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a b s t r a c t 

Local Climate Zones (LCZ) have become a worldwide standard for identifying land cover classes, according to their 

climate-relevant morphological parameters. The LCZ’s are mostly used to evaluate urban climate performance, 

particularly the relationship between the urban heat island effect (UHI) and the characteristics of the built- 

up environment. The World Urban Database and Access Portal Tools (WUDAPT) has provided a supervised LCZ 

classification method based only on moderate resolution free satellite imagery, mostly Landsat 7 or 8 (30 m 

pixel size, in the visible spectrum brands); however, its’ results are less accurate for European cities. Conversely, 

alternative geographic information system (GIS)-based methods developed so far require information that is 

hardly available to all, such as building footprints or heights. Here, the ArcGIS based LCZ from Copernicus 

Toolbox (LCZC) provides an alternative classification method that uses only freely accessible information from 

the Copernicus Land Monitoring Service (CLMS), being possible to replicate it in 800 European urban locations. 

The method combines Urban Atlas (UA) and Corine Land Cover (CLC) with Tree Cover Density, Dominant Leaf 

Type and Grassland information, to produce a higher-resolution baseline shapefile that is classified according to 

each feature’s dominant characteristics. The LCZC toolbox output is a LCZ raster map. It has been validated in five 

European cities: Athens, Barcelona, Lisbon, Marseille, and Naples. 

• The LCZC toolbox provides an alternative LCZ GIS-based classification, based on freely accessible CLMS datasets. 
• The use of CLMS shapefile higher-resolution inputs, particularly the UA and CLC datasets, ensures an output 

LCZ map that has greater detail and higher accuracy. 
• The availability of CLMS information in 800 European urban areas guarantees that the method can be replicated 

in those locations. 
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Specifications table 

Subject Area: Environmental Science 

More specific subject area: Urban Climate 

Method name: Local Climate Zones from Copernicus ArcGIS Toolbox (LCZC) 

Name and reference of original 

method: 

The LCZC toolbox delivers classified maps of the Local Climate Zones scheme by 

Stewart et al. [1 , 2] and is an alternative open access method to the World Urban 

Database and Access Portal Tools (WUDAPT) [3] 

Resource availability: Requirements: ArcGIS Desktop version10.0 (or later), with Advanced License 

( http://desktop.arcgis.com/en/arcmap/10.3/get-started/system-requirements/ 

arcgis-desktop-system-requirements.htm ) 

The LCZC toolbox is provided with this article, as well as its’ python scripts 

retrieved through the ArcGIS export functionality. 

Method details 

The Local Climate Zones (LCZ) from Copernicus Toolbox (LCZC) method entails a sequence of 

steps to reclassify several Copernicus Land Monitoring Service (CLMS) layers into a LCZ-based [1 , 2]

classification, that can be used in urban climate-related studies, in 800 European urban regions. The

method aims to provide an alternative solution to the satellite-based World Urban Database and

Access Portal Tools (WUDAPT) supervised classification process [3] , ensuring the greater accuracy 

and higher spatial resolution of Geographic Information Systems (GIS)-based methods [4–6] while 

preserving the ability to be freely reproducible. To process the LCZC tool, ArcGIS software with

Advanced License is necessary. The list of inputs the LCZC requires is available in Table 1 ; all are

mandatory, except Building Height (BH) which is only available from CLMS for capital cities. The

toolbox is provided as supplementary material to this article in ArcGIS Toolbox format ( .tbx ) (Appendix

1), as well as the corresponding python scripts (Appendix 2), as exported through the Model Builder

Arc-GIS functionalities. 

Due to its’ spatial resolution, a combination of the Urban Atlas (UA) and Corine Land Cover (CLC)

shapefile datasets was chosen to establish the LCZ baseline vector layer for the procedure, and its’

shapefile format was preserved throughout the process. Additional layers related to vegetation were 

also combined in the model to better distinguish non-urban classes – Tree Cover Density (TCD), 

Dominant Leaf Type (DLT) and Grassland (GRA). These were all converted from raster to vector

shapefiles, classified according to equivalent LCZ based classes, and resulting maps were merged 

into the LCZ baseline layer, to quantify the dominant class in each polygon. Most built-up LCZ

classes (LCZ’s 1–10) were reclassified directly from the UA classes, by comparing both classifications’ 

specifications in terms of built-up density, imperviousness degree (IMD) and typical land use/cover. As 

UA methodology does not allow to distinguish LCZ’s 8 and 10, thus additional land use information

from OpenStreetMap (OSM) was used to solve that specific gap. On the other hand, non-built-up land

cover types (LCZ’s A-G) were reclassified according to conditional sentences that filter through the 

CLC and the vegetation-based classes. The reclassification process was subject to several iterations 

between algorithm testing and correction, and it was found that combining CLC classes with the

High-Resolution Layers related to Tree Cover (i.e. TCD, DLT and GRA) contributed to greater accuracy.

Figure 1 summarizes the GIS-based workflow and Figure 2 illustrates the principal correspondence 

flows between UA and LCZ classes, from the example of Lisbon, where the flow thickness represent

the proportion of each class. The method was implemented in ArcGIS software, using the Model

Builder functionalities to produce the LCZC custom toolbox. 

http://desktop.arcgis.com/en/arcmap/10.3/get-started/system-requirements/arcgis-desktop-system-requirements.htm
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Fig. 1. LCZ GIS-based classification workflow from Copernicus Land Monitoring Service (CLMS) datasets. Detailed diagram based 

on Oliveira et al. [5] . 
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Table 1 

List of land use and land cover datasets used in this study. 

Dataset Version Release date Spatial 

resolution 

Original format Reference Overall 

accuracy (%) 

Urban Atlas (UA) 2012 2016–08–04 10 m Vector Shapefile [7] 88.03- 94.19 3 

UA Building Height (BH) 1 2012 2018–04–19 10m Raster GeoTiff [8] n.a. 

Corine Land Cover (CLC) 2012 2016–09–19 100 m Vector Shapefile [9] 83.6 - 89.7 4 

Imperviousness Density (IMD) 2015 2018–03–22 20 m Raster GeoTiff [10] 89.63 - 98.37 3 

Tree Cover Density (TCD) 2015 2018–03–22 20 m Raster GeoTiff [11] 85.03 - 92.27 3 

Dominant Leaf Type (DLT) 2015 2018–04–13 20 m Raster GeoTiff [12] 85.30 - 95.63 3 

Grassland (GRA) 2015 2018–09–09 20 m Raster GeoTiff [13] 85.50 - 92.67 3 

OpenStreetMap (OSM) n/a n/a n/a Vector Shapefile [14] n.a. 

1 optional dataset 2 shapefile extracted from OSM, including land-use field column. 
3 as per [15] . 
4 as per [16] . 

Fig. 2. Sankey Diagram of the LCZ reclassification algorithm – an example of Lisbon’s LCZ_v1 map. The flows represent the 

correspondence between UA (left codes) and LCZ (right codes) classes, and their thickness depicts the proportion of the surface 

area. The text in boxes corresponds to the LCZ reclassification syntax. Detailed diagram based on Oliveira et al. [5] . 

 

 

The method involves five steps to complete the LCZ classification, from pre-processing of the 

datasets to the final LCZ maps. If several CMLS layer tiles are needed to contain a study region, they

need to be merged into a new mosaic raster previously. The OSM information also must be retrieved

previously in shapefile format, with the field column land-use . 

Besides using ArcGIS-based tools for data conversion and merging, the LCZC workflow involves 

several python -based reclassification steps. Due to its’ extension, these steps are provided as 

supplementary material Appendix 2, in python -format, for easier access to the algorithm conditional 

sentences details. 
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Fig. 3. ArcGIS toolbox model, STEP1.1. Pre-Processing: Copernicus High-resolution layers GRA, DLT, TCD, IMD are clipped and 

converted to shapefile. 

Fig. 4. ArcGIS toolbox model, STEP1.2. Pre-Processing: Copernicus High-resolution layers GRA, DLT, TCD and IMD are classified 

into LCZ-based classes. 
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The LCZC tool includes 11 separate custom models, for more proficient use of computational

apabilities. These models process the input data in 5 workflow steps, as follows: 

TEP 1. Input raster layers are preprocessed, which includes: 

STEP 1.1. Pre-Processing: Clips the Copernicus High-Resolution raster Layers TDC, DLT, GRA

and IMD according to the UA Boundary, and converts the clipped result to polygon

shapefile (see Fig. 3 ). The raster to polygon conversion is based on a regular squared

polygon grid, in which the grid cells have the same size of the original raster pixels,

ensuring that values are unchanged (i.e., each polygon feature corresponds to a pixel

of equivalent size and value). 

STEP 1.2. Pre-Processing: Polygons are reclassified into relevant LCZ-based classes, according to

conditional algorithms applied to the raster’s gridcode values (see Fig. 4 ). 
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Fig. 5. ArcGIS toolbox model, STEP2.1. LCZ Baseline: UA and CLC layers are subject to class selection and merged into an LCZ 

baseline feature layer. OSM land-use field is added through the Spatial Join function. 

Fig. 6. ArcGIS toolbox model, STEP2.2. LCZ Baseline: LCZ baseline is subject to adding fields that account the area per IMD 

LCZ-based class. 

Fig. 7. ArcGIS toolbox model, STEP2.3. LCZ Baseline: the same procedure from STEP2.2 is applied to the TCD, DLT and GRA 

shapefiles, by adding fields to the LCZ baseline shapefile and calculating the area of each LCZ-based class. 

S

 

 

TEP 2. LCZ baseline shapefile is assembled: 

STEP 2.1. LCZ Baseline: Assembles the LCZ baseline polygon layer, based on conditional 

selections and merging functions, applied to the UA, CLC and OSM inputs (see Fig. 5 ).

UA features are chosen to represent urban classes, while CLC features are preferred in 

non-urban land cover typologies. Selected features of both layers are merged through 

the Identity tool. The OSM land use information is added through the Spatial Join 

function. 

STEP 2.2. LCZ Baseline: Calculates area per IMD class, adding the resulting field to the LCZ 

baseline polygon layer (obtained in the previous STEP 2.1) (see Fig. 6 ). 

STEP 2.3. LCZ Baseline: Calculates area per TCD, DLT and GRA classes, adding the resulting field

to the LCZ baseline polygon layer, from previous 2.2 (see Fig. 7 ). 
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Fig. 8. ArcGIS toolbox model, STEP3. LCZ Classification: LCZ baseline is reclassified according to the dominant LCZ class, without 

building height information. Two classification fields are created in the attribute table: LCZ and LCZ_leaf (LCZ with added DLT 

classification). 

Fig. 9. ArcGIS toolbox model, STEP4. LCZ with Building Height: reclassifies the LCZ baseline LCZ and LCZ_leaf fields, by decoding 

LCZ’s 123 and 456 polygon features according to dominant BH class. 
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TEP 3. LCZ classification: LCZ baseline dataset from previous STEP2.3 is reclassified as two LCZ

classification fields ( LCVZv1 and LCZv1_leaf ), both without building height information (i.e.

Urban LCZ classes are merged by density, e.g. LCZ’s 1, 2 and 3 are classified as LCZ ’123 ′ ).
The LCZ classification fields created are named LCZ (containing classes 123, 456, 8, 9, 10, A,

B, C, D, E, F and G), and LCZ_leaf (containing the same classes but separating LCZ’s A and B

according to DLT, deciduous or coniferous) (see Figure 8 ). 

TEP 4. LCZ with Building Height: converts, classifies and merges the BH raster layer with the STEP3

LCZ classification output; LCZ’s 123 and 456 are reclassified according to dominant BH: LCZ 1

Compact high-rise LCZ 2 Compact midrise LCZ 3 Compact low-rise LCZ 4 Open high-rise LCZ 5

Open midrise LCZ 6 Open low-rise. Urban features without BH information remain as LCZ 123

and LCZ 456. The two fields created, LCZ_BH and LCZ_leaf_BH , correspond the reclassification

of the two fields from the previous STEP3 (see Figure 9 ). 

TEP 5. LCZ conversion to Raster: converts the shapefile LCZ classification into a raster, according to

user’s pixel size specifications. STEP5 has 4 alternative models, according to the LCZ desired

content: (a) LCZv1 - classification without DLT or BH; (b) LCZv1_leaf - classification with DLT

but without BH; (c) LCZv1_BH classification with BH, but without DLT; and (d) LCZv1_leaf_BH

classification with BH and DLT. The resulting raster uses a numerical codification for LCZ’s

classes, and the corresponding attribute table also contains 2 string fields with LCZ’s names

and description, and a numerical field with the corresponding area (m 

2 ) (see Figure 10 and

Table 2 ). 

The presented method was tested in 5 Southern European cities [5] : Athens, Barcelona, Lisbon,

arseille and Naples [4] . Even though Stewart and Oke describe 300 m as a reasonable minimum

adius for the LCZ classification [2 , 17] , the resulting LCZ shapefile datasets were converted to a 50 m

ixel raster format, where each pixel value depicts the LCZ class that has the greatest area. Each

ity’s LCZ classification was subject to accuracy assessment analysis, by randomly selecting samples of

ixels per class, stratified by surface area coverage. About 550 samples per each city were classified

ccording to the dominant LCZ type (based on satellite true color imagery and 3D information from

oogle Earth). The sample’s classification was compared with the LCZC toolbox output, and results

e-arranged into a confusion matrix. Average overall accuracy (OA) was 81% and Kappa coefficient

.79. Correctly classified pixels varied according to LCZ class, as built-up LCZ classes 1–10 revealed,

n average, 90,0% agreement, but non-built-up LCZ classes A-G had fewer correctly classified sample
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Fig. 10. ArcGIS toolbox model, STEP5a. LCZ conversion to Rater: the classified LCZ baseline shapefile is converted to Raster 

format, according to the user’s chosen spatial resolution. There are 4 STEP5 models, one per each alternative LCZ field. 

Table 2 

Alternative LCZ classifications and the corresponding list of LCZ classes contained in the attribute tables 1 . 

Numerical 

code 

LCZ class Description LCZv1.tif 

Without BH 

Without DLT 

LCZv1_leaf.tif 

With DLT 

Without BH 

LCZv1_BH 

With BH 

Without DLT 

LCZv1_BH_leaf 

With DLT 

Without BH 

100,100 1 Compact high-rise X X 

10 0,20 0 2 Compact midrise X X 

10 0,30 0 3 Compact low-rise X X 

100,123 123 Compact mix-rise X X X X 

10 0,40 0 4 Open high-rise X X 

10 0,50 0 5 Open midrise X X 

10 0,60 0 6 Open low-rise X X 

100,456 456 Open mix-rise X X X X 

10 0,80 0 8 Large low-rise X X X X 

10 0,90 0 9 Sparsely built X X X X 

101,0 0 0 10 Heavy industry X X X X 

110,100 A Dense trees X X X X 

110,110 A coniferous Dense trees coniferous X X 

110,120 A deciduous Dense trees deciduous X X 

110,200 B Scattered trees X X X X 

110,210 B coniferous Scattered trees coniferous X X 

110,220 B deciduous Scattered trees deciduous X X 

110,300 C Bush scrub X X X X 

110,400 D Low plants X X X X 

110,500 E Bare rock or paved X X X X 

110,600 F Bare soil or sand X X X X 

110,700 G Water X X X X 

1 X = Class contained in the dataset. 

 

 

 

 

pixels. The lowest accuracies occur in low-density vegetation types since only the dense trees class

(LCZ A) proved to have 80% correct results, on average. LCZ 123 (compact urban fabric), LCZ 8 and

LCZ 10 revealed the most noteworthy agreement, being correct in approximately 95% samples. LCZ 

456 (open urban fabric) and LCZ 9 (sparsely built) were found to be less accurate, even though above

the 80% threshold. This agrees with the great diversity of suburban neighbourhood typologies, more 

difficult to group in one class (an issue also present in the UA dataset). It should be noted that,
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[

[

hile the LCZC toolbox uses the high-resolution CLMS layers to improve the Urban Atlas and Corine

and Cover miss-classification rates, particularly in rural areas, it is still limited by its inputs overall

ccuracy. This agrees with the fact that the resulting LCZ’s maps revealed an overall accuracy that is

lightly lower than that of its input datasets. Nonetheless, the LCZC toolbox aims to provide a readily

vailable tool for LCZ mapping in European cities, improving the accuracy reached through satellite-

ased alternatives, and to be useful on a metropolitan scale. 
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