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ABSTRACT

The study of bacterial symbioses has grown expo-
nentially in the recent past. However, existing bioin-
formatic workflows of microbiome data analysis do
commonly not integrate multiple meta-omics levels
and are mainly geared toward human microbiomes.
Microbiota are better understood when analyzed in
their biological context; that is together with their
host or environment. Nevertheless, this is a limita-
tion when studying non-model organisms mainly due
to the lack of well-annotated sequence references.
Here, we present gNOMO, a bioinformatic pipeline
that is specifically designed to process and analyze
non-model organism samples of up to three meta-
omics levels: metagenomics, metatranscriptomics
and metaproteomics in an integrative manner. The
pipeline has been developed using the workflow
management framework Snakemake in order to ob-
tain an automated and reproducible pipeline. Using
experimental datasets of the German cockroach Blat-
tella germanica, a non-model organism with very
complex gut microbiome, we show the capabilities
of gNOMO with regard to meta-omics data integra-
tion, expression ratio comparison, taxonomic and
functional analysis as well as intuitive output visu-
alization. In conclusion, gNOMO is a bioinformatic
pipeline that can easily be configured, for integrating

and analyzing multiple meta-omics data types and
for producing output visualizations, specifically de-
signed for integrating paired-end sequencing data
with mass spectrometry from non-model organisms.

INTRODUCTION

Symbiosis is a widespread relationship present in all groups
of organisms but intensely developed between animals and
bacteria that benefit from each other in order to survive.
Consequently, both acquire an evolutionary advantage in
comparison to individuals lacking this relationship. Two
different types of symbiosis can be distinguished: ectosym-
biosis, in which bacteria are attached to the surface of the
host, and endosymbiosis, which usually is a mutualistic re-
lationship, where bacteria live intracellularly in the host and
are transmitted vertically (1,2). To understand these evo-
lutionary relationships host and symbionts are best stud-
ied together. In mutualistic symbiosis, the eukaryotes pro-
vide a safe environment for endosymbiotic bacteria that live
in close interaction with the host. In return, the endosym-
bionts provide nutrients and metabolites (such as essential
amino acids or vitamins) to the host that cannot be ob-
tained in any other way. For example, it has been estimated
that around 15% of insect species maintain endosymbiotic
associations with bacteria that supply the host with the nu-
trients that are lacking in their diets (3) On the other hand,
most insects possess a gut microbiome that affects the phys-
iology of the host by, for example, contributing to metabolic
and nutritional needs, and the immune system development
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(4). Recently, many studies have been performed in humans
to study the gut microbiota (5), but non-model organisms
require further investigations to better understand this spe-
cific type of symbiosis. In this context, cockroaches are a
suitable model, because they have two symbiotic systems,
i.e. an endosymbiont (Blattabacterium cuenoti) in the fat
body and a rich and complex gut microbiota (6,7). The Ger-
man cockroach Blattella germanica is a hemimetabolous in-
sect (it has an incomplete metamorphosis) with three devel-
opmental stages. Regarding its symbionts, genome analysis
demonstrated that the endosymbiont Blattabacterium con-
tributes to the nitrogen (N) recycling and the synthesis of
essential amino acids (8), but the function of the gut micro-
biota in cockroaches still has to be elucidated. It has been
shown that the gut microbiome of cockroaches shows much
overlap with the one in humans probably reflecting a similar
omnivorous diet (6,9–10).

Recently, research interests in microbial communities
have been strongly increased due to findings on the im-
pact of the microbiome on human health (11,12). Micro-
biome studies often employ meta-omics techniques such as
metagenomics (13) that aims to analyze the genetic ma-
terial from all members in a microbial community sam-
ple. Despite many advantages, metagenomics still presents
a static gene-centric approach that cannot assess tempo-
ral dynamics and functional activities of complex microbial
populations (14). To gain insights into the dynamic func-
tional repertoire of microbial communities, further tech-
niques such as metatranscriptomics and metaproteomics
have been established in recent years (15,16). Beyond the
genome level, these meta-omics analysis approaches allow
studying complex microbial systems and their host inter-
actions at the gene expression level (transcripts and pro-
teins, respectively). Used separately, metagenomics, meta-
transcriptomics and metaproteomics are already powerful
because they complement and mutually support each other.
However, the bioinformatics analysis still faces various spe-
cific challenges that concern, for example, the identification
of genes and proteins, the construction of multi-organism
databases, the database selection process influencing the
taxonomic and functional assignment (17), and the use of
different sample extraction or data analysis protocols mak-
ing the results comparison difficult (18). Finally, the lack
of properly annotated reference genomes and proteomes is
also a typical overseen issue in this context (19). These chal-
lenges must be overcome to design optimized and standard-
ized meta-omics pipelines for analysing microbiome data.

In the past, powerful tailored bioinformatic solutions
have been developed for the individual meta-omics anal-
ysis levels (13,15–16). However, the true strength unfolds
when these analysis techniques are integrated (20,21). As
a holistic approach, a complete meta-omics integration can
extend the capabilities of microbiome and host-related stud-
ies in various ways. Most importantly, integrating multiple
meta-omics levels allows to expand the possibilities of bi-
ological interpretation and to investigate biological path-
ways from a more comprehensive perspective. Compared to
single-omics strategies, an integrative approach provides a
deeper and more thorough understanding of how the key
players of microbial communities regulate underlying path-
way mechanisms (22).

While the integration of meta-omics has been described
in previous studies (23), its potential has not been fully
exploited so far. In particular, the data analysis is chal-
lenging, because studies often present customized in-house
workflows that cannot be fully automated or are not re-
producible. In general, automated multi-omics analysis
pipelines are rare and limited to few meta-omics levels (24)
and are not tailored for host and microbiome analyses of
non-model organisms.

Here, we present gNOMO, a meta-omics software
pipeline that allows integrating three different levels of
omics analyses, derived from metagenomics, metatranscrip-
tomics and metaproteomics experiments. It provides two
different, optionally iterative operating modes: (i) each of
the three omics levels can be analyzed separately and inde-
pendently of each other and subsequently, (ii) up to three
omics layers can be analyzed in a fully integrated fashion.
The workflow of gNOMO starts from raw data to essential
processing steps and finally provides output visualizations
for taxonomic classification, functional metabolic path-
way profiling and differential sample analysis. The integra-
tion of metagenomics, metatranscriptomics and metapro-
teomics data is possible due to the production of a tai-
lored proteogenomic database, which optimizes the identi-
fication and quantification of peptides in metaproteomics
data (25,26). As microbiota needs to be analyzed in its con-
text, the host is also studied together with the microbiome.
Host data can be analyzed without a reference database,
which allows to study non-model organisms, and proteins
of the host are also identified with a tailored host database
obtained from genomics and transcriptomic sequences. The
pipeline has been implemented using the Python-based
Snakemake (27) framework to perform fully automated and
reproducible multi-omics analyses of host and microbiome
samples. So far, gNOMO has been developed and optimized
for data from non-model organism samples, but it is fully ex-
ecutable on generic sample types, for example, from human
or mouse microbiomes. With gNOMO, we aim to fill the gap
of barely existing multi-omics pipelines for microbial com-
munity samples being able to compare and integrate data at
the genome, transcriptome and proteome level.

MATERIALS AND METHODS

gNOMO is a pipeline that integrates multiple bioinfor-
matic methods and software tools to analyze metagenomics,
metatranscriptomics and metaproteomics data and to pro-
vide the results with an easily readable final output. One
of the main purposes of integrating such different kinds
of multi-omics data is to directly improve the analysis
of microbial populations and to investigate their function
in poorly characterized environments, such as non-model
organisms. At the genome and transcriptome level, our
pipeline includes both quality control and data preparation
steps, of which parameters can be adjusted depending on
the quality of the input data. In addition, gNOMO allows
to directly create a proteogenomic database from metage-
nomics and metatranscriptomics data. This important pro-
cessing step makes it possible to connect the metagenomics
and metatranscriptomics analysis to the protein identifica-
tion at the metaproteomics level. In particular, the proteoge-
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nomic database generation step leads to the full integration
of all three omics levels.

The complete gNOMO pipeline is built in Snakemake
(27), a management system for bioinformatic workflows,
that allows obtaining standardized and reproducible output
data. The input data and parameters of programs that are
used in Snakemake are defined by editing a single configu-
ration file. Further, the gNOMO pipeline including all de-
pendencies is available at the BioConda channel (28). Tools
added to BioConda provide a user-friendly installation be-
cause the required tools and libraries are easily incorporated
and automatically installed with the use of Snakemake en-
vironments. Due to the high computational needs of some
parts of the workflow, we recommend a system with at least
16 available cores and at least 200 GB RAM. The stor-
age requirements are data-dependent and were in our case
about 1 TB of free storage. The runtime highly depends on
the number of available cores because Snakemake is able
to parallelize non-dependent tasks and decreases the run-
time this way substantially. On a cluster node with 16 cores
and 200 GB RAM the analysis of the B. germanica micro-
biome took about 72 h. The runtime of gNOMO can vary
from run to run as it not only depends on CPU power but
network speeds used, for example, for database updates as
well. In addition, it should be stated that the Snakemake
workflow engine is compatible and scalable in cluster envi-
ronments (e.g. using the SLURM Workload Manager). The
gNOMO pipeline typically consists of five main steps (Fig-
ure 1): (i) pre-processing, (ii) metagenomics and metatran-
scriptomics data analysis, (iii) proteogenomic database cre-
ation, (iv) metaproteomics data analysis and (iv) data inte-
gration. In the following paragraphs, these individual steps
are described in more detail.

Pre-processing

The first step includes various pre-processing mechanisms
improving metagenomics and metatranscriptomics read
quality, including: (i) FastQC (29) for reviewing the quality
of the reads, (ii) PrinSeq (30) for cleaning and for trimming
the sequences, (iii) a second quality control with FastQC
and Fastq-join (31) for binning the pair-end reads. This bin-
ning step is included because our workflow is designed for
paired-end reads.

Metagenomic and metatranscriptomic analysis

In the metagenomic and metatranscriptomic analysis step,
the pre-processed paired-end sequences are analyzed using
pre-configured tools. These tools include (i) a genome map-
ping against the NCBI non-redundant (nr) database (ac-
cessed 5 July 2019) using Kaiju (32), (ii) an assembly us-
ing Ray, (iii) and protein prediction using both Prodigal
(33) for bacterial proteins and (iv) Augustus (34) for host
proteins. The contigs obtained through the genome assem-
bly are used to increase the accuracy of the protein predic-
tions. Bacterial proteins are predicted using Prodigal, a pro-
gram specifically designed to predict bacterial open reading
frames. Host proteins are predicted, with an engine (Augus-
tus, (34)), from the same samples as bacterial proteins, be-
cause our pipeline is designed to analyze mixtures of host

hindgut cells and bacterial cells. In this experiment, the vivi-
section process has been performed to ensure the only ac-
quisition of hindgut tissue, essential to properly integrate
bacterial data in its context, which is the hindgut of the host.
Functional annotation of these predicted proteins is per-
formed using EggNOG (version 1.0 accessed 5 June 2019)
(35) to obtain KEGG Orthology (KO) identifiers. An op-
tional step is included that requires the installation of In-
terProScan (36). This software is not implemented in Bio-
Conda but will be automatically installed locally with the
snakemake script and allows a TIGRFAM (37) functional
annotation. Details regarding the quality of the annotation
in metagenomics and metatranscriptomics are available in
the Supplementary Table S1.

Proteogenomic database generation

The output of the previous bacterial prediction from the
metagenomics and metatranscriptomics data is used to cre-
ate a proteogenomic database. This database includes bac-
terial and host proteins from metagenomics, metatranscrip-
tomics or both kinds of data. A database with both kinds of
information provides a comprehensive reference for peptide
and protein identification (see next paragraph). The pro-
teogenomic database obtained from the validation data has
been built with the sequences resulting from the bacterial
protein prediction performed with Prodigal. This database
(data of creation: 19 November 2019) contains 1 014 200 se-
quences, of which 850 455 are unique (i.e. occur only once
in the database).

Metaproteomic data analysis

For peptide and protein identification, MS-GF+ (38) is
used as database search engine, employing the custom pro-
teogenomic database as reference for peptide-to-spectrum
matching. Both taxonomic and functional annotations of
the peptides are performed with Unipept version 4.0 (39).
The output obtained from this step is a taxonomic annota-
tion at three different levels (phylum, family and genus) and
the Enzyme Commission (EC) number associated with each
peptide. To assess the performance of our tailored database,
we compared the peptide identification yield with a very
complete human gut microbial protein database: NIH Hu-
man Microbiome Project Gastrointestinal database (ac-
cessed 25 November 2019) (Supplementary Table S2). With
our tailored database we obtained four times more peptides
identified than using the NIH Gastrointestinal database.
The search parameters are available in the modifications file
for msgf plus (mods) and the config file. These results are
consistent with previous studies on the use of metagenomic
sequences for constructing proteogenomics databases (40).

Meta-omics data integration and visualization

The final step concerns the integration and visualization of
all three-level meta-omics data and results. The integration
of all three meta-omics data levels is performed in the fol-
lowing stages: (i) parallelized meta-omics analysis, (ii) pro-
teogenomic database construction and (iii) pathway visual-
ization.
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Figure 1. Workflow overview of the gNOMO pipeline. Each box represents a processing step in the pipeline. Box colors indicate the types of steps: input
(orange), processing step (blue), optional step (red) and output (green). A legend with the colors is also incorporated. In each step, the process is indicated
as well as the program used (in blue, red or green boxes), or which kind of input is required (in yellow boxes). Each blue, green and red box is marked
with a number in parentheses indicating to which pipeline step it belongs: (1) pre-processing, (2) metagenomic and metatranscriptomic data analysis, (3)
proteogenomics database construction, (4) metaproteomics data analysis, (5) final output visualizations based on the meta-omics integration.

First, both metagenomics and metatranscriptomics data
are analyzed in parallel, which allows a reliable integra-
tion of them. The taxonomic annotation of the microbiome
is visualized with KronaPlots (41). These plots show the
taxonomic distribution in each sample reads for metage-
nomics and metatranscriptomics data. To analyze this in-
formation further, linear discriminant analysis (LDA) effect
size (LEfSe) (42) is used that performs a statistical analy-
sis on the microbiome data. LEfSe identifies features most
likely to explain differences between conditions by cou-
pling standard statistical tests with additional tests encod-
ing biological consistency and effect relevance. The statis-
tics performed are Kruskal-Wallis rank-sum test on classes,
Wilcoxon rank-sum test among subclasses and LDA score
on relevant features. Taking account of the effect size is es-
sential to properly analyze microbiomes. The outcome of
the statistical analysis is depicted in a graph with up to two
levels of classification, and only the features with an LDA
score over 2 are shown. This allows visualizing different
conditions and different data within the same graph.

For the functional annotation, the representation of the
metabolic pathways is included using Pathview (43), which
allows pathway integration. The Pathview plots represent
the log2 ratio of the means of the different conditions
and data compared (i.e. 10d and 20d, metagenomic, meta-
transcriptomic and metaproteomic data, see below), after
a fold change normalization. These log2 ratios are cal-
culated for the proteins predicted from the contigs as-
sembled from each sample. The database used to iden-
tify the peptides in the metaproteomics data is based on
the protein prediction from the metagenomics and meta-
transcriptomics data. This proteogenomics approach cre-
ates a sample-specific protein database and therefore opti-

mizes the peptide and protein identification at the metapro-
teome level, and provides a full integration of three datasets:
metagenomics, metatranscriptomics and metaproteomics.
The log2 ratio of the means of the peptides identified are
then included in the Pathview visualization. When inte-
grating all three datasets (metagenomics, metatranscrip-
tomics and metaproteomics), the log2 ratios are compared
between pairs of datasets (transcripts/gene, protein/gene,
protein/transcript). Pathview shows these ratios as a color
gradient, indicating which dataset is over-represented in
the comparison. We can interpret if the transcriptional ac-
tivity is high (transcripts over-represented among genes),
or if the protein production is low (genes over-represented
among proteins). This R-based tool shows the differential
expression of the enzymes on graphs visualizing the selected
metabolic pathways. Pathview itself uses functional path-
way information from the Kyoto Encyclopedia of Genes
and Genomes (KEGG) database (44).

Validation data

Blattella germanica population originated from a stable lab-
oratory population housed by Dr X. Bellés’ group at the
Institute of Evolutionary Biology (CSIC-UPF, Barcelona).
It was reared in chambers at the Institute for Integrative
Systems Biology (University of Valencia) at 25◦C, 60% hu-
midity and a photoperiod of 12L:12D. Cockroaches were
fed dog-food pellets (Teklad global 21% protein dog diet
2021C, Envigo, Madison, WI, USA) and water ad libitum.
Samples were taken at 10 days and 20 days after becoming
adults, conditions names 10d and 20d, respectively. Vivisec-
tions of CO2-anesthetized females were performed to ob-
tain the hindgut of each individual. DNA and RNA sam-
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ples were obtained from the same hindgut, with a total
of 12 samples (six replicates per condition). Protein sam-
ples were obtained from individuals of the same age and
population, with a total of eight samples (with four repli-
cates per condition). Hindgut was ground with a sterile
plastic pestle. DNA and RNA extraction of each hindgut
was performed using Nucleospin RNA XS and Nucleospin
DNA/RNA Buffer Set (Macherey-Nagel, France). Protein
extraction of each hindgut was performed solubilizing the
ground hindgut with lysis buffer (7 M urea, 2 M thiourea,
4% (w/v) CHAPS). Metagenomic sequencing using the Il-
lumina MiSeq (2 × 300 bp) technology was done at the FIS-
ABIO (Valencia, Spain). Metaproteomics shotgun sequenc-
ing was performed by the Proteomics Unit of the Servei
Central de Suport a la Investigació Experimental (SCSIE)
at the University of Valencia.

A small subset of human data has been also analyzed in
order to show the plasticity of the pipeline. The dataset con-
sisted of two samples of metagenomics and metaproteomics
data from the study of Tanca et al. (45). Both samples corre-
spond to faecal samples from healthy Sardinian individuals:
a female and a male.

RESULTS

To illustrate the outputs and analysis that can be ob-
tained from this pipeline, we used a complex gut microbiota
dataset from the non-model organism B. germanica, which
genome has been sequenced (without being fully annotated)
(46). This dataset consists of metagenomics, metatranscrip-
tomics and metaproteomics data of two different adult con-
ditions: 10d and 20d.

Comparison of metagenomics and metatranscriptomics/
metaproteomics datasets for one-condition sample (multi-
meta-omic approach)

Assessing bacterial composition from metagenomics and
metatranscriptomics data. The analysis of microbial com-
munity samples often raises the question of which bacteria
form a given population. To answer this question, we per-
formed two different types of analysis using gNOMO. First,
we processed and analyzed metagenomics data to investi-
gate the taxonomic composition of a given sample. Second,
we analyzed and compared samples of two different condi-
tions: 10d and 20d.

For the first analysis, the output was visualized using
a Krona plot that is produced for each metagenomics
and metatranscriptomics sample automatically within the
gNOMO pipeline. For the first-condition (10d) sample, we
observed that the main phyla present in this population
were Bacteroidetes, Firmicutes and Proteobacteria (Figure
2). After analyzing the taxonomic distribution differences
between the 10d and 20d samples, we observed no signifi-
cant abundance differences in a preliminary analysis (Sup-
plementary Tables S3 and 4). In this analysis, the relative
abundance of the main phyla and families was calculated
in relation to the mean abundance of the two conditions.
We observed that the four most abundant phyla distribu-
tions match our previous published studies based on 16S
gene sequencing, while others (e.g. Planctomycetes, Defer-

ribacteres and Actinobacteria) do not match exactly previ-
ous studies on this topic (10) (Supplementary Table S3).
We made similar observations regarding taxonomic abun-
dances at the family level (Supplementary Table S4). In gen-
eral, this can be explained by the difference concerning the
method and annotation between 16S rRNA gene sequenc-
ing analysis and metagenomics. 16S rRNA gene sequencing
focuses on bacterial data and can be useful in environmental
studies due to the lack of fully sequenced bacterial genomes
in these kinds of scenarios. In contrast, metagenomics of-
fers higher resolution, enabling a more specific taxonomic
classification of sequences as well as the detection of new
bacterial genes and genomes (47).

As described previously, our first analysis provided no
clearly visible abundance differences between the two con-
ditions, as we were expecting when studying such a stable
situation (both are adult individuals differing in 10 days of
development). However, we decided to validate this find-
ing by a more sensitive statistical approach. To investigate
this issue further, we used LEfSe (42) as a well-established
statistical method for comparing the taxonomic distribu-
tion at genus level between 10d and 20d conditions. LEfSe
has the advantage of recognizing the hierarchy of the tax-
onomic classification and accurately calculate statistically
significant differences (represented as LDA scores) between
different conditions.

Using LEfSe, we found, for example, that Fusobacterium
(Fusobacteriaceae family), was more abundant at 10 days
(LDA score > 3) in both metagenomics and metatran-
scriptomics data (Figure 3). The role of Fusobacterium on
cockroaches’ gut microbiome deserve a detailed study due
to these results and some interesting findings about this
groups’ role in other organisms: Fusobacterium has been
related to disease and stress situations in the human gut
microbiota (48), but is has also been related to the infants
gut microbiota (49). Conversely, an unidentified genus be-
longing to the family Ruminococcaceae, has been found
more abundant in 20d than 10d condition (LDA score >
3) in metagenomics data (Figure 3A), but no differences be-
tween conditions have been found in metatranscriptomics
data (Figure 3B). Various genera belonging to the family
Ruminococcaceae have been related to a healthy gut mi-
crobiota, like Ruminococcus and Faecalibacterium. These
have been linked to degradation of starch in the human
colon making it available for other bacteria in the gut (50),
and degradation of cellulose in herbivorous mammals (51).
These differences between 10d and 20d conditions could
suggest that, even if the population is very stable along
adult stages, it is being rearranged to its final composi-
tion. This rearrangement would imply a reduction in Fu-
sobacterium and an increase of Ruminococcaceae along time
(10d against 20d, Figure 3A). On the other hand, Pseu-
domonas genus and an unclassified genus belonging to the
family Pelagibacteraceae are more abundant only in meta-
transcriptomics analysis at 20d against 10d (Figure 3B).
Pelagibacteraceae has been described as a bacterial family
localized in marine and freshwater environments (52), but
has also been detected in the mouse gut microbiome (53)
Pseudomonas genus has been related to pathogenicity in an-
imals and plants, and is a commonly detected taxa in the gut
of cockroaches (54). These results suggest that these taxa
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Figure 2. KronaPlot of the taxonomic annotation of a metagenomics sample (condition 10d). Bacterial taxa distribution of metagenomics data, corre-
sponding to condition 10d. The bacterial taxa are classified by taxonomic hierarchy levels, from higher levels in the center of the chart (Kingdom Bacteria)
progressing outward until genus level.

increase their transcriptional activity but not their abun-
dance in the population along time. By the same reason the
unidentified genus of Ruminococcaceae reduce its transcrip-
tional activity (is over-represented at metagenomics level
but not at metatranscriptomics level in 20d sample). More
importantly, for the present work is the integration of this
level of comparison that allows detection of particular taxa
that differ significantly in their abundance in different con-
ditions.

Functional analysis from integrated metagenomics and meta-
transcriptomics data for one-condition sample. Next steps
concern the functional analysis of each microbiome dataset
and the qualitative and quantitative differences of assigned
functional annotations. To assess the level of transcriptional
activity of the population, we compare the metagenomics
data (gene pool) and the metatranscriptomics data (tran-
scripts) corresponding to the microbiota of the 10d con-
dition. Integrating metagenomics and metatranscriptomics
allows calculating transcript/gene ratios that indicate gene
transcriptional activation or repression. For this purpose,
we applied LEfSe based on the functional role (or sub-

role) assignment using TIGRFAM (Figure 4 and Supple-
mentary Table S5). We observed that energy metabolism
(both anaerobic and aerobic metabolisms) and protein pro-
duction are the most active metabolic pathways (Figure 4),
which indicates that the bacterial population is active.

Alternatively, a pathway analysis enables discovering dif-
ferences between states by using the Pathview R package.
An analysis with Pathview shows which specific metabolic
pathways (KEGG pathways) have statistically significant
correlations between sample types and/or conditions and
thereby complements the information provided by LEfSe.
In a Pathview graph, an increase of the gene activity in-
volved in a certain pathway can be observed. Our exemplary
analysis using Pathview here focuses on the tricarboxylic
acid cycle (TCA cycle) of the gut microbiota, comparing
again gene pool (metagenomics data) against transcripts
(metatranscriptomics data) (Figure 5). The TCA cycle con-
sists of a series of oxidative reactions to finally obtain energy
(adenosine triphosphate) from oxidative degradation of the
acetyl group, in the form of acetyl-CoA, to carbon dioxide.
The full cycle can be performed by bacteria in aerobic con-
ditions, but some autotrophic bacteria are also able to per-
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Figure 3. LEfSe graph of taxonomic annotation of metagenomics (top) and metatranscriptomics (bottom) data comparing the two conditions: 10d and
20d. Taxa with significant different distribution among the two conditions are identified. Only taxa with LDA scores over 2 are shown. Positive LDA scores
are assigned to the taxa over-represented in the condition 20d (green), and negative LDA scores to the taxa over-represented in the condition 10d (red).
Metagenomics data (A) and metatranscriptomics data (B) are represented.

form the reverse TCA cycle (rTCA), and even some anaero-
bic bacteria are able to carry out an incomplete TCA cycle,
defining the pan-metabolic capabilities for this pathway of
the gut microbiota.

We have found that most enzymes that take part in
the TCA cycle are over-represented at the transcript level.
This confirms our previous observations related to energy
metabolism (Figure 4). With both analysis methods and
their visualizations, we were able to study different levels of
complexity of the pan-metabolism of all bacterial popula-
tions. We observed that the microbiome actively produces
energy and proteins to grow and maintain a very complex
population. Beyond the use case shown above, depending
on the particular study, other pathways could be analyzed.

Meta-omics integration: comparing metagenomics, meta-
transcriptomics and metaproteomics data at the functional
pathway level

Each meta-omics level data provides unique information
in various ways, but their integration is crucial to gain a
complete overview of the metabolic capabilities of the stud-
ied bacterial populations. Metaproteomics data incorpora-
tion to the integrated analysis of microbiomes is essential
to have a realistic overview of the functional capabilities
of the bacterial populations. For this purpose, we analyzed
these meta-omics data together, as an example, focusing on

the N metabolism pathway, corresponding to the N cycle,
the set of reactions by which different inorganic N com-
pounds are transformed into ammonia, a biologically re-
duced form of N that can be mainly introduced into syn-
thesis of amino acids (glutamine and glutamate). We were
interested in this pathway due to previous findings related to
N metabolism of the host (B. germanica) and the endosym-
biont Blattabacterium. As explained previously, Blattabac-
terium participates in the N recycling from stored urates to
ammonia that can be used to synthesize glutamine and glu-
tamate, connecting with the amino acid biosynthesis path-
way (6). Here, the aim was to study N metabolism in the
host gut microbiome and then to assess if the bacterial pop-
ulation has the metabolic capability to produce a form of
usable N.

In this analysis, we investigated how variable or stable the
overall N metabolism is at the gene, transcript and protein
level along time (10d against 20d) in the investigated path-
way (Figure 6). While metagenomics and metatranscrip-
tomics show almost complete coverage of the N metabolism
pathways and very variable along time, only a few enzymes
were observed in the metaproteomics data and very stable
along time. These results suggest that while the gene pool
(the population) can be variable, the final transcripts and at
least the four detected proteins remain stable, which could
point in the direction of a functional redundancy at the pro-
tein level, as has been previously described for human gut
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Figure 4. LEfSe graph comparing metagenomics and metatranscriptomics data of TIGRFAM annotation (role and subrole levels) of condition 10d. Taxa
with significant different distribution among metagenomics and metatranscriptomics data are identified. Only taxa with LDA scores above 2 are shown.
Positive LDA scores are assigned to the functional categories over-represented in the metatranscriptomics data (RNA, green), and negative LDA scores to
the functional categories over-represented in metagenomics data (DNA, red).

microbiota (55). However, deeper coverage of the metapro-
teomics data would be necessary to confirm these findings.

Comparison of host and microbiome data

Microbiota metabolism and functions are better under-
stood when studied together with its host. gNOMO in-
cludes the analysis of the host data in parallel with its mi-
crobiome, so we can integrate and compare the metabolic
pathways of host and microbiome. In the case of B. ger-
manica, we have studied the N metabolism pathway that we
had analyzed before with the focus on the microbiota data
(Figure 6) integrating the host data (Figure 7). We have ob-
served which enzymes can be found in the bacterial popula-
tion data and which ones can be explained by the host data
(Figures 6 and 7).

We expected to find a maximum of four enzymes in the
host data, as in most eukaryotes only four enzymes of this
pathway are present, and we could detect those in the host
pathway. While these four enzymes were the only ones de-
tected in the host, its gut microbiome possesses most of the
enzymes present in the N metabolism pathway.

If we study these four enzymes present in the host data
in detail, it can be observed that all of them are over-
represented at 10d against 20d condition in metaproteomics
data, and in metagenomics and metatranscriptomics data,
they are almost undetectable (Figure 7). When looking

at the microbiome metatranscriptomics data, these pro-
teins have a stable abundance over the whole time (Fig-
ure 6). These findings could indicate that the production
of these proteins in the hindgut of the host is reduced
along time, but its production by the microbiome remains
stable.

After analyzing the bacterial and the host capabilities to-
gether regarding this metabolic pathway, we find that the
N metabolism corresponding to the N cycle is mostly per-
formed by the microbiome. These data show the importance
of the meta-omics integration, as different levels of cell func-
tion are represented, each of them with different implica-
tions. DNA (in metagenomics) is more stable and can rep-
resent the gene pool of a population, but it can be misun-
derstood as also dead bacteria and genes which are not ac-
tive are being represented with this methodology. RNA (in
metatranscriptomics) shows the levels of active transcrip-
tion, essential to understand the activity of a microbiome,
which can differ substantially from the gene pool, both in
bacterial and eukaryotic cells (Figures 6 and 7). The iden-
tified proteins for both microbial and host data, have been
decisive to conclude that the N cycle is active in the Ger-
man cockroaches’ hindgut due to its microbiome (Figure
6). This conclusion is reinforced by the host data, as it
has been proven that the host is not actively taking part
of the N cycle (Figure 7). The importance of these find-
ings should be analyzed in the future, including other path-
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Figure 5. KEGG Pathview graph of the TCA cycle metabolism route comparing metagenomics versus metatranscriptomics data of the microbiota of
10d and 20d conditions. Some nodes are split between two colors, indicating 10d (left) and 20d (right) conditions. Light blue (−1) depicts genes under-
represented in metagenomics (but over-represented in metatranscriptomics), while those marked in pink (1) depicts over-represented genes in metagenomics
(but under-represented in metatranscriptomics). In purple, values close to 0 in the ratio metatranscriptomics/metagenomics, indicating no differences in
frequency.

ways and improving the metaproteomics coverage of the
microbiota.

Human microbiome dataset

In order to evaluate the applicability of gNOMO to other
microbiome data, we performed an analysis on human mi-
crobiome data. In this analysis, we processed metagenomics
and metaproteomics data of two healthy Sardinian individ-
uals gut microbiota (45). The results of this exemplary anal-
ysis are included as two tables and two figures in the Sup-
plementary File.

The basic statistics of the metagenomics data used are
available in Supplementary Table S6. The output of the hu-
man dataset analysis includes the average taxonomic distri-
bution of the metagenomics data of these samples in Sup-
plementary Table S7. Our taxonomic identification at levels
of phylum and family corresponds with the ranges obtained
in the original study.

To exemplify the functional annotation output in the
human dataset, we have included two Pathview graphs
of the glycolysis/gluconeogenesis KEGG pathway. In
Supplementary Figure S1, the two chosen conditions
(male/female) are compared in both metagenomics and
metaproteomics data. In this figure, the metatranscrip-
tomics data possible spot in blank, which implies that the
pipeline works even with the lack of one of the meta-omics
data, and in general, the pipeline also works with all three
meta-omics levels (as shown in the previous text). It should
be noted that these exemplary data cannot be directly com-
pared to the results of the original study, as their authors
had not compared the microbiota between sexes. The re-
sults indicate an overall similar behavior of both bacterial
populations, but with punctual strong divergences between
individuals, which is in line with the results from the original
study.

Finally, the ratio between metagenomics and metapro-
teomics data are studied in both conditions. The results
show very different abundances between metagenomics and
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Figure 6. KEGG Pathview graph of the N metabolism route comparing metagenomics/metatranscriptomics/metaproteomics data of the microbiome at
10d and 20d. Some nodes are split between different colors, indicating metagenomics (left), metatranscriptomics (middle) and metaproteomics (right)
data. Light blue (−1) depicts genes/transcripts/proteins over-represented in 10d (but under-represented in 20d), while those marked in pink (1) depicts
genes/transcripts/proteins over-represented in 20d (but under-represented in 10d). In purple, values close to 0 in the ratio 10d/20d, indicating no differences
in frequency.

metaproteomics data, which indicates high or low transla-
tional activity, depending on the positive or negative value
of the ratio (Supplementary Figure S2). These findings also
confirm the results obtained from the Sardinian cohort
study.

DISCUSSION

The aim of our software design and implementation was to
provide a complete pipeline to analyze omics data from a
non-model host and its microbiome. Based on these require-
ments, we developed the gNOMO software that presents an
end-to-end workflow covering all the required data analy-

sis steps starting from the processing of raw omics data to
the final output visualization of the results. gNOMO per-
forms the analysis of up to three different meta-omics data:
metagenomics, metatranscriptomics and metaproteomics,
and their integration.

gNOMO is designed for paired-end sequencing of
metagenomics and metatranscriptomics data, the pipeline
includes a preprocessing and binning step designed for this
type of datasets. A tailored proteogenomic database is gen-
erated to perform a highly efficient database search for
protein identification in the metaproteomics data analysis
without a reference microbiome. To obtain this database
metagenomics and metatranscriptomics data are assembled
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Figure 7. KEGG Pathview graph of the N metabolism pathways comparing metagenomics/metatranscriptomics/metaproteomics data of the host between
10d and 20d conditions. Some nodes are split between different colors, indicating metagenomics (left), metatranscriptomics (middle) and metaproteomics
(right) data. Light blue (−1) depicts genes/transcripts/proteins over-represented in 10d (but under-represented in 20d), while those marked in pink (1)
depicts genes/transcripts/proteins over-represented in 20d (but under-represented in 10d). In pruple, values close to 0 in the ratio 10d/20d, indicating no
differences in frequency.

into contigs, which are then used to predict the proteins
present in the samples. Together with the microbiome data,
host data is obtained from the same samples and ana-
lyzed de novo in order to be able to analyze microbiota of
non-model organisms integrated with the host information.
Host databases can also be provided to analyze human or
other model organisms data.

The pipeline is developed using the modular Snakemake
framework that allows to incorporate software tools and li-
braries with different requirements. These tools are avail-
able at the BioConda channel and their installation is in-
corporated in the workflow. Snakemake makes use of pro-
gramming languages Python and Bash, which are com-

monly used in bioinformatics. Parameters can be specified
in the configuration file provided to Snakemake, so it can
be adapted to any kind of host or microbiome analyzed.
The use of Snakemake makes gNOMO fully automated, ef-
ficient and reproducible.

Previously published meta-omics workflows such as IMP
(24) incorporate two layers of meta-omics information by
integrating metagenomics and metatranscriptomics data.
Such workflows focus on the analysis of the microbiome
and often consider host information as contaminant reads:
thus, instead of providing a host data analysis, the host
genome is only used to remove the host information from
the microbiome data. To overcome this issue, gNOMO of-
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fers the possibility to analyze host data in parallel to mi-
crobiome data and both datasets can be studied simulta-
neously. gNOMO includes the analysis of metaproteomics
data and creates a tailored proteogenomic database to
achieve better and more efficient protein identification. The
incorporation of the metaproteomics data to the study of
the microbiome gives another dimension to the analysis of
the microbiome because the proteome provides the func-
tional profile and thereby gives insights on the actual inter-
action between microbial populations and their host.

The visualization output provided by gNOMO pipeline
includes krona charts for taxonomic distribution, and KO
categories are plotted using Pathview graphs. The func-
tional distribution represented with Pathview permits to in-
vestigate two different aspects: first, the completeness of
the metabolic pathways by visualizing each enzyme in the
route, and second, the differences in abundance of each
enzyme by comparing datasets (metagenomics, metatran-
scriptomics and metaproteomics) or conditions. This inte-
gration in gNOMO is highly useful, for example, when in-
formation regarding the presence and abundance of spe-
cific enzymes is needed. The integration is developed at
three different stages: the parallelization of the meta-omics
datasets, the integration of the functional annotation in
Pathview pathways, and the construction of a proteoge-
nomics database with metagenomics and metatranscrip-
tomics information to identify peptides and proteins from
the metaproteomics dataset.

With the study of a small human dataset, we can show
the plasticity and adaptation capability of the pipeline to
any type of dataset. The results obtained from this study
validate the results from the paper the exemplary dataset
was obtained from (45), which also proves that gNOMO is
a robust and reproducible workflow to work with.

In conclusion, gNOMO is a standardized and repro-
ducible bioinformatic pipeline designed to integrate and
analyze metagenomics, metatranscriptomics and metapro-
teomics microbiota data of non-model organisms. It incor-
porates preprocessing, binning, assembly steps, taxonomic
and functional annotations, and the production of a pro-
teogenomic database to improve the metaproteomics anal-
ysis. gNOMO also includes the analysis of both microbiota
and host data in parallel, which makes it a useful tool to
analyze the microbiome of non-model organisms, as it was
demonstrated using experimental data of the German cock-
roach B. germanica. In general, gNOMO can also be ap-
plied to data from human or other model organism sam-
ple types. Finally, gNOMO generates output and visualiza-
tion of multiple meta-omics results in a single automated
pipeline.

DATA AVAILABILITY

gNOMO is an open source software available in the
GitHub repository: https://gitlab.com/rki bioinformatics/
gnomo and https://gitlab.com/gaspilleura/gnomo.

The validation data have been deposited with Zenodo un-
der the accession number 3569690 (https://doi.org/10.5281/
zenodo.3569690), metagenomics and metatranscriptomics
data have been deposited with ENA under the accession
number PRJEB37860 (http://www.ebi.ac.uk/ena/data/view/

PRJEB37860) and metaproteomics data have been submit-
ted to PRIDE under the accession number (PXD018642).
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Supplementary Data are available at NARGAB Online.
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2. Moya,A., Peretó,J., Gil,R. and Latorre,A. (2008) Learning how to

live together: genomic insights into prokaryote–animal symbioses.
Nat. Rev. Genet., 9, 218–229.

3. Douglas,A.E. (2011) Lessons from studying insect symbioses. Cell
Host Microbe, 10, 359–367.

4. Moran,N.A., Ochman,H. and Hammer,T.J. (2019) Evolutionary and
ecological consequences of gut microbial communities. Annu. Rev.
Ecol. Evol. Syst., 50, 451–475.

5. Heintz-Buschart,A., May,P., Laczny,C.C., Lebrun,L.A., Bellora,C.,
Krishna,A., Wampach,L., Schneider,J.G., Hogan,A., de Beaufort,C.
et al. (2017) Integrated multi-omics of the human gut microbiome in
a case study of familial type 1 diabetes. Nat. Microbiol., 2, 16180.
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9. Pérez-Cobas,A.E., Gosalbes,M.J., Friedrichs,A., Knecht,H.,
Artacho,A., Eismann,K., Otto,W., Rojo,D., Bargiela,R., Von
Bergen,M. et al. (2013) Gut microbiota disturbance during antibiotic
therapy: a multi-omic approach. Gut, 62, 1591–1601.

10. Rosas,T., Garcı́a-Ferris,C., Domı́nguez-Santos,R., Llop,P.,
Latorre,A. and Moya,A. (2018) Rifampicin treatment of Blattella
germanica evidences a fecal transmission route of their gut
microbiota. FEMS Microbiol. Ecol., 94, fiy002.

11. Cani,P.D. (2018) Human gut microbiome: hopes, threats and
promises. Gut, 67, 1716–1725.

https://gitlab.com/rki_bioinformatics/gnomo
https://gitlab.com/gaspilleura/gnomo
https://doi.org/10.5281/zenodo.3569690
http://www.ebi.ac.uk/ena/data/view/PRJEB37860
http://www.ebi.ac.uk/ena/data/view/PRJEB37860
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqaa058#supplementary-data


NAR Genomics and Bioinformatics, 2020, Vol. 2, No. 3 13

12. Mohajeri,M.H., Brummer,R.J.M., Rastall,R.A., Weersma,R.K.,
Harmsen,H.J.M., Faas,M. and Eggersdorfer,M. (2018) The role of
the microbiome for human health: from basic science to clinical
applications. Eur. J. Nutr., 57, 1–14.

13. Piro,V.C., Matschkowski,M. and Renard,B.Y. (2017) MetaMeta:
integrating metagenome analysis tools to improve taxonomic
profiling. Microbiome, 5, 101.

14. Knight,R., Vrbanac,A., Taylor,B.C., Aksenov,A., Callewaert,C.,
Debelius,J., Gonzalez,A., Kosciolek,T., McCall,L.-I., McDonald,D.
et al. (2018) Best practices for analysing microbiomes. Nat. Rev.
Microbiol., 16, 410–422.

15. Martinez,X., Pozuelo,M., Pascal,V., Campos,D., Gut,I., Gut,M.,
Azpiroz,F., Guarner,F. and Manichanh,C. (2016) MetaTrans: an
open-source pipeline for metatranscriptomics. Sci. Rep., 6, 25447.

16. Muth,T., Behne,A., Heyer,R., Kohrs,F., Benndorf,D., Hoffmann,M.,
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