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Abstract: Textural characteristics of fruit are important for their quality, storability, and consumer
acceptance. While texture can be evaluated instrumentally or sensorially, instrumental measurements
are preferred if they can be reliably related to human perception. The objectives of this research were
to validate instrumental measurements with sensory determinations, develop a classification scheme
to group apples by their textural characteristics, and create models to predict sensory attributes
from instrumental and compositional analyses. The textural characteristics (crispness, hardness,
juiciness, and skin toughness) of 12 apple cultivars were evaluated on new and established cultivars.
Fruit was also evaluated using five instrumental measurements from TA.XTplus Texture Analyzer,
and three compositional determinations. The experiment was repeated for analysis and validation
purposes. Principal component (PC) analysis revealed that 95.88% of the variation in the instrumental
determinations could be explained by two components (PC 1 and PC 2); which were highly correlated
with flesh firmness and skin strength, respectively. Four textural groups of apples were identified,
and the accuracy of classification was established at 94.44% by using linear discriminant analysis.
The predictive models that were developed between the sensory and instrumental-compositional
data explained more than 85% of the variation in the data for hardness and crispness, while models
for juiciness and skin toughness were more complex. The work should assist industry personnel to
reduce time-consuming and costly sensory testing, yet have an appreciation of the textural traits as
perceived by the consumer.

Keywords: apple; linear discriminant analysis; prediction models; principal component analysis;
sensory evaluation; textural evaluations; instrumental evaluations; TA.XTplus Texture Analyzer

1. Introduction

Textural attributes of apples affect their quality and storability and also customers’
acceptance of the fruit [1–3]. Sensory evaluations have been utilized in the selection
of new fruit cultivars and evaluation of the impact of different storage and handling
practices on the textual characteristics of apples [4,5]. However, conducting sensory
panels to evaluate the textural attributes of fruits is not always feasible or affordable.
Moreover, the sheer volume of sensory tests required by breeding programs, postharvest
laboratories, and industry settings, may require hundreds of evaluations per setting; this
necessitates application of the more cost- and time-effective methods, such as instrumental
measurements in quality assessments. However, the data obtained from the instruments
must be validated using sensory tests before these measurements can be reliably adopted
for mainstream application or quality control.

Apples are one of the most produced and consumed fruits in the world. Apple culti-
vars have a broad range of textural characteristics that could vary by their genetics and
environmental factors (e.g., production practices, handling methods, transportation, and
storage conditions) [6]. There has been an ongoing attempt from the scientific community
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to develop predictive sensory textural models for apples using a variety of invasive and
non-invasive instrumental measurements to eliminate the need for conducting repetitive
sensory tests in different settings, especially in the breeding programs [7–14]. Validat-
ing instrumental measurements with sensory determinations is an important step in the
use of mechanical assessments for textural evaluations. Once validated, instrumental
measurements provide powerful selection and decision-making tools for researchers and
industry experts.

Simple apple flesh firmness puncture tests can be conducted using different instru-
ments. For example, penetrometers (i.e., Effegi) could be mounted on a drill press in
older versions [15] or performed by more sophisticated instruments (i.e., MTS traction ma-
chine [9] and Mohr Digi-Test-2 [16,17]) that allow researchers to have a continuous record
of the force with penetration [17]. Care must be taken when comparing determinations
taken from the different fruit-firmness instruments, because they generate a unique set of
data and sample preparation may not be same. This necessitates the need for development
of a separate set of predictive models for each instrument.

The size and shape of apple samples and whether the sample is with (unpeeled) or without
(peeled) skin play important roles in the type of data collected from the quality assessments
conducted using different instrumental measurements. In the majority of the predictive sensory
studies, researchers have used peeled apples or small flesh samples [11,12] in their studies,
considering the instructions of the instruments and their sample preparation protocols.
Grotte et al. [18] penetrated peeled and unpeeled apples and reported that the skin con-
tributed 57–61% to the overall firmness of an apple. Costa [19] also reported that fruit
peel contributed about 60% to penetrometer firmness measurements (with considerable
differences among cultivars). Their results indicate the importance of the type of sample in
studying the instrumental measurements.

Unpeeled samples were utilized in some instrumental measurement studies of apple
texture [9,18]. The TA.XTplus Texture Analyzer (Stable Micro Systems Ltd., Godalming,
Surrey, UK) is a relatively new universal textural instrument that is gaining ground in
research and industry settings. It can conduct penetration tests, on unpeeled or peeled
apple samples, in order to quantify the textural characteristics of fruit. This instrument
can be equipped for semi-automated analyses, thereby providing a substantial savings
to industry.

Corollaro et al. [11] and Costa et al. [20] investigated the relationships among the
sensory attributes and mechanical and acoustic instrumental measurements obtained
from a TA.XTplus Texture Analyzer (here thereafter referred as TA.XTplus) using large
apple collections and developed predictive sensory models using partial least square (PLS)
analysis. In both studies, researchers used small samples dissected from apple flesh. This
excluded the possibility of understanding the overall textural quality of the apples, which
is dependent on the properties of apple flesh and the contribution of apple skin. In addition,
the developed predictive models should be easily adopted and applied by experts from
different sectors of the apple supply chain [11].

Considering the limitations of the available literature, the main objectives of this
research were the following: (1) validate the selected instrumental textural parameters
obtained from the TA.XTplus with sensory determinations, using principal component
analysis; (2) develop an apple texture classification scheme and test its accuracy of clas-
sification, using linear discrimination analysis; and (3) develop easily-applicable linear
and nonlinear regression models, for predicting the sensory attributes of apples from
instrumental determinations obtained from the TA.XTplus (i.e., accounting for the skin
strength contribution in the firmness perception) and basic compositional data.
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2. Materials and Methods
2.1. Apple Cultivars

Twelve apple cultivars, four from each of three harvest periods (early-, mid-, late-
harvest), were included in the study to provide a broad range of textural sensory attributes.
Nine of the selected cultivars were common apple cultivars, readily available in the market.

Three cultivars (McIntosh, Imperial Gala, and Silken) were from the early-harvest
period; three cultivars (Honeycrisp, Ambrosia, and Aurora Golden Gala) were from the
mid-harvest period, and three cultivars (Nicola, Common Red Delicious, and Fuji) were
from the late-harvest period. An additional three cultivars were selected from new un-
named selections (SuRDC1, SuRDC2, and SuRDC3), from the Summerland Research and
Development Centre in Canada (SuRDC) breeding program (Summerland, BC, Canada).
One new cultivar was selected for each of the harvest periods, based on their superior tex-
tural characteristics. This broaden the range of the studied textural attributes and allowed
the models to be appropriate for both established and up-and-coming (new) cultivars.

The fruit in this research were obtained from an experimental orchard at SuRDC, not a
retail outlet, with the exception of Honeycrisp which was purchased from a nearby commer-
cial orchard. None of the fruit were waxed or packaged using commercial packinghouse
practices. This meant that the cultivars were sorted to exclude fruit that was unrepresenta-
tive in condition (damaged or defective), size, and color, as typically performed prior to
sensory assessments [5,12]. By removing fruit that was damaged or defective, particularly
large or small, or uncharacteristically red or green, a ‘uniform’ sample was available for
the sensory panel. The apples were stored in air, at 0.5 ◦C, for 5 to 8 weeks and warmed to
room temperature overnight prior to analysis.

2.2. Sensory Assessment

Apple sensory tests have been conducted regularly at the SuRDC Sensory Laboratory
for many years. Panelists (n = 12) for this project were selected based on their interest,
availability, and previous experience from staff at SuRDC or Summerland Varieties Corp
(Summerland, BC, Canada). The ethics approval for the research was obtained from the
Agriculture and Agri-Food Canada Human Research Ethics Committee, and informed
consent was obtained for experimentation with human subjects. The panel consisted of
three men and nine women ranging in age from 27 to 57 years. Four of the panelists were
new to sensory profiling of apples and attended a training session to become familiar
with the sensory textural attributes (crispness, hardness, juiciness, and skin toughness), as
utilized by Cliff and Bejaei [12].

These attributes, briefly, are defined as follows: (i) crispness, “the pressure build-up
and crunching sound that is heard as the tissue breaks or shatters, when biting into the ap-
ple”; (ii) hardness, “the resistance to compression when the sample is compressed between
the molar teeth”; (iii) juiciness, “the relative juice release when compressing the apple with
the back molars”; and (iv) skin toughness, “the relative ease of breakdown of skin in the
mouth during chewing with the molar teeth, to prepare the apple for swallowing” [5,14].

Food standards were prepared for each of the textural attributes, which anchored the
scales and provided a physical standard for the panelists to use as a reference, as described
by Cliff and Bejaei [12].

In the training session, the new panelists practiced scoring apples with different
textural attributes. All panelists reviewed the sensory methodology and practiced scoring
samples just prior to starting each sensory session.

Assessments were conducted at the SuRDC sensory laboratory in individual booths
under red light using Compusense five® software (Compusense Inc., Guelph, ON, Canada).
Apple slices (1/8 apple), from unpeeled fruit, were excised from the sun/shade transition
zone. They were assigned a three-digit code and presented in random order on white trays.

The standards for the textural attributes were presented in 30 mL plastic cups and
presented on separate trays, simultaneously with the sample trays.
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The intensity of the textural attributes was scored on 100 unit unstructured line scales,
with low and high marked at 10 and 90 units, respectively. The food standards that were
utilized for the anchors were placed at 10 and 90 for crispness, hardness and juiciness, and
50 for skin toughness [14]. The mid-point (50 units) of each scale was marked with a small
vertical line.

Considering the expected within cultivar and within fruit variations in natural agri-
cultural products, the experiment was repeated twice, and the datasets were named Ex-
periment #1 and Experiment #2. Panelists evaluated four cultivars from the same harvest
period, in triplicate, in each session (in random orders) in Experiment #1, and repeated the
assessment in another session (with another random order) in Experiment #2. Panelists
were unaware that the cultivars were being included in triplicate, or that the experiment
was being repeated (performed twice). The two sessions from the same harvest period
were scheduled no more than four days apart. Panelists participated in a total of six sensory
sessions, evaluating 12 samples from four cultivars per session. Data from two experiments
were compared.

2.3. Instrumental Firmness Measurements

Penetrometer measurements were conducted using TA.XTplus on 12 apple cultivars
(9 apples per cultivar per experiment). Two instrumental test days for each harvest period
(totaling 6) were conducted a day before and a day after the related sensory session.

TA.XTplus was fitted with an 8 mm cylindrical stainless-steel probe penetrating to a
depth of 10 mm at a speed of 10 mm/s and with a load cell of 30 kg in the current study. One
measurement per fruit was conducted in the sun–shade transition zone in the equatorial
region of the fruit. The skin on the fruit was intact and apples were supported on a circular
support ring during measurements. The instrument was operated in compression mode
with a trigger force of 0.1 N and force-distance curves were drawn from data collected at a
rate of 200 points/s.

To select and define parameters for this study, several research papers were consid-
ered [9,17,18,21]. Exponent software (Stable Micro Systems Ltd., Godalming, Surrey, UK)
was utilized to calculate six parameters from the force-distance curves using a macro, as
listed in Table 1 and diagrammatically illustrated in Figure 1. A macro was developed
that moved the cursor to specific locations on the curve and performed preprogrammed
functions and calculations, as shown in Table S1.

Table 1. List of instrumental parameters, abbreviations, and units of measurement associated with the instrumental
measurements on the TA.XTplus Texture Analyzer.

Parameter
Abbreviation Units of Measure Description of Parameter Method of Calculation and Location on

Force-Distance Curve

Fs Newton (N)
The maximum force (recorded on
y-axis) required to rupture apple skin
and flesh

Shown by anchor #4 on Figure 1

Ws Nmm Mechanical work conducted to rupture
skin and flesh

Calculated from the triangle area under the
curve between anchors #1 and #4 on Figure 1

Grad N/mm
The gradient on the force-distance
curve between 20% and 80% a of Fs to
measure the slope of the firmness

Calculated from the slope between anchors
#2 and #3 on Figure 1

D mm The probe position (on x-axis) at Fs Measured from the distance between anchors
#1 and #4 on the x-axis of Figure 1

Ff N The average force required to puncture
the flesh between 4.5 mm and 9.5 mm a

Calculated by the average of force recorded
between anchor #5 to #6 on Figure 1

Wf Nmm Work to rupture the flesh between 4.5
and 9.5 mm b

Calculated from the marked rectangle area
under the curve between anchors #5 and #6
on Figure 1

a Definitions for Grad and Ff variables were selected by observing 216 curves from 12 apple cultivars to minimize the impact of within
cultivar and among cultivar variations. b Considering a fixed distance between anchors #5 and #6 (i.e., 5 mm), Wf was equal to Ff multiplied
by 5. As a result, it was dropped from further analysis.
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Figure 1. Example of force-distance curve obtained from TA.XTplus Texture Analyzer (Stable Micro Systems Ltd., Godalming,
Surrey, UK) resulting from penetration of an unpeeled apple. The TA.XTplus was equipped with an 8 mm cylindrical
stainless-steel probe, and operated to a depth of 10 mm at a speed of 10 mm/s. The parameters used for interpretation of
the curves are described in Table 1, using the anchor numbers located along the upper edge of the diagram. The macro used
for calculation of the parameters is presented in Table S1.

2.4. Basic Compositional Measurements

Titratable acidity (TA) and soluble solids concentrations (SSC) were evaluated in this
study, since they are the accepted indices for tracking fruit maturity—an underlying factor
in fruit texture. TA and SSC were measured after the texture measurements from composite
juice samples extracted from the top half of three apples (i.e., three samples per cultivar per
test date). TA was determined using a Model 848 Titrino Plus titrator (Metrohm, Herisau,
Switzerland) and reported as g/L malic acid. SSC were measured using the Refracto 30PX
refractometer (Mettler Toledo, Columbus, OH, USA) and reported in percent (%).

Expressed juice (EJ) measurements were conducted, using a modification of the
compression method described by Mehinagic et al. [22]. A disc of flesh (21 mm diameter)
was excised from the sun/shade transitions zone at the equator of the fruit, using a #14
corkborer. Then, this disc was cut to 13 mm (height) using a 13 mm custom cutting tool
(2 utility-knife blade fixed to metal handle), weighed, placed on two layers of Whatman #4
filter paper, and covered with a third piece of filter paper. The disc of flesh was compressed
to 80% strain and held for 5 s to express the juice with the TA.XTplus. The apple tissue was
blotted to remove any excess juice and weighed again. The weight (g) of the EJ, removed
by compression, was calculated and reported as grams.

2.5. Statistical Analysis

Experiment #1 and Experiment #2 datasets from the sensory tests (n = 432), instrumen-
tal (n = 108), EJ (n = 108) and other basic compositional (TA, SSC) (n = 36) measurements
were separately screened to identify any outliers before calculating means for three repli-
cates of each cultivar. Standardized z-values were calculated for each variable in both
experiments separately, and then any data points with a z-value above |3.21| were re-
moved from the datasets. The removed outliers were less than 4.6% of the data presented
in a variable. The performance of one judge in the hardness sensory variables and one
judge in the skin toughness sensory evaluations in both experiments were determined
to be unacceptable. Since the collected data were too low, without any variation among
cultivars, these data were removed from both datasets.
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After the removal of outliers, means were calculated for three replicates of each
cultivar for all variables in both experiments (12 cultivars × 3 replications = 36 sample
size per variable in each experiment). A dataset consisting of 72 rows (36 data cells from
each experiment) was developed by including three replicates for each apple cultivar
in each experiment. Then, independent t-test statistics were utilized to compare similar
variables in Experiment #1 and #2 with each other. Pearson correlation coefficients were
also calculated to study the linear bivariate relationships between sensory, instrumental,
and compositional variables with each other using JMP software (JMP®, Version 15.0.0,
SAS Institute Inc., Cary, NC, USA).

Principle component analysis (PCA) was conducted using the standardized mean
scores, for the units of measurement that were different for the five instrumental param-
eters as measured by the TA.XTplus (i.e., Fs, Ws, Grad, D, and Ff ). then, the PCA was
supplemented with additional variables (sensory mean scores) using a PCA option in JMP
software to explore their relationships with the developed PCs [13]. This option correlated
the mean sensory scores with the PC loadings and allowed the sensory attributes to be
positioned in the biplot.

The sensory attributes crispness, hardness, and skin toughness were considered for
classification of the apple cultivars into different textural categories. Then, linear discrimi-
nant analysis (LDA) (sometimes referred to as canonical discriminant analysis) was applied
to evaluate the accuracy of the developed textural categories using five TA.XTplus measure-
ments [23,24]. The first canonical discriminant functions (which are linear combinations of
original variables) were calculated to characterize each sample within the multidimensional
space. Then, the canonical discriminant functions were developed, and finally the cases
were assigned to the groups based on the highest probability calculated for the groups.
Linear combinations of variables (i.e., canonical variables) could be detected using LDA by
maximizing the between-class variations and minimizing the within-class variations.

Predictive sensory models were developed using the instrumental and compositional
measurements as potential predictor variables and sensory textural measurements as
dependent variables. Multiple linear and nonlinear regression models were selected
depending on the nature of the relationship between the selected predictor variables and
the sensory variables. The prediction powers (R2) and root mean square errors (RMSE)
were considered in the selection of the best-fit prediction models. Predictive models were
developed twice using data from each experiment independently. Each model was tested
using the data obtained in the other experiment, for validation of the model. then, the final
models were calculated using the average coefficients from the two models, and finally the
models were tested on a pooled dataset from the two experiments. All statistical tests were
conducted using JMP software, at α = 0.05 significance level.

3. Results and Discussion
3.1. Comparisons of the Results of Two Experiments

Results of the independent t-test analyses (Table 2) indicated that there were no
significant differences between Experiment #1 and Experiment #2 for the studied variables,
and judges were capable of reproducibly evaluating the sensory attributes. Moreover,
the broad ranges reported for the variables (i.e., minimum, maximum) indicated the
applicability of the results for a diverse collection of apple cultivars that have sensory,
instrumental, and compositional characteristics within the studied ranges (Table 2).
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Table 2. Means, standard errors (SE), minimum (Min.), maximum (Max.) and t-test results of the comparison of sensory,
instrumental, and compositional data obtained in Experiment #1 and Experiment #2 (n = 72, df = 70).

Experiment 1 Experiment 2

Mean SE Min. Max. Mean SE Min. Max. t-Test Significance
(2-Tailed)

Sensory a

Crispness 59.48 1.78 31.50 74.58 61.31 1.78 28.63 74.50 0.72 0.47
Hardness 51.17 2.55 16.68 75.23 52.64 2.55 16.64 76.82 0.41 0.69
Juiciness 58.32 0.87 49.00 66.38 59.74 0.87 47.05 68.71 1.16 0.25

Skin toughness 51.96 1.33 34.59 66.68 52.6 1.33 38.41 66.59 0.34 0.73

Instrumental b

Fs 65.22 1.85 48.45 88.20 65.93 1.85 45.84 86.78 0.27 0.79
Ws 87.02 3.24 56.42 116.02 89.86 3.24 50.04 143.39 0.62 0.54

Grad 27.85 0.99 16.19 42.35 27.56 0.99 16.90 40.30 −0.21 0.84
D 2.66 0.06 2.00 3.73 2.69 0.06 2.22 3.58 0.27 0.79
Ff 39.23 1.28 24.83 56.24 39.97 1.28 25.12 55.29 0.41 0.68

Compositional c Expressed juiciness (EJ) 1.83 0.04 1.16 2.23 1.83 0.04 1.13 2.28 0.02 0.98
Titratable acidity (TA) 4.38 0.22 2.66 7.49 4.45 0.22 2.61 9.07 0.21 0.83

Soluble solids
concentrations (SSC) 14.94 0.19 11.60 17.00 14.95 0.19 11.60 17.60 0.03 0.98

a Sensory attributes (crispness, hardness, juiciness, and skin toughness) maximum scores are 100 units. b Determined using the TA.XTplus
Texture Analyzer (Stable Micro Systems Ltd., Godalming, Surrey, UK), as described in Table 1. c EJ, TA, and SSC were determined in units
of mg/L malic acid equivalent, percent and grams, respectively.

3.2. Bivariate Pearson Correlation Coefficients

Considering the lack of significant differences between the two experiments in the
studied variables, the bivariate linear correlation coefficients (r) among the instrumental
(Fs, Ws, Grad, D, and Ff ), basic compositional (EJ, TA, and SSC) and sensory (hardness,
crispness, juiciness, and skin toughness) variables were investigated and reported in Table
S2 using the pooled dataset. These results were also considered in the selection of the
variables for the development of the predictive models to avoid multicollinearity problems.

Sensory crispness and hardness evaluations were strongly positively correlated with each
other (r = 0.93), as well as with sensory juiciness, Fs, Grad, and Ff (0.53 ≤ r ≤ 0.91) (Table S2),
whereas they were strongly negatively correlated with D and TA (−0.60 ≤ r ≤−0.47) (Table S2).
Crispness was also positively correlated with EJ (r = 0.54) and negatively correlated with
skin toughness (r = −0.27). This indicated that crispier apples were perceived to be juicier
with thinner skin. Mehinagic et al. [9] also reported that sensory crispness and chewiness
variables were strongly and positively correlated with Fs and Ff parameters. Hardness
was also positively correlated with the SSC variable and that was also reported by Cliff
and Bejaei [12].

Sensory juiciness was positively correlated with Grad, Ff, and EJ, while being nega-
tively correlated with sensory skin toughness, D instrumental measurement, and TA values.
In the study by Mehinagic et al. [9], Grad was also positively correlated with juiciness
sensory evaluations. Iwanami et al. [25] also reported that sensory juiciness was positively
correlated with instrumental measurements of firmness and water capacity. The juiciness
perception is a complex sensation in the mouth [22,25] and is not expected to show a strong
linear relationship with instrumental variables [25,26].

Sensory skin toughness was positively correlated with Fs, D, Ws, and TA variables but
it was negatively correlated with EJ. Cliff and Bejaei [12] also reported a similar relationship
between skin toughness and TA and that was mostly driven by the McIntosh apple which
has a tough skin, while being considered to be a tart apple. Skin strength showed a positive
correlation with the juiciness in the study by Costa [19], as he included a storage period
where apples with thicker skin lost less water.

3.3. Principal Component Analysis Using TA.XTplus Measurements and Supplementary Sensory
Textural Variables

The PCA was conducted using TA.XTplus measurements from the pooled dataset to
validate and interpret the selected measurements before their classification or inclusion
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in the predictive models. Results of the PCA using five instrumental measurements
(n = 72 means) indicated that 95.88% variation in the data could be explained using only
two principal components (Figure 2), with 58.18% and 37.71% of the variation explained
by PC 1 and PC 2, respectively.

The vectors for Ff, Fs, and Grad were heavily associated with PC 1 (with loadings
of 0.95, 0.95, and 0.91, respectively), and explained more than half of the variation in the
samples. PC 1 was positively and strongly correlated with sensory hardness (r = 0.87) and
crispness (r = 0.79), as evident from the loadings reported for the supplementary variables,
and small angles between the sensory and instrumental variables. Therefore, the variables
associate with PC 1 were collectively described as “flesh firmness variables” (Figure 2). In
contrast, the vectors for D and Ws were heavily associated with PC 2 (with loadings of 0.94
and 0.90, respectively), and explained slightly more than one-third of the variation in the
samples. PC 2 was positively and significantly correlated with skin toughness (r = 0.58),
as evident from the loadings reported for the supplementary variables and small angle
between the sensory and instrumental variables Therefore, the variables associated with
PC 2 were collectively described as “skin strength variables” (Figure 2).

However, sensory juiciness was not particularly useful for explaining the variation in
the dataset, as evident from low loadings reported between this variable and PC 1 (r = 0.22)
and PC 2 (r = −0.21) and the short length of vector (as compared with the length of other
vectors) (Figure 2). Such findings are consistent with other studies that have reported
that perceived juiciness is not linearly associated with instrumental variables [22,25]. As a
result, the predictive model for sensory juiciness could not be developed exclusively from
the Texture Analyzer data, and it was necessary to include compositional measurements.
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Mehinagic et al. [9] reported comparable PCA results by analyzing the force-distance
curve data obtained from unpeeled apples using an MTS (Syneregie 200H) traction machine.
In their study, PC 1 explained 66.4% of the variation among apple samples and correlated
with flesh firmness related variables. In their study, PC 2 described 27.4% of the variation,
explained by skin strength related variables. The D parameter was loaded on PC 2 and
it was negatively correlated with firmness measurements in their study. Costa [19] also
reported that the skin strength-related variables in his study were negatively correlated
with the firmness measurements.

3.4. Evaluating the Accuracy of Apply Textural Classifications Using TA.XTplus Measurements

Ballabio et al. [24] divided their samples into two groups based on the crispness
scores, and then conducted LDA. In the current study, mean sensory scores for crispness,
hardness, and skin toughness evaluations were considered in developing four apple texture
classifications (groups). The first group included the samples with the lowest crispness
(x < 49) and hardness (x < 39) scores which had a tough skin. This group was entitled
“soft flesh with tough skin”. McIntosh apple was in this category. The second group
included apples with low crispness (x = 50–59) and hardness (x = 40–49) scores, and thin
to moderate skin toughness. This group was called: “soft flesh with thin to moderate
skin toughness”. Honeycrisp, Silken, and Red Delicious cultivars were in this category.
The third group included apples with moderate mean crispness (x = 60–69) and hardness
(x = 50–64) scores, and moderate skin toughness. This group was entitled: “moderate
flesh hardness and skin toughness”, and Ambrosia, Gala, Fuji, SuRDC1, Aurora Golden
Gala, and Nicola cultivars were grouped in this category. The last (fourth) group included
cultivars with the highest crispness (x > 70.0) and hardness (x > 65.0) scores but a moderate
skin toughness. This group was called: “hard flesh with moderate skin toughness” and
included SuRDC2 and SuRDC3 cultivars. After classifying 12 cultivars into four groups,
LDA was applied to evaluate the accuracy of the developed textural categories using five
selected TA.XTplus parameters.

For LDA, the first and the second canonical discriminant functions explained 93.16%
and 6.43% of variation in samples, respectively (i.e., 99.59% of cumulative variance). Wilks’
Lambda value was 0.003 (approximate F-ratio (15, 177) = 30.61, p < 0.0001), and the Entropy
R2 (a measure of fit) was 0.88. Apples in the first and fourth groups were all classified
correctly, whereas only two samples from each of the second and third groups were
classified incorrectly or misclassified (Table 3). This meant that the classification rate was
94.44% accurate (misclassification rate = 5.56%) and was very successful [23].

Table 3. Classification accuracy matrix for four apple textural groups based on the linear discriminant analysis using five
selected TA.XTplus parameters (n = 72).

Apple textural Group and Name Predicted Group

Group 1 Group 2 Group 3 Group 4

Actual Group

Group 1. “Soft flesh with tough skin” 6 0 0 0
Group 2. “Soft flesh with thin to moderate skin toughness” 0 16 2 0
Group 3. “Moderate flesh hardness and skin toughness” 0 2 34 0
Group 4. “Hard flesh with moderate skin toughness” 0 0 0 12

Results of the linear discriminant analysis revealed that the developed apple texture
groups had unique sensory characteristics (Figure 3). This indicates that the instrumental
measurements can be successfully utilized in classifying and predicting the sensory textural
profile of apple cultivars.

3.5. Predictive Sensory Models

The best-fit models for the prediction of apple crispness, hardness, and skin toughness
were all multiple nonlinear regression models, because Ff showed a quadratic relation-
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ship with these three sensory output variables. Five studied instrumental variables were
considered to be the potential predictive variables in the development of models for these
three sensory attributes. These output variables were also strongly correlated with the PCA
components (either PC 1 or PC 2), as discussed in the PCA results. As a result, the composi-
tional data were not included in the models so that apple supply chain experts can simply
use a TA.XTplus penetrometer test to predict these three sensory variables without the need
for the compositional measurements. However, the apple juiciness perception of panelist
could be best predicted by a multiple regression model which required the inclusion of
EJ measurements as a predictor variable (as discussed previously). Assumptions of the
regression analysis were considered in the development of the models and multicollinearity
among the selected individual predictor variables were avoided considering the Pearson
correlation coefficients reported in Table S2.

The quadratic effect of Ff and linear effect of D explained a significant proportion
of the variance in the sensory crispness scores in both Experiment #1 (F(3, 31) = 74.56,
p < 0.0001, R2 = 0.88, R2

Adjusted = 0.87) and Experiment #2 (F(3, 32) = 64.66, p < 0.0001,
R2 = 0.86, R2

Adjusted = 0.85) datasets. The validations of the Experiment #1 crispness data
with the Experiment #2 crispness model and vice versa revealed that 86.47% and 84.31%,
respectively, of the variations in each dataset could be explained by the models developed
using the other dataset. Calculating average coefficients from the two models resulted in
the development of the crispness prediction model presented in Table 4. The developed
model could explain 85.76% of variation in the crispness data, from the pooled dataset.
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Figure 3. Sensory textural profile showing the mean scores (n = 72) for the four apple textural groups, which were identified
by PCA and validated by linear discriminant analyses, with the five selected TA.XTplus parameters.

The quadratic effect of Ff and linear effect of D explained a significant proportion
of the variance in the sensory hardness scores in both Experiment #1 (F(3, 31) = 77.04,
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p < 0.0001, R2 = 0.88, R2
Adjusted = 0.87) and Experiment #2 (F(3, 32) = 96.76, p < 0.0001,

R2 = 0.90, R2
Adjusted = 0.89) datasets. The validations of the Experiment #1 hardness data

with the Experiment #2 hardness model and vice versa revealed that 87.30% and 88.75%,
respectively, of the variations in each dataset could be explained by the models developed
using the other dataset. Calculating average coefficients from the two models resulted in
the development of the hardness prediction model presented in Table 4. The developed
model could explain 88.82% of variation in the hardness data, from the pooled data set.

The crispness and hardness predictive models explained more than 85% of the varia-
tion in the samples. The results indicated that these two sensory attributes can be easily pre-
dicted using the TA.XTplus. Flesh texture models have been successfully developed using
different instrumental firmness measurements in the past [11–14,21,24,26]. Chang et al. [13]
investigated the use of instrumental measurements in evaluating sensory crispness and the
changes in sensory crispness during storage of a Honeycrisp apple breeding family. They
reported that crispness was more correlated to force (equivalents of D and Fs measured
by the mechanical-acoustic test) in their study rather than acoustic measurements. The
validation and adjusted R2s in the current study are very close to the actual R2s for both
crispness and hardness models. This indicates the reliability, precision, accuracy, and
repeatability of the developed models in the current study.

The quadratic effect of Ff and linear effect of Ws explained about half of the variance in
the values of sensory skin toughness in both Experiment #1 (F(3, 32) = 13.73, p < 0.0001, R2 = 0.56,
R2

Adjusted = 0.52) and Experiment #2 (F(3, 30) = 7.29, p = 0.0008, R2 = 0.42, R2
Adjusted = 0.36)

datasets. The validations of the Experiment #1 skin toughness data with the Experiment
#2 skin toughness model and vice versa revealed that 51.87% and 38.65%, respectively, of
the variations in each dataset could be explained by the models developed using the other
dataset. Calculating average coefficients from the two models resulted in the development
of the skin toughness prediction model presented in Table 4. The developed model could
explain 48.51% of variation in the hardness data, from the pooled data set.

The skin toughness perception (tender or tough) can be influenced not only by the
skin strength but also by the flesh firmness and apple juiciness. Grotte et al. [18] studied the
contribution of the apple peel to the overall firmness of apple in four apple cultivars and
indicated that there was no difference among the studied cultivars in the influence of skin
on the fruit firmness. However, Costa [19] studied the contributions of the skin on the fruit
firmness in 65 cultivars and reported considerable differences among the cultivars in the
role of skin on the fruit firmness. The physical thickness of the epidermis of apples does not
necessarily reflect the perceived toughness of the skin. In the current study, considerable
variations were detected among the cultivars in their skin strengths which were observable
in the second component of the preference mapping analysis.

The linear effects of Grad, Ws, Ff and EJ explained half of the variance in the values of
sensory juiciness in both Experiment #1 (F(4, 30) = 8.97, p < 0.0001, R2 = 0.54, R2

Adjusted = 0.48)
and Experiment #2 (F(4, 31) = 8.28, p < 0.0001, R2 = 0.52, R2

Adjusted = 0.45) datasets. The
validations of the Experiment #1 juiciness data with the Experiment #2 juiciness model and
vice versa revealed that 50.26% and 46.53%, respectively, of the variations in each dataset
could be explained by the models developed using the other dataset. Calculating average
coefficients from the two models resulted in the development of the juiciness prediction
model presented in Table 4. The developed model could explain 50.99% of variation in the
juiciness data, from the pooled dataset.

Sensory juiciness is considered to be a complex variable because several physicochem-
ical of the fruits (i.e., proportion of air spaces to its total tissue volume, cell dimensions, cell
wall thickness, and water distribution in intercellular, intracellular, and within the cell wall)
can influence the perception of sensory juiciness [22,25,27]. Inclusion of the EJ parameter in
the juiciness model was necessary, as discussed previously, because different factors affect
the juiciness perception of humans during mastication of fruits and not all can be captured
by fruit texture instrumental measurements. Iwanami et al. [25] also conducted instrumen-
tal juice measurements using two different methods (i.e., by centrifuging small samples
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twice or drying other samples) and considered the instrumental juice measurements in the
development of predictive models for sensory juiciness. Cliff and Bejaei [12] also included
absorbed juice compositional measurement in a juiciness prediction model in addition to
using other instrumental measurements.

The juiciness model might be improved in the future by incorporating an alternate juice
measurement that might correlate better with perceived juiciness [20,22,25], or incorporate
an additional compositional variable, such as dry matter [28].

Table 4. Best-fit regression models for predicting sensory attributes from determination with the TA.XTplus Texture Analyzer.
Models were developed using mean values (n = 72).

Sensory Attribute Best-fit Regression Model a F-Value b Prediction Power
R2 (%)

Adjusted R2

(%)
Root Mean Square

Error (RMSE)

Crispness = (−12.36) + (3.85 × Ff ) +
(−0.03 × Ff 2) + (−8.66 × D) 134.49 85.76 85.12 4.14

Hardness = (−45.18) + (4.12 × Ff ) +
(−0.03 × Ff 2) + (−6.79 × D) 177.57 88.83 88.33 5.23

Skin Toughness = (83.44) + (−2.56 × Ff ) +
(0.03 × Ff 2) + (0.24 × Ws) 20.73 48.51 46.17 5.54

Juiciness
= (42.42) + (−0.26 × Grad) +
(−0.09 × Ws) + (0.42 × Ff ) +
(8.04 × EJ)

17.17 50.99 48.02 3.30

a Variables in regression models are instrumental parameters determined using the TA.XTplus Texture Analyzer (Stable Micro Systems Ltd.,
Godalming, Surrey, UK) as described in Table 1. b Significance of F-values < 0.0001.

4. Conclusions

Results of this study indicated that five instrumental textural determinations (Fs, Ws,
Grad, D, and Fs) from the TA.XTplus correlated well, and could be validated, with sensory
textural evaluations. These five instrumental parameters can successfully evaluate apple
flesh firmness and skin strength, as well as classify the apples into four textural categories,
with a high accuracy rate (94.4%).

The strength of this research lies, in part, with the use of the universal Texture Analyzer
(TA.XTplus). It was capable of providing determinations on unpeeled whole apples. These
determinations, along with the predictive models, allow the sensory textural characteristics
of apples (crispiness, hardness, and skin toughness) to be estimated without the need for
additional compositional or sensory data. Future research exploring alternate instrumental
measurements or novel variables might be able to improve the prediction power of the
juiciness model.

This work would be useful for apple breeding programs and packinghouses that
require high-volume textural analyses on a daily basis. The application of the validated
models would reduce or eliminate the need for costly and time-consuming sensory testing.
If the TA.XTplus were equipped for semi-automated determinations, it would provide
additional convenience and savings to industry.

The models in this research were developed using a particularly unique collection
of apple cultivars that included experimental cultivars with superior textural traits. This
meant that the models are appropriate for existing cultivars, and new cultivars that are not
yet in the marketplace. Furthermore, the models were developed using unpeeled apples,
which reflect more closely the complex events that occur in the mouth when a consumer
bites into a whole apple.

Supplementary Materials: The following is available online at https://www.mdpi.com/2304-8158/10
/2/384/s1, Table S1: Macro for calculating six parameters on the force-distance curves, developed for the
TA.XTplus Texture Analyzer using Exponent software, Table S2: Pearson correlation coefficients (r) and
p-values calculated between mean sensory, instrumental, and compositional determinations (n = 72).

https://www.mdpi.com/2304-8158/10/2/384/s1
https://www.mdpi.com/2304-8158/10/2/384/s1


Foods 2021, 10, 384 13 of 14

Author Contributions: Conceptualization, M.B.; methodology, M.B., K.S. and M.A.C.; formal analy-
sis, M.B.; investigation, M.B.; data curation, M.B. and K.S.; writing—original draft preparation, M.B.;
writing—review and editing, M.B., K.S. and M.A.C.; visualization, M.B.; supervision, M.B.; project
administration, M.B. and K.S.; funding acquisition, M.B. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by the Agriculture and Agri-Food Canada A-base and Start-up
Funds, and the Canadian Agricultural Partnership Fund in collaboration with the British Columbia
Fruit Growers’ Association (Activity #5).

Institutional Review Board Statement: The study was conducted according to the guidelines of the
Tri-Council Policy Statement, Ethical Conduct for Research Involving Humans, and approved by
the Human Research Ethics Committee of Agriculture and Agri-Food Canada (approval number
2018-F-003).

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: Not applicable.

Acknowledgments: The authors would like to thank Erin Wallich (Summerland Varieties Corp.)
for her assistance in the selection of apple cultivars and for critically reviewing an earlier draft of
the manuscript, Nick Ibuki (Summerland Varieties Corp.) for his help in the selection of the apple
cultivars, and Summerland RDC scientist (Amritpal Singh) and technical staff (Chris Pagliocchini,
Darrell Lee McKenzie, Linda Herbert, and Melanda Danenhower) for their assistance in access to
the selected apple cultivars. The authors would also like to acknowledge the sensory panelists who
participated in the study.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Kilcast, D.; Fillion, L. Understanding consumer requirements for fruit and vegetable texture. Nutr. Food Sci. 2001, 31, 221–225.

[CrossRef]
2. Almli, V.L. What Influences Apple Consumers’ Preferences? A Perspective on Intrinsic and Extrinsic Factors. In Proceedings of

the Oral Session Presentation at the Meeting of Interpoma, Bolzano, Italy, 24–26 November 2016.
3. Bejaei, M.; Cliff, M.A.; Singh, A. Multiple correspondence and hierarchical cluster analyses for the profiling of fresh apple

customers using data from two marketplaces. Foods 2020, 9, 873. [CrossRef] [PubMed]
4. Oraguzie, N.; Alspach, P.; Volz, R.; Whitworth, C.; Ranatunga, C.; Weskett, R.; Harker, R. Postharvest assessment of fruit quality

parameters in apple using both instruments and an expert panel. Postharvest Biol. Technol. 2009, 52, 279–287. [CrossRef]
5. Cliff, M.A.; Stanich, K.; Lu, R.; Hampson, C.R. Use of descriptive analysis and preference mapping for early-stage assessment of

new and established apples. J. Sci. Food Agric. 2016, 96, 2170–2183. [CrossRef]
6. Charles, M.; Corollaro, M.L.; Manfrini, L.; Endrizzi, I.; Aprea, E.; Zanella, A.; Grappadelli, L.C.; Gasperi, F. Application of a

sensory–instrumental tool to study apple texture characteristics shaped by altitude and time of harvest. J. Sci. Food Agric. 2018,
98, 1095–1104. [CrossRef]

7. Abbott, J.A.; Massie, D.R.; Upchurch, B.L.; Hruschka, W.R. Nondestructive sonic firmness measurement of apples. T. ASABE
1995, 38, 1461–1466. [CrossRef]

8. Harker, F.R.; Maindonald, J.; Murray, S.H.; Gunson, F.A.; Hallett, I.C.; Walker, S.B. Sensory interpretation of instrumental
measurements 1: Texture of apple fruit. Postharvest Biol. Technol. 2002, 24, 225–239. [CrossRef]

9. Mehinagic, E.; Royer, G.; Bertrand, D.; Symoneaux, R.; Laurens, F.; Jourjon, F. Relationship between sensory analysis, penetrometry
and visible–NIR spectroscopy of apples belonging to different cultivars. Food Qual. Prefer. 2003, 14, 473–484. [CrossRef]

10. Li, G.; Zhao, G.; Wang, X.; Liu, X. Nondestructive measurement and fingerprint analysis of apple texture quality base on NIR
spectra. Trans. Chin. Soc. Agric. Eng. 2008, 24, 169–173. [CrossRef]

11. Corollaro, M.L.; Aprea, E.; Endrizzi, I.; Betta, E.; Demattè, M.L.; Charles, M.; Bergamaschi, M.; Costa, F.; Biasioli, F.; Grappadelli, L.C.; et al.
A combined sensory-instrumental tool for apple quality evaluation. Postharvest Biol. Technol. 2014, 96, 135–144. [CrossRef]

12. Cliff, M.A.; Bejaei, M. Inter-correlation of apple firmness determinations and development of cross-validated regression models
for prediction of sensory attributes from instrumental and compositional analyses. Food Res. Int. 2018, 106, 752–762. [CrossRef]

13. Chang, H.-Y.; Vickers, Z.M.; Tong, C.B.S. The use of a combination of instrumental methods to assess change in sensory crispness
during storage of a “Honeycrisp” apple breeding family. J. Texture Stud. 2018, 49, 228–239. [CrossRef]

14. Harker, F.R.; Feng, J.; Johnston, J.W.; Gamble, J.; Alavi, M.; Hall, M.; Chheang, S.L. Influence of postharvest water loss on apple
quality: The use of a sensory panel to verify destructive and non-destructive instrumental measurements of texture. Postharvest
Biol. Technol. 2019, 148, 32–37. [CrossRef]

15. Johnston, J.W.; Hewett, E.W.; Banks, N.H.; Harker, F.R.; Marteen Hertog, L.A.T.M. Physical change in apple texture with fruit
temperature: Effect of cultivar and time in storage. Postharvest Biol. Technol. 2001, 23, 13–21. [CrossRef]

http://doi.org/10.1108/00346650110396574
http://doi.org/10.3390/foods9070873
http://www.ncbi.nlm.nih.gov/pubmed/32635252
http://doi.org/10.1016/j.postharvbio.2009.01.004
http://doi.org/10.1002/jsfa.7334
http://doi.org/10.1002/jsfa.8560
http://doi.org/10.13031/2013.27971
http://doi.org/10.1016/S0925-5214(01)00158-2
http://doi.org/10.1016/S0950-3293(03)00012-0
http://doi.org/10.3969/J.ISSN.1002-6819.2008.6.019
http://doi.org/10.1016/j.postharvbio.2014.05.016
http://doi.org/10.1016/j.foodres.2018.01.041
http://doi.org/10.1111/jtxs.12325
http://doi.org/10.1016/j.postharvbio.2018.10.008
http://doi.org/10.1016/S0925-5214(01)00101-6


Foods 2021, 10, 384 14 of 14

16. Teh, S.L.; Brutcher, L.; Schonberg, B.; Evans, K. Eleven-year correlation of physical fruit texture traits between computerized
penetrometers and sensory assessment in an apple breeding program. Horttechnology 2020, 30, 719–724. [CrossRef]

17. Camps, C.; Guillermin, P.; Mauget, J.C.; Bertrand, D. Data analysis of penetrometric force/displacement curves for the characteri-
zation of whole apple fruits. J. Texture Stud. 2005, 36, 387–401. [CrossRef]

18. Grotte, M.; Duprat, F.; Loonis, D.; Piétri, E. Mechanical properties of the skin and the flesh of apples. Int. J. Food Prop. 2001,
4, 149–161. [CrossRef]

19. Costa, F. Mechanical investigation to assess the peel contribution in apple fruit. Postharvest Biol. Technol. 2016, 111, 41–47.
[CrossRef]

20. Costa, F.; Cappellin, L.; Longhi, S.; Guerra, W.; Magnago, P.; Porro, D.; Soukoulis, C.; Salvi, S.; Velasco, R.; Biasioli, F.; et al.
Assessment of apple (Malus × domestica Borkh.) fruit texture by a combined acoustic-mechanical profiling strategy. Postharvest
Biol. Technol. 2011, 61, 21–28. [CrossRef]

21. Mehinagic, E.; Royer, G.; Symoneaux, R.; Bertrand, D.; Jourjon, F. Prediction of the sensory quality of apples by physical
measurements. Postharvest Biol. Technol. 2004, 34, 257–269. [CrossRef]

22. Mehinagic, E.; Madieta, E.; Symoneaux, R.; Jourjon, F. How to measure objectively apple juiciness? Rev. Suisse Vitic. Arboric.
Hortic. 2009, 41, 127–131.

23. Bárcenas, P.; Pérez Elortondo, F.J.; Albisu, M. Sensory comparison of several cheese varieties manufactured from different milk
sources. J. Sens. Stud. 2005, 20, 62–74. [CrossRef]

24. Ballabio, D.; Consonni, V.; Costa, F. Relationships between apple texture and rheological parameters by means of multivariate
analysis. Chemom. Intell. Lab. Syst. 2012, 111, 28–33. [CrossRef]

25. Iwanami, H.; Moriya, S.; Okada, K.; Abe, K.; Kawamorita, M.; Sasaki, M.; Moriya-Tanaka, Y.; Honda, C.; Hanada, T.; Wada,
M. Instrumental measurements of juiciness and freshness to sell apples with a premium value. Sci. Hortic. 2017, 214, 66–75.
[CrossRef]

26. Barreiro, P.; Ortiz, C.; Ruiz-Altisent, M.; De Smedt, V.; Schotte, S.; Andani, Z.; Wakeling, I.; Beyts, P.K. Comparison between sensory
and instrumental measurements for mealiness assessment in apples. A collaborative test. J. Texture Stud. 1998, 29, 509–525. [CrossRef]

27. Joardder, M.U.; Brown, R.J.; Kumar, C.; Karim, M.A. Effect of cell wall properties on porosity and shrinkage of dried apple. Int. J.
Food Prop. 2015, 18, 2327–2337. [CrossRef]

28. Palmer, J.W.; Harker, F.R.; Tustin, D.S.; Johnston, J. Fruit dry matter concentration: A new quality metric for apples. J. Sci. Food
Agric. 2010, 90, 2586–2594. [CrossRef]

http://doi.org/10.21273/HORTTECH04698-20
http://doi.org/10.1111/j.1745-4603.2005.00023.x
http://doi.org/10.1081/JFP-100002193
http://doi.org/10.1016/j.postharvbio.2015.07.019
http://doi.org/10.1016/j.postharvbio.2011.02.006
http://doi.org/10.1016/j.postharvbio.2004.05.017
http://doi.org/10.1111/j.1745-459X.2005.00004.x
http://doi.org/10.1016/j.chemolab.2011.11.002
http://doi.org/10.1016/j.scienta.2016.11.018
http://doi.org/10.1111/j.1745-4603.1998.tb00180.x
http://doi.org/10.1080/10942912.2014.980945
http://doi.org/10.1002/jsfa.4125

	Introduction 
	Materials and Methods 
	Apple Cultivars 
	Sensory Assessment 
	Instrumental Firmness Measurements 
	Basic Compositional Measurements 
	Statistical Analysis 

	Results and Discussion 
	Comparisons of the Results of Two Experiments 
	Bivariate Pearson Correlation Coefficients 
	Principal Component Analysis Using TA.XTplus Measurements and Supplementary Sensory Textural Variables 
	Evaluating the Accuracy of Apply Textural Classifications Using TA.XTplus Measurements 
	Predictive Sensory Models 

	Conclusions 
	References

