactly how compensatory or
scaffolding mechanisms are utilized, and how
much these compensatory pathways actually
contribute to “better” performance.

• The model proposes that the level of
cognitive functioning that an older individual
achieves is a consequence of both
neural/functional deterioration that requires and
utilises compensatory ‘scaffolding’ to attenuate
the adverse effects of the neural and functional
decline.

• From the viewpoint of STAC, it is unclear how
factors that are considered protective against
cognitive aging such as higher levels of
education or physical activity, strengthen the
“scaffolding” mechanism.

The Cognitive Reserve
Hypothesis

Stern (2002) • This hypothesis postulates that individuals
who possess a greater ability to recruit and
utilise more brain regions, are better able to
cope with a greater level of age-related brain
pathology before clinical diagnosis is reached.

• Methods of quantifying “cognitive reserve”
typically involve inferring reserve from proxy
measures such as educational attainment or
current occupation. These vary from study to
study.

• It is suggested that this is enabled by means
of neural compensation and recruitment of
additional brain regions that lead to intact
behavioural performance on cognitive tasks.

The Frontal Aging
Hypothesis

Jackson (1958) and
Dempster (1992)

• This hypothesis is based on the notion that
selective frontal lobe pathology in the form of
reduced volume, metabolism and
simultaneous decline in grey and white matter
integrity underlie the cognitive deficits
observed in healthy aging.

• Older adults are also impaired in cognitive
abilities that are often largely independent of
prefrontal areas (Greenwood, 2000).

(Continued)
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TABLE 1 | Continued

Theory/Hypothesis Reference/s Summary General limitations

• The frontal lobe pathology has predominantly been
demonstrated using function magnetic resonance
imaging fMRI or PET.

• Whole brain imaging shows that other
cortical areas including the temporal
and parietal lobes also show
compromised integrity with age.
• Neglects a comprehensive neural
network-based approach to cognitive
functioning.

The Hemispheric
Asymmetry Reduction in
Older Age (HAROLD) model

Cabeza (2002) • The HAROLD model is based on the premise that age
is related to decreases in lateralisation of brain function,
which stem from fMRI observations that young and
older adults recruit different neural networks during the
same cognitive task (particularly episodic and working
memory tasks).

• The HAROLD model has been
exclusively described for the PFC, and
insight into this model has come from
studies using mainly episodic and
working memory tasks.

• It has been reported that young adults display left PFC
activation during verbal working memory tasks and right
PFC activation during spatial working memory tasks,
whereas older adults demonstrate bilateral activation of
the PFC while engaging in both verbal and spatial
working memory tasks (Reuter-Lorenz et al., 2000).

• Localises cognitive decline to a
specific brain region.

• Neglects a comprehensive neural
network-based approach to cognitive
functioning.

The Compensation-Related
Utilization of Neural Circuits
Hypothesis (CRUNCH)

Reuter-Lorenz and
Cappell (2008)

• The CRUNCH model suggests that declines in neural
efficiency across the lifespan results in older adults
recruiting more neural resources predominantly in the
dorsolateral prefrontal cortex compared to young adults
when task demands are low.

• Localises cognitive decline to a
particular brain region.

• However, as task demands increase, neural activation
for younger adults exceeds that of older adults, and
task performance for older adults is also impaired.

• Neglects a comprehensive neural
network-based approach to cognitive
functioning.

• When task demands exceed a certain level of
difficulty, the aging-brain “falls short” of sufficient
activation levels, and task performance declines
compared to the younger adults.

2019). Indeed, hypertension is a risk factor for CSVD and
neuroinflammation (Allison and Ditor, 2014; Chen et al., 2016),
and in turn, cognitive decline. The link between characteristics
of CSVD and cognitive decline has been reviewed in a
recent study conducted by Liu et al. (2018) who explored
hypertensive vasculopathy factors including small vascular
lesions, inflammatory reactions, hypoperfusion, and blood-brain
barrier damage. They found that all factors associated with
hypertension are vital prognostic indicators of the development
of cognitive impairment, particularly when blood pressure
management is poor (Liu et al., 2018). As alluded to earlier
in this review, ANS dysregulation has been suggested as a
pathophysiological link between hypertension and negative
affect, particularly anxiety (Bajkó et al., 2012). In another
study conducted by Jiménez-Balado et al. (2019), authors
investigated how changes in CSVD lesions over 4 years relate to
cognitive decline and incident MCI in 345 hypertensive patients
(median age = 65). Jiménez-Balado et al. (2019) demonstrated
that patients with marked progression of periventricular white
matter hyperintensities showed a significant decrease in global
cognition (as measured by the Dementia Rating Scale—second
version). Jiménez-Balado et al. (2019) also reported that
patients with marked progression of periventricular white matter
hyperintensities had a higher risk of MCI (i.e., subjective
cognitive impairments below clinical thresholds) compared to
those without progression. Also, a longitudinal study examining
the association between cognitive dysfunction, hypertension

and cognitive deterioration over 5 years in 990 subjects
(mean age of 83 years) with cognitive impairment but no
diagnosis of dementia, demonstrated that among the individuals
with executive function deficits but no memory impairments,
57.7% of subjects with hypertension progressed to dementia
compared with only 28.0% with normotension (Oveisgharan
and Hachinski, 2010). It was concluded that hypertension
predicts progression to dementia in older subjects, and control
of hypertension could prevent progression to dementia in
one-third of subjects with cognitive impairment (Oveisgharan
and Hachinski, 2010).

In another study conducted by Jiménez-Balado et al.
(2019), authors investigated how changes in CSVD lesions
over 4 years relate to cognitive decline and incident MCI
in 345 hypertensive patients (median age = 65). Jiménez-
Balado et al. (2019) demonstrated that patients with marked
progression of periventricular white matter hyperintensities
showed a significant decrease in global cognition (as measured
by the Dementia Rating Scale—second version).

The relationship between hypertension and cognitive
impairments is not always consistently reported however, with
some studies that have examined hypertensive vasculopathies
such as cerebral microbleeds and cognitive abilities reporting
no difference in performance based on the presence of vascular
pathologies (Rabelo et al., 2017). Specifically, Rabelo et al.
(2017) assessed cognitive performance using neuropsychological
measures including the Mini-Mental State Exam (MMSE),
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FIGURE 2 | A systems biological viewpoint of cognitive aging.

the Rey Auditory Verbal Learning Test (RAVLT) and the
auditory forward and backward digit span in a sample of
patients with AD, MCI, and cognitively healthy adults. The
results showed no association between cerebral microbleeds
and cognitive performance, and no significant differences in
cognitive performance when considering the presence of cerebral
microbleeds (Rabelo et al., 2017). It may be the case that some
markers of hypertensive vasculopathies are not universally
effective tools as biomarkers for AD and MCI, particularly in the
early phases (Liu et al., 2018).

As 20% of cardiac output of the human body is devoted
to meeting the brains energy demands (Attwell et al., 2010),
protection from hypofusion and ischemic damage is vital to
enable cerebral blood flow during fluctuations in arterial pressure
(Jackman and Iadecola, 2015). This process is significantly and
chronically impaired by CSVD and consequently takes a large
toll on the individual as well as the health care system (for a
recent review see De Silva and Miller, 2016). Indeed, vascular
integrity and cognition in aging are gaining increased attention
in the literature andmaking such issues necessary for inclusion in
future considerations in work on explanations of cognitive aging
(Ga̧secki et al., 2013;Wang et al., 2015; De Silva andMiller, 2016).

Obesity
The prevalence rates for being overweight or obese in adults
aged 65–74 years in Australia is ∼80% for males and ∼69%

for females (Australian Institute of Health and Welfare, 2018a).
Obesity has also been associated with more rapid cognitive
aging (Anstey et al., 2011; Dahl and Hassing, 2013). In a
meta-analysis conducted by Anstey et al. (2011), the authors
reported that obesity, underweight and overweight Body Mass
Index (BMI), are all associated with an increased risk of dementia
compared to normal-weight individuals. Furthermore, in a
systematic review conducted by Dahl and Hassing (2013), it was
concluded that midlife obesity had detrimental consequences on
cognitive processing later in life. More specifically Dahl et al.
(2010) showed that early midlife (Mage = 42 years) obesity
indicated by BMI was associated with a steeper decline in
general cognitive ability as measured with a neuropsychological
test battery 21 years after the initial assessment, even after
controlling for age, sex, education, cardiometabolic factors,
alcohol use, smoking, twinness, and cohort. Dahl et al. (2013)
also investigated the association between BMI measured twice
acrossmidlife (Mage = 40 and 61 years, respectively) and cognitive
changes measured by WAIS subtests. Dahl et al. (2013) found
a significant relationship between midlife obesity and a decline
in perceptual speed, spatial abilities, and verbal abilities, with
a steeper decline in verbal and spatial abilities. Such findings
emphasize the need to consider factors such as body weight when
assessing cognitive performance in aged populations.

Hyperlipidaemia
Prevalence rates of hyperlipidemia for adults in Australia aged
65–64 years are reported to be as high as 78% for men and
84% for women (Australian Institute of Health and Welfare,
2018b). Hyperlipidemia has also been identified as a potential
risk factor for cognitive decline in late life (Cheng et al., 2014).
Indeed, a study conducted by Cheng et al. (2014) reported a
significant relationship between cholesterol levels and cognitive
function in 1,889 participants (Mage = 73.45 years) which was
dependent upon homocysteine levels. More specifically, Cheng
et al. (2014) measured serum total cholesterol, high-density
lipoprotein, triglycerides, and homocysteine levels in fasting
blood samples, and used a composite cognitive score comprising
of nine tests such as the Community Screening Instrument for
Dementia, the ten-word list learning and word list recall test
(Morris et al., 1989), and the Animal Fluency Test (Isaacs and
Akhtar, 1972). Results revealed an inverse U-shaped relationship
between total cholesterol level and cognitive score, indicating
that both low and high cholesterol levels were associated with
worse cognitive performance (Cheng et al., 2014). Results also
revealed that in participants with high homocysteine levels, no
significant association between cholesterol and cognition was
found, which suggests an interactive role between cholesterol
and homocysteine on cognitive function in elderly populations
(Cheng et al., 2014). Despite the influence of factors such as
obesity and hypolipidemia on cognitive aging, they have not been
considered or implemented in a single cognitive aging theory
to date. As such, a multifactorial understanding of cognitive
processing in late life is unlikely, when applying current theories
of aging to experimental aging research in populations where the
prevalence of such conditions is high, i.e., in Australia (Samper-
Ternent and Al Snih, 2012).
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ANXIETY AND DEPRESSION IN AGING

Chronic negative affect, i.e., depression and anxiety are often
associated with aging (Bryant et al., 2008; Perna et al., 2016;
Burhanullah et al., 2020). However, it must be emphasized
that acute anxiety is an innate biologically adaptive response
to potential environmental threats mediated by the HPA
axis that affects human behavior and cognition (Robinson
et al., 2013). On the other hand, prolonged anxiety and
over-activation of the HPA-axis can also be maladaptive, leading
to distortions to the stress response (Vashist and Schneider, 2014;
Herman et al., 2016; Strickland et al., 2019). Thus, prolonged
anxiety has been proposed as a causal factor influencing the
role of neuropathologic processes and leading to cognitive
decline and dementia (Gulpers et al., 2016). Unlike depression
which has received substantial attention in the cognitive aging
literature concerning its link with MCI and dementia (Diniz
et al., 2013), the effects of state and trait anxiety are still
unclear (Beaudreau and O’Hara, 2008). Specifically, late-life
depression has been associated with cognitive impairments
in domains including processing speed, language processing,
episodic memory, visuospatial skills, verbal fluency, and
psychomotor speed (Morimoto et al., 2014), as measured by
neuropsychological test batteries (Sheline et al., 2006). Such
declines have been attributed to subcortical structures such as
the hippocampus (Hickie et al., 2005; Xie et al., 2013) whereby
magnetic resonance imaging (MRI) studies have demonstrated
that individuals with major depressive disorders have reduced
whole-brain and left and right hippocampal volume (Hickie et al.,
2005). In addition to this, other studies have also suggested that
hippocampal size and function are diminished proportionately
to the duration of prior hypercortisolemia (Lupien et al., 1998),
as well as in patients with elevated glucocorticoids (Peavy
et al., 2007). Based on such findings, it has been suggested
that in the context of chronically elevated glucocorticoids
such as in hypercortisolemia associated with major depression,
glucocorticoids contribute to hippocampal cell injury and death,
and in turn, impair cognitive functions including spatial memory
(Lupien et al., 1998) and autobiographical memory (Buss
et al., 2004). The association between cortisol levels and poor
cognitive function was reviewed in a recent study conducted
by Ouanes and Popp (2019) who found that elevated cortisol
level was associated with poorer processing speed, episodic
and spatial memory, and language. There is also evidence to
suggest an interaction between hypercortisolism and brain-
derived neurotrophic factor (BDNF), in that HPA-axis activation
increases the glucocorticoid level, which in turn decreases
BDNF expression in the hippocampus (Hansson et al., 2003).
Furthermore, it has been reported that the glucocorticoid
receptor interacts with the specific BDNF receptor (TrkB), and
elevated glucocorticoid interferes with BDNF signaling. Indeed,
such alterations in BDNF signaling has been suggested to play
a role in the structural changes in individuals with depression
(Kunugi et al., 2010).

Though late-life anxiety and cognitive aging are less
investigated compared to depression, what is known are the
biological characteristics of chronic anxiety, which in turn may

negatively impact cognitive performance (see Gulpers et al., 2016
and Robinson et al., 2013 for a recent systematic review and
meta-analysis).

Gulpers et al. (2016) proposed several potential hypotheses
for anxiety leading to cognitive decline, one of which included
hypercortisolism, i.e., higher levels of cortisol which in turn
negatively affects performance on cognitive tests (Rosnick
et al., 2013). This effect has been suggested to result from
overstimulation of glucocorticoid receptors in the medial
temporal lobe which results in hippocampal atrophy (Erickson
et al., 2003). Increased cortisol has also been associated with
smaller total brain volume, particularly in gray matter regions
(Geerlings et al., 2015). This association was demonstrated
in a large sample of 4,244 individuals without dementia
(Mage 76 ± 5 years, 58% women). For a recent review on
hypercortisolism and its effects on the brain seeOuanes and Popp
(2019). Furthermore, a role for inflammation i.e., increased levels
of cytokines including interleukin-6 and tumor necrosis factor
(TNF), has also been suggested as a possible causal pathway
between anxiety and cognitive impairment (Reichenberg et al.,
2001; Gulpers et al., 2016). Indeed, previous research conducted
by Menza et al. (2010) have reported that increased levels
of inflammatory cytokines are significantly correlated to
worse cognitive performance, where cognitive performance was
examined using a composite score comprised of raw scores
on tests including the MMSE, the forward and backward digit
span tests, and Stroop color-word tests (Stroop, 1935). Gulpers
et al. (2016) have also suggested that decreased levels of BDNF
associated with anxiety may also explain the relationship between
anxiety and cognitive impairment, given BDNF’s essential role
in regulating cellular processes that underlie cognition (Lu et al.,
2014). The prevalence of anxiety in older adults aged over
60 years can range from 15% in community samples and 56%
in clinical samples i.e., hospitalized populations (see for a review,
Bryant et al., 2008). Despite this, anxiety as a factor contributing
to task performance is seldom explicitly addressed in theories
of cognitive aging. Thus, cognitive aging research may benefit
from utilizing an anxiety screening instrument such as (but
not limited to) the Depression Anxiety Stress Scale (DASS-
21; Lovibond and Lovibond, 1995), the Generalized Anxiety
Disorder Questionnaire (GADQ-IV; Newman et al., 2002), the
Hamilton Anxiety Rating Scale (HARS; Hamilton, 1959), or the
Hospital Anxiety and Depression Scale (HADS; Zigmond and
Snaith, 1983).

LIMITATIONS

Though this review has attempted to critically evaluate
current prominent theories of cognitive decline with age while
emphasizing the need for a newer more comprehensive systems
neuroscience approach to cognitive aging, some limitations need
to be acknowledged and highlighted. First, it is important to note
that the authors selected common prominent cognitive aging
theories that are primarily based on or derived from cognitive
psychology frameworks. The authors willingly acknowledge that
many other theories exist in the literature that attempt to explain
the decline in cognitive domains with age. For example, the
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Theory of Fluid and Crystallized Intelligence (Cattell, 1963), which
proposes that areas of cognition that comprise Fluid Intelligence
(i.e., reasoning and problem solving) are more susceptible
to age-related decline, whereas cognitive skills involved in
Crystallized Intelligence which encompass knowledge acquired
through previous learning, remain stable or improve with age,
was not discussed in the current review. In addition, more
biological theories such as the hypothesis of metabolic reserve
(Stranahan and Mattson, 2015), which proposes that brains
with more metabolic reserve are characterized by the presence
of neuronal circuits that respond adaptively to perturbations
in cellular and somatic energy metabolism, which in turn
protect against cognitive decline, were not explicity considered
in the current work. Furthermore, there are additional lifestyle
factors that can contribute to cognitive decline in late life
such as smoking (Anstey et al., 2007) and caloric intake (Geda
et al., 2013) which were not critically discussed in this review.
Therefore, some factors discussed in this review only apply to a
subset of individuals, and not to all older adults who do not suffer
from the health conditions previously discussed.

CONCLUSIONS

Collectively, the theories discussed in this review have been
influential in the cognitive aging literature, and have emphasized
the importance of considering factors including sensory abilities
in all aged populations when assessing cognitive performance,
and the effect of motor speed on cognitive processing speed

when utilizing paper-pencil measures of cognition. Some of
these theories have also highlighted the impact of individual
factors including level of education, occupational attainment
(Darwish et al., 2018), dietary patterns (Bowman and Scarmeas,
2019) and physical activity levels, which may play a role
in cognitive reserve (Stern, 2002). Despite this, much of the
neuropsychological literature does not account for such factors,
nor does it assess perceptual ability beyond the basic level of
acuity (Füllgrabe et al., 2015; Roberts and Allen, 2016), and
the most common measures of cognitive processing speed are
still reliant on motor speed (see Ebaid et al., 2017). With the
advances in neuroscientific tools [i.e., psychophysical measures
of perceptual threshold and cognitive processing (Vickers et al.,
1972), and eye-tracking] future theories of cognitive aging should
aim to employ robust and diverse measures, such that a more
accurate and holistic understanding of cognitive processing is
encapsulated. Also, biological changes that commonly occur
in later life including hypertension, hypercortisolism associated
with anxiety, hyperlipemia, and obesity, have the potential to
provide in-depth insights into cognition across the lifespan (see
Figure 2). Most importantly, the implementation of a systems
neuroscience approach to such global issues could enhance
understanding of cognitive aging.
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