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ABSTRACT
Cardiovascular magnetic resonance (CMR) is an evolving
technology with growing indications within the clinical
cardiology setting. This review article summarises the
current clinical applications of CMR. The focus is on the
use of CMR in the diagnosis of coronary artery disease
with summaries of validation literature in CMR viability,
myocardial perfusion, and dobutamine CMR. Practical
uses of CMR in non-coronary diseases are also discussed.

The purpose of this review is to illustrate that
cardiovascular magnetic resonance (CMR) has
developed into a powerful non-invasive diagnostic
tool that can routinely image myocardial anatomy,
function, perfusion, and viability without need for
ionising radiation.

BASIC HARDWARE
Fundamentally, CMR uses a magnet 30 000 to
60 000 times the strength of the Earth’s magnetic
field to detect the location and physical properties
of protons in the body. CMR requires fast
gradients, phased-array coils, cardiac gating, and
cardiovascular software. Higher magnet field
strength (3T vs 1.5T) improves signal-to-noise
but exacerbates problems related to field inhomo-
geneity and specific absorption of radiation, factors
leading to artifacts and patient heating respec-
tively. The gradients encode many aspects of the
image including position in the body, velocity of
blood, and other parameters. Phased-array coils act
as antennae to receive the tiny MRI-related radio-
frequency signals emanating from the body.
Phased-array coils enable image acquisition accel-
eration with parallel imaging methods.1–3

Stress testing requires MRI-compatible intrave-
nous pumps, contrast injectors, patient monitoring
equipment, resuscitation equipment, and audio-
visual equipment to communicate with the
patient. The clinical team must be prepared to
quickly remove a patient from the scanner and
treat cardiovascular emergencies.

CONTRAINDICATIONS
The magnetic fields, gradients, and radiofrequency
pulses used in MRI pose risks to patients and staff,
requiring meticulous safety procedures.
Ferromagnetic materials should not be taken into
the scanner room. Neurovascular clips, pace-
makers, automatic implantable defibrillators,
cochlear implants, metal in the eye, retained
shrapnel, and neurostimulators are contraindica-
tions to MRI although certain models may be safe.
With CMR imaging, it is important to note that
intracoronary stents and coronary artery bypass

graft surgery are not contraindications.4 Although
small forces are generated within metal heart
valves by the magnetic fields, they are minimal
compared with the forces generated by the beating
heart, and all mechanical heart valves are consid-
ered safe. When in doubt, various resources, such
as www.imrser.org and www.mrisafety.com,5 are
available to check a device’s safety within an MRI
scanner.6–9

WHAT CMR CAN DO

Assessment of right and left ventricular function
and mass
Assessment of left ventricular size, function and
mass has been well validated in both autopsy and
animal studies,10–12 and has excellent intraobserver
and interobserver variability.13–18 This reproducibil-
ity allows for smaller sample size in studies
requiring serial exams than other lower-resolution
imaging such as echocardiography.

CMR can quantify regional wall motion and
myocardial strain with techniques such as the
harmonic phase method (HARP),19 displacement
encoding with stimulated echoes (DENSE),20 21 and
spatial modulation magnetisation (SPAMM).22

These techniques can assess myocardial strain
independent of the effects of through-plane
motion.

Real-time CMR can be used in situations where
cardiac gating is not currently feasible. One
example is the prenatal assessment of fetal
cardiovascular abnormalities.23

Diagnosis of coronary artery disease
A single CMR study can provide information
regarding the coronary arteries, left ventricular
systolic function, myocardial perfusion, and viabi-
lity (fig 1).

Viability assessment
One of the major breakthroughs for the use of
CMR was the development of gadolinium delayed
enhancement techniques to assess for myocardial
infarction.24 Gadolinium shortens tissue T1 relaxa-
tion time, a magnetic property inherent to all
tissues. The operator can select an inversion time
that will ‘‘null’’ normal myocardium resulting in
images where viable myocardium appears uni-
formly dark while a region of myocardial infarction
or fibrotic scar appears bright (fig 2). Dysfunctional
but viable myocardium is expected to have func-
tional recovery if revascularised (in the case of
hibernating myocardium), with time (in the case of
stunned myocardium), or with resynchronisation
(in the case of dyssynchronous myocardium).
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In a seminal paper by Kim et al, the delayed enhancement of
myocardial infarction by CMR closely correlated with the
histopathological triphenyltetrazolium chloride (TTC) find-
ings.25 Multiple studies have demonstrated the inverse relation-
ship between the transmural extent of myocardial infarction
and recovery of function, the higher spatial resolution of this
technique compared with nuclear techniques, as well as the
good correlation with biomarkers of necrosis.26–48 The reprodu-
cible nature of the delayed enhancement technique also makes
it a natural choice for serial imaging of chronic infarctions.40

Myocardial perfusion
Myocardial perfusion has been a CMR research focus. The
challenge has been obtaining enough signal, temporal resolution,
spatial resolution, and spatial coverage, while minimising artifacts.
Most groups use fast gradient recalled echo (FGRE), FGRE with
echoplanar imaging (Hybrid EPI), and steady state free precession
(SSFP) perfusion techniques, typically using adenosine or dipyr-
idamole as the stressor. These sequences may be accelerated with
parallel imaging techniques and performed with multiple gadoli-
nium dosing schemes. The studies may be interpreted qualita-
tively, semi-quantitatively, or quantitatively. Despite the technical
issues related to perfusion imaging, many papers document that
CMR first-pass perfusion has comparable diagnostic accuracy to
the alternative myocardial perfusion imaging standards.49–70

Dobutamine CMR
Dobutamine stress CMR was first described in the same year
that dobutamine stress echocardiography was described.71

Dobutamine CMR has good sensitivity and specificity in the
detection of significant coronary artery disease (table 1) with a
safety profile similar to dobutamine echocardiography.72 While
the sensitivity and specificity of CMR are comparable to stress
echocardiography in patients with good echocardiographic
windows, CMR performs better than stress echocardiography
in patients with suboptimal echocardiographic windows.73–78

Furthermore, dobutamine stress CMR has prognostic value
above and beyond the baseline ejection fraction.79 80

Acute chest pain in the hospital setting
Three major papers have looked at use of CMR in patients with
acute coronary syndrome (ACS) or early diagnosis of chest pain in
the emergency department. In a study of 161 patients presenting
with chest pain not associated with ST elevation, Kwong et al
found that CMR had 100% sensitivity for non-ST elevation
myocardial infarction and was a better predictor of ACS than
standard clinical tests including the composite TIMI risk score.81

In a higher risk group of 68 patients with possible or probable ACS
scheduled for coronary angiography, Plein et al found that a multi-
component CMR consisting of cine function, adenosine and rest
perfusion, delayed enhancement, and coronary artery imaging
yielded a sensitivity of 96% and a specificity of 83% in predicting
the presence of significant coronary artery disease.64 In another
emergency department study of 141 patients with myocardial
infarction excluded by serial troponin assays, Ingkanisorn et al
found that adenosine stress CMR had excellent prognostic value
as 100% of patients with adverse cardiovascular outcomes were
detected with an overall specificity of 91%.54

Figure 1 Comprehensive cardiovascular
magnetic resonance with cine function,
dipyridamole perfusion, and delayed
enhancement: A 77-year-old man
presents with exertional angina and a
past medical history significant for
hypertension and a prior stroke. In the top
row, cine function demonstrates normal
global and regional left ventricular systolic
function. The dipyridamole perfusion
image on the lower left panel
demonstrates a severe perfusion defect in
a multivessel coronary distribution, while
the delayed enhancement image on the
right lower panel demonstrates only a
small subendocardial myocardial
infarction of the inferoseptal wall,
indicating a large ischaemic region with a
large territory of viable myocardium.

Technology and guidelines

1486 Heart 2008;94:1485–1495. doi:10.1136/hrt.2007.119016



CMR is also helpful in patients with atypical chest pain.82 For
example, many patients with myocarditis present with chest
pain, ECG abnormalities, elevated biomarkers, but normal
coronary arteries. This diagnosis is easily made with CMR.
The presence of atypical mid-wall or epicardial delayed
enhancement distinguishes myocarditis from MI.83 85 Stress
CMR perfusion can detect diffuse subendocardial ischaemia in
patients with syndrome X.86 Acute chest pain from acute
aortitis will present with irregularly thickened aortic wall and
bright enhancement of the aortic wall on delayed enhancement
imaging.87 88 CMR has been used in the diagnosis of stress
cardiomyopathy (tako tsubo, left ventricular apical ballooning

syndrome, and broken heart syndrome). Despite the profound
left ventricular apical systolic dysfunction, there is little delayed
enhancement in these patients.89–92

Coronary artery imaging
Although multidetector computed tomography (MSCT) is the
most rapid and highest-resolution non-invasive technique for
imaging the coronary arteries, CMR offers an alternative for
imaging the coronary arteries. CMR does not require ionising
radiation and can be combined with a multimodality CMR
assessment of cardiac function, perfusion, and viability in a
relatively short period of time.93 However, coronary imaging by
CMR is still relatively complicated and many technical nuances
require significant operator experience.

A few studies indicate that CMR is not as far from clinical
feasibility as many physicians assume. A multicentre study of
109 patients who underwent coronary magnetic resonance
angiography (MRA) reported a sensitivity of 100%, a specificity
of 85%, and an accuracy of 87% in the detection of left main
artery or three-vessel disease.94 Sakuma et al performed three-
dimensional whole-heart coronary MRA in 131 patients with a
mean acquisition time of 12.9 (SD 4.3) minutes and a per
patient sensitivity of 82%, specificity of 90%, and accuracy of
87%.95 However, most experts and clinical guidelines only
support the use of CMR in determining the proximal course of
anomalous coronary arteries (fig 3, coronary MRA).

Cardiomyopathy
CMR can characterise cardiomyopathies in unique ways based
on the magnetic properties of myocardium.96–99 Assomull et al
succinctly review the use of CMR in the evaluation of
congestive heart failure.100

In hypertrophic cardiomyopathy, CMR can detect patches of
myocardial fibrosis with intermediate delayed enhancement.101–103

CMR can diagnose hypertrophy missed by echocardiography and
more accurately determine the extent of hypertrophy.104

In patients suspected of having arrhythmogenic right
ventricular dysplasia/cardiomyopathy (ARVD/C), CMR can
detect global right ventricular abnormalities, right ventricular
aneurysms, or regional wall motion abnormalities. Fibrofatty
myocardial infiltration can be determined in patients suspected
of having ARVD/C.105 Sen-Chowdhry et al have proposed
modified criteria for the diagnosis of ARVD/C focusing on
right ventricular size and function, right ventricular segmental
dilatation, and regional right ventricular hypokinesis. These
proposed criteria would improve the sensitivity in the detection
of early or incompletely expressed disease.106

CMR can measure iron overload in the heart, particularly as a
result of thalassaemia.73 107 Iron overload shortens T2* relaxation
properties of the myocardium and liver. Intriguingly, some
patients with thalassaemia have iron overload in the heart but
not in the liver and vice versa.73 Thus, CMR determinations of

Figure 2 Delayed enhancement in a patient with a near-transmural
anteroseptal myocardial infarction.

Table 1 Summary of dobutamine validations

Year First Author N Excluded Reference Sensitivity Specificity

2006 Paetsch77 150 0 Cath .50% 78 87

2006 Jahnke75 40 0 Cath .50% 82 87

2004 Paetsch62 79 Cath .50% 89 80

2004 Wahl78 170 10 Cath .50% 89 84

1999 Hundley74 163 10 Cath .50% 83 83

1999 Nagel76 208 36 Cath .50% 86 86
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iron overload may be better at assessing patient risk than relying
on liver biopsy alone and may be used to follow therapy success.

CMR is good at differentiating constrictive from restrictive
cardiomyopathy due to each entity’s unique presentation and
physiology. Many of the infiltrative cardiomyopathies such as
amyloidosis, sarcoidosis, Chagas’ disease, and endomyocardial
fibroelastosis have characteristic abnormalities on delayed enhance-
ment.97 99 108–112 CMR can identify thickened pericardium as well as
abnormal motion of the heart in constrictive cardiomyopathy.
While both CT and CMRcandetect thickenedpericardium, CMRis
better able to distinguish between pericardial thickening and small
effusion than CT.113 Real-time imaging to evaluate the septum may
demonstrate interventricular dependence.114 Real-time cine imaging
of the inferior vena cava during respiration can also separate
constrictive from restrictive physiology.115

Congenital heart disease
In a patient with congenital heart disease, anatomic connec-
tions or malformations may be identified, the direction of
intracardiac shunts may be identified and quantified, and
valvular anatomy and function may be assessed. Volumetric

anatomic CMR depicts the complex vascular abnormalities
associated with congenital syndromes and the surgical correc-
tions. Echocardiography cannot always visualise the heart and
great vessels in their entirety, particularly in adults with
surgically corrected congenital heart disease. Repeated exposure
to the radiation of CT is not desirable, especially in a paediatric
population that is at greater risk for developing long-term
radiation-related malignancies.116

CMR can provide more than simply anatomical imaging. A
saturated black band technique highlights intracardiac shunt-
ing. Velocity encoded phase contrast techniques can quantify
the severity of intracardiac shunts. Measuring pulmonary blood
flow (Qp) in the pulmonary artery and systemic blood flow
(Qs) in the aorta provides a noninvasive estimate of Qp/Qs and
thus quantifies the degree of intracardiac shunting (fig 4). CMR
can quantify the amount of valvular regurgitation (eg, in
patients with Tetralogy of Fallot).

Valvular disease
CMR provides non-invasive clear anatomical valvular informa-
tion that can impact clinical management of a patient. It is

Figure 3 Whole heart coronary
magnetic resonance angiography. Image
provided courtesy of Vibhas Deshpande,
MR Research & Development, Siemens
Medical Solutions.

Figure 4 Pulmonic flow (Qp) and
systemic flow (Qs) may be calculated
non-invasively with cardiovascular
magnetic resonance using simple phase-
contrast techniques. This figure illustrates
an abnormal Qp:QS of 1.6:1 in a patient
with an atrial septal defect.
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possible to differentiate a bicuspid from a tricuspid aortic valve
(figs 5 and 6). CMR reproducibly characterises aortic valve
anatomy and the determined aortic valve area correlates well
with cardiac catheterisation.117

Phase contrast techniques can reliably measure peak velocity
and thus peak gradient in aortic stenosis. Valvular information
in combination with accurate left ventricular volumes and
assessment of thoracic aortic dilatation can assist in planning
valvular replacement and, importantly, determine whether the
aorta needs intervention as well. Similar data can be obtained in
an assessment of the pulmonic valve, which is not always well-
defined by transthoracic echocardiography.

While most valvular lesions seen by echocardiography can be
assessed by CMR, echocardiography has the advantages of
widespread availability and validation. CMR provides additional

information in patients who have poor echocardiographic
windows and is useful in patients who are poor candidates for
invasive transoesophageal echocardiography or when additional
surgery beyond the valve is contemplated.

Assessment of cardiac masses
Through various tissue-characterising techniques (T2-weighted,
T1-weighted, first-pass perfusion, and delayed enhancement),
CMR can reliably distinguish between myocardium, fat,
avascular tissue (eg, thrombus), and other tissue types, such
as tumours (fig 7). CMR often aids in differentiating intracar-
diac masses from masses that externally compress the heart.

The ability to characterise normal structures or variants
makes CMR superior to echocardiography in the assessment of
intracardiac mass. Atrial structures such as Eustachian valve,
crista terminalis, Chiari network, and lipomatous hypertrophy
are commonly mistaken by echocardiography to be a mass, and
CMR can help avoid more invasive diagnostic testing.118

Contrast-enhanced CMR is twice as sensitive as echocardio-
graphy in the detection of ventricular thrombi.119–121

Non-coronary vascular imaging

Aorta and great vessels
MRIandMRAcanassesslargeandmedium-sizedvascularstructures.
Serial exams are particularly useful in the paediatric population with
congenital abnormalities of the aorta. CMR is able to visualise
congenital aortic abnormalities including right-sided aortic arch,
cervical aortic arch, double aortic arch, and vascular ring. As many as
42% of surgically repaired coarctations present with restenosis,
dissection, pseudoaneurysm, or aneurysm at a later date.122–124

Other common indications for CMR include assessment of
aortic dilation and aneurysm, aortic dissection, aortic ulcer, and
intramural haematoma. While a contrast CT is the study of
choice in the acutely ill, haemodynamically unstable patient, in
a haemodynamically stable patient a focused CMR exam of the
aorta may be performed within approximately 10–15 minutes
with little cooperation from the patient (fig 8). CMR is more
sensitive than CT, echocardiography, and transoesophageal
echocardiography in the diagnosis of intramural haematoma.
CMR can also distinguish between an acute intramural
haematoma and a chronic haematoma based upon the T1 and
T2 characteristics of the bleed.125

Figure 5 Black-blood fast spin echo technique to visualise the aortic valve.

Figure 6 During diastole cine imaging,
an aortic valve appears tricuspid;
however, during systole, it is apparent
that the valve is functionally bicuspid with
fusion of the right and left cusps.
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Pulmonary veins
Three-dimensional MRA can help guide electrophysiological
interventions and can detect pulmonary vein stenosis after the
procedure. It is possible to merge 3D MRA with fluoroscopy in
the electrophysiology lab to help guide catheter tip placement
and the ablation. CMR is also useful for determining the flow
patterns through vessels.126

FUTURE DIRECTIONS
CMR continues to develop rapidly. Contrast agents targeted to
specific tissue types are in development. For example, thrombus-
avid contrast agents are feasible.127–129 Lipid-specific agents have
also been studied. Stem cells and macrophages have been identified
with iron-based contrast agents and tracked in vivo.130–133

Interventional CMR is also a field with growing interest. A
variety of percutaneous procedures used to treat vascular
abnormalities and congenital heart disease are in develop-
ment.134–137 Even CMR-guided percutaneous replacement of the
aortic valve is feasible.138 CMR can help precisely guide delivery
of drugs and stem cells.139–141

LIMITATIONS
There are many factors that have slowed the dissemination of
CMR. CMR is expensive and requires a skilled multidisciplinary
team. In-depth CMR training is not readily available. Insufficient
numbers of adequately trained physicians limit utilisation and
dissemination of CMR. In many countries, reimbursement of
CMR is not well-established. Although gadolinium-based contrast

Figure 7 A 48-year-old woman
presented with a markedly abnormal
preoperative ECG and nuclear stress test
indicating that she had an anteroseptal
myocardial infarction. Cardiovascular
magnetic resonance was able to
demonstrate that the patient actually had
an intraseptal mass (bright on the left)
which was in fact a benign lipoma as
demonstrated by fat saturation techniques
(dark on the right after using a fat
saturation technique to suppress the fat).

Figure 8 This magnetic resonance
angiography was performed in a Turner’s
Syndrome patient. Note on the anterior
view the dilated size of the ascending
aorta (red arrow) in comparison with the
descending aorta, as well as the
persistent left-sided superior vena cava
(green arrow). The posterior view
demonstrates the malformed aortic arch
(red arrow).
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Table 2 Summary of gadolinium delayed enhancement publications

Year Authors n Acute vs chronic Major findings

2006 Baks T et al27 27 Acute Delayed enhancement predicted recovery of function.

Chronic

2006 Gerber BL et al31 16 Acute Delayed enhancement correlated with MI size.

21 Chronic

2005 Baks T et al26 22 Acute Delayed enhancement predicted recovery of function.

Chronic

2005 Bello D et al.29 48 Chronic Delayed enhancement correlated with MI size and predicted inducibility of ventricular
tachycardia.

2005 Ibrahim T et al33 33 Acute Delayed enhancement correlated with MI size.

2005 Selvanayagam JB et al45 50 Acute Delayed enhancement correlated with biomarkers of necrosis.

24 Chronic

2004 Ingkanisorn WP et al34 33 Acute Delayed enhancement predicted recovery of function and correlated with biomarkers of
necrosis.

20 Chronic

2004 Lund GK et al39 60 Acute Delayed enhancement correlated with MI size.

2004 Nelson C et al41 60 Chronic Delayed enhancement predicted recovery of function.

2004 Selvanayagam JB et al44 52 Chronic Delayed enhancement predicted recovery of function.

2004 Wellnhofer E et al47 29 Chronic Delayed enhancement and dobutamine CMR predicted recovery of function.

2003 Beek AM et al28 30 Acute Delayed enhancement predicted recovery of function.

Chronic

2003 Knuesel PR et al37 19 Chronic Delayed enhancement predicted recovery of function.

2003 Kühl HP et al38 26 Chronic Delayed enhancement correlated with MI size.

2003 Wagner A et al46 91 Chronic Delayed enhancement correlated with MI size.

2002 Gerber BL et al32 20 Acute Delayed enhancement predicted recovery of function.

Chronic

2002 Klein C et al36 31 Chronic Delayed enhancement correlated with MI size.

2002 Mahrholdt H et al40 20 Chronic Delayed enhancement correlated with MI size and was reproducible in two separate scans.

2002 Perin EC et al42 15 Chronic The unipolar voltage recorded during electromechanical mapping varied inversely with the
amount of delayed enhancement.

2001 Choi KM et al30 24 Acute Delayed enhancement predicted recovery of function and correlated with biomarkers of
necrosis.

Chronic

2001 Ricciardi MJ et al43 14 Acute Delayed enhancement correlated with biomarkers of necrosis. Microinfarcts were detected
in patients who had PCI-related elevations in CKMB.

6 Chronic

2001 Wu E et al48 82 Chronic Delayed enhancement correlated with MI size.

2000 Kim RJ et al35 50 Chronic Delayed enhancement predicted recovery of function.

CKMB, muscle and brain subunits of creatine kinase; CMR, cardiovascular magnetic resonance; MI, myocardial infarction; PCI, percutaneous coronary intervention.

Table 3 Summary of vasodilator perfusion CMR validation publications

Year First author n Excluded Stress Reference Sensitivity Specificity

2007 Merkle et al70 228 0 Adenosine Cath .50% 93 86

2006 Ingkanisorn et al54 141 4 Adenosine Prognosis 100 93

2006 Klem et al58 92 3 Adenosine Cath .70% 89 87

2006 Pilz et al63 176 5 Adenosine Cath .70% 96 83

2006 Rieber et al66 50 7 Adenosine Cath .50% and FFR 88 90

2005 Okuda et al60 33 0 Dipyridamole Cath .70% 84 87

2005 Plein et al65 92 Adenosine Cath .70% 88 82

2005 Sakuma et al67 40 0 Dipyridamole Cath .70% 81 68

2004 Bunce et al50 35 0 Adenosine Cath .50% 74 71

2004 Giang et al52 94 14 Adenosine Cath .50% 93 75

2004 Kawase et al56 50 0 Nicorandil Cath .70% 94 94

2004 Paetsch et al61 49 0 Adenosine Cath .75% 89 80

2004 Paetsch et al62 79 Adenosine QCA .50% 91 62

2004 Plein et al64 72 4 Adenosine Cath .70% 88 83

2004 Takase et al69 102 0 Dipyridamole Cath .50% 93 85

2003 Doyle et al51 199 15 Dipyridamole Cath .70% 78 82

2003 Ishida et al55 104 0 Dipyridamole Cath .70% 84 82

2003 Kinoshita et al57 27 Dipyridamole Cath .75% 55 77

2003 Nagel et al59 90 6 Adenosine Cath .75% 88 90

2002 Ibrahim et al53 25 Adenosine QCA .75% 69 89

2001 Schwitter et al68 48 1 Dipyridamole QCA .50% 85 94

2000 Al-Saadi et al49 40 6 Dipyridamole Cath .75% 90 83

CMR, cardiovascular magnetic resonance.
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agents are in everyday clinical use worldwide, cardiovascular
applications are not yet approved by the United States Food and
Drug Administration. Currently it is easier to run an MRI for
profit by doing non-cardiac applications. Thus, significant
economic issues must be addressed.

MRI scanners trigger claustrophobia in many patients. Other
patients cannot undergo MRI scans due to implanted devices like
pacemakers or defibrillators. Arrhythmias and respiratory insuffi-
ciency compromise many of the highest quality CMR methods.
Technology development can solve most of these issues.

CONCLUSION
With advances in CMR technology, multiple clinical indications
have followed. Although there is overlap with other cardiac
imaging modalities, CMR often works in a complementary
fashion to these other techniques or resolves residual diagnostic
dilemmas. The strengths of CMR lie in its ability to
comprehensively image cardiac anatomy, function, perfusion,
viability and physiology, and put this information in the

context of the wide field of view of surrounding vascular and
non-cardiac anatomy. At a time when serious concerns are
being raised about the medical use of ionising radiation, it is
reassuring to know that CMR provides high-quality diagnostic
information without a need for radiation.

Competing interests: None.
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Multi-perforated atrial septum

A 61-year-old woman was referred owing
to recent-onset, moderate dyspnoea on
exertion. On physical examination the
patient was in atrial fibrillation. The
second heart sound was widely split with
a prominent pulmonary component that
was, however, moving with inspiration. A
systolic ejection murmur was heard at the
upper left sternal edge and there was also
the impression of a diastolic rumble at the
lower left sternal border. The patient was
pink and the jugular venous pressure was
not raised but there was mild bilateral
ankle oedema.

Trans-thoracic echocardiography that
had been performed elsewhere demon-
strated a central jet through the atrial
septum and the condition was deemed to
be a typical atrial secundum atrial septal
defect (ASD). On transoesophageal echo-
cardiography, multiple jets were seen
(panel A). The right ventricle was dilated,
there was pulmonary hypertension
(50 mm Hg) and the Qp/Qs was 2. The
patient was referred for surgical repair. A
multiperforated membranous atrial sep-
tum was found with a functional total
cross-sectional area of approximately
3 cm2 (panel B). It was resected and
replaced by a patch of autologous peri-
cardium.

Multiple ASDs are unusual, found in
less than 8% of diagnosed cases of ASD,1

and can be missed on trans-thoracic
echocardiography. The effective shunt is
the additive shunt of all the little holes.
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