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Abstract Genome- and transcriptome-wide amino acid usage preference across different species is

a well-studied phenomenon in molecular evolution, but its characteristics and implication in cancer

evolution and therapy remain largely unexplored. Here, we analyzed large-scale transcriptome/

proteome profiles, such as The Cancer Genome Atlas (TCGA), the Genotype-Tissue Expression

(GTEx), and the Clinical Proteomic Tumor Analysis Consortium (CPTAC), and found that com-

pared to normal tissues, different cancer types showed a convergent pattern toward using biosyn-

thetically low-cost amino acids. Such a pattern can be accurately captured by a single index

based on the average biosynthetic energy cost of amino acids, termed energy cost per amino acid

(ECPA). With this index, we further compared the trends of amino acid usage and the contributing

genes in cancer and tissue development, and revealed their reversed patterns. Finally, focusing on the

liver, a tissue with a dramatic increase in ECPA during development, we found that ECPA repre-

sents a powerful biomarker that could distinguish liver tumors from normal liver samples consis-

tently across 11 independent patient cohorts and outperforms any index based on single genes.

Our study reveals an important principle underlying cancer evolution and suggests the global amino

acid usage as a system-level biomarker for cancer diagnosis.
Introduction

Amino acids are the basic building blocks of a cell. Coding
sequences and gene expression profiles are two key factors
determining the overall amino acid usage of a cell. Through

analyses of the genomes or transcriptomes of many species,
ciences /
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amino acid usage preference is a well-studied topic in
macroevolution. The universal trend of ‘‘cost–usage anti-
correlation” suggests that the relative abundance of amino

acids, quantified as the number of codons encoding a specific
amino acid in the genome of a species, is mainly driven by their
biosynthetic energy costs [1–5]. However, it remains unclear

how amino acid usage of cancer cells deviates from normal tis-
sues and evolves in different tumor contexts.

From an evolutionary point of view, cancer cells are char-

acterized by a low degree of divergence from its tissue of ori-
gin, measured by the limited amount of somatic changes,
which is in contrast to the macroevolution that happens across
different taxa or even the microevolution existing between

within-species individuals [6]. However, such trifling transfor-
mation does yield a wide range of phenotypic commonalities
shared by distinct cancer types, including activated prolifera-

tive signaling, resistance to programmed cell death, induction
of angiogenesis, and metastatic capability [7]. Among many
theories proposed to understand such convergence, one

appealing concept is that cancer cells bear a set of genomic,
transcriptomic, and epigenomic features that can be summed
up as ‘‘stemness” [8–11], which in the context of ontogeny,

defines the level of reprogramming/dedifferentiation of adult
tissue cells. The underlying mechanistic links between cancer
evolution and tissue development have been hinted at by the
observations of frequent mutations leading to reactivation of

stem cell-related pathways in cancer [12,13]. However, little
effort has been made to examine a potential association
between these two seemingly non-overlapping processes in

respect to amino acid usage.
Characterizing the amino acid usage of cancer cells not only

helps us understand the evolutionary constraints in the tumor

microenvironment but may also have clinical utility. In recent
years, tremendous efforts have been made to identify gene
expression-based biomarkers for cancer diagnosis, outcome

prediction, and treatment selection, but successful cases with
proven clinical values are still limited [14–16]. One factor that
determines the feasibility of such biomarkers in clinical prac-
tice, the robustness, is rarely satisfied, meaning that a threshold

chosen based on limited data is usually not generalizable to
unseen scenarios. In contrast to conventional biomarkers
based on individual genes, amino acid usage represents a holis-

tic property of a cellular state. Therefore, there is a possibility
that its related indices represent more robust biomarkers for
clinical applications. To fill these knowledge gaps, here we per-

formed a systematic analysis of the amino acid usage profiles
across many cohorts of tumor and normal tissue samples.

Results

A convergence of amino acid usage across cancer types

Since gene expression levels are largely associated with amino
acid usage in a cell, we first examined the gene expression pat-

terns of 30 tissue types in the Genotype-Tissue Expression
(GTEx) cohort [17] (Figure S1A) and 31 cancer types in The
Cancer Genome Atlas (TCGA) cohort [18] (Figure S1B).
Using the t-distributed stochastic neighborhood embedding

(t-SNE) [19] projection, we found that samples of a common
tissue origin largely formed a single cluster regardless of being
normal or cancerous. In addition, cancer types with the same
tissue origin, such as brain cancers [glioblastoma multiforme
(GBM) and lower grade glioma (LGG)], kidney cancers [kid-
ney renal clear cell carcinoma (KIRC) and kidney renal papil-

lary cell carcinoma (KIRP)], lung cancers [lung
adenocarcinoma (LUAD) and lung squamous cell carcinoma
(LUSC)], and liver cancers [hepatocellular carcinoma (LIHC)

and cholangiocarcinoma (CHOL)], tended to be mingled or
closer to each other than to other cancer types. We observed
similar patterns in two other large, pan-cancer cohorts,

PCAWG [20] and MET500 [21] (Figure S1C and D). Consis-
tent with previous studies [18,22], these results indicate that
cancer cells largely retain their tissue-specific gene expression
profiles.

To study whether this tissue-specific pattern holds for
amino acid usage, we calculated the similarity of
transcriptome-based amino acid usage by integrating the gene

expression profiles and the amino acid frequencies of protein-
coding genes (Figure 1A) and visualized their patterns in the
same way. Similar to the strong tissue specificity observed in

the gene expression analysis, we found that normal tissues of
the GTEx cohort still had distinct amino acid usage patterns
(Figure 1B). We further confirmed this result by co-

clustering amino acid usage profiles of the Human Protein
Atlas (HPA) cohort [23] with corresponding GTEx tissue types
(Figure S2A). More intriguingly, samples of a multi-species
multi-tissue cohort [24] were principally separated by tissue

type rather than by species, suggesting that tissue-specific
amino acid usage is highly conserved across mammals
(Figure 1C).

In sharp contrast to normal tissues, when clustered by
amino acid usage, samples of different cancer types were much
less separated and did not segregate on the basis of tissue ori-

gins (Figure 1D). To further confirm this observation, we clus-
tered amino acid usage profiles of two other cancer cohorts,
PCAWG and MET500, and observed a dramatic loss of tissue

specificity relative to the patterns observed in the gene
expression-based analysis (Figure S1C and D, Figure S2B
and C). To ensure that the detected pattern was not due to a
disparity in sample size or unmatched tissue types, we lever-

aged a conservative GTEx-TCGA mapping to only include
normal and tumor samples whose tissue origins are matched
without ambiguity, then performed down-sampling within

individual tissue-specific cohorts, and finally, applied t-SNE
to redo a supervised clustering. The results remained the same
for the comparison between down-sampled GTEx and TCGA

samples (Figure S2D and E) as well as for that between TCGA
tumor samples and the normal adjacent to tumor (NAT)
samples (Figure S2F and G). This observation is important
since, evaluating tumor purity and gene signatures, recent

studies have shown that NAT samples reside in an intermedi-
ate state between healthy and tumor samples [25,26].

The observation that amino acid usage for cancer cells

failed to preserve their distinct tissue origins raised two possi-
bilities: 1) cancer cells evolved to possess highly stochastic
amino acid usage profiles both within and between cancer

types; or 2) they went through a convergence of amino acid
usage, thereby losing the constraint of the original tissue speci-
ficity. To identify the correct hypothesis, we simply asked

whether, in the 20-dimensional space (each dimension repre-
senting the frequency of specific amino acid), the distances
between samples of different cancer types were shorter than
those among samples of different normal tissues. Based on
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Pearson’s distance, for each sample, we defined an amino acid
usage convergence index that measured its distance to all other
samples of different tissue or cancer types. Through a compar-

ative analysis of GTEx normal vs. TCGA tumor and TCGA
NAT vs. tumor, we found that tumor samples showed signifi-
cantly increased convergence than normal samples, a pattern

consistently observed across all surveyed cancer types (Fig-
ure 1E and F). Furthermore, we compared the variations of
amino acid frequencies across NAT samples and tumor sam-

ples of different cancer types based on the same set of standard
deviations. Indeed, the extent to which amino acids are differ-
entially used in tumors was markedly reduced than that in
NATs (Figure S3A and B). Collectively, these results indicated

a strong convergence rather than a stochastic transformation
of amino acid usage across cancer types, supporting our sec-
ond hypothesis.

Cancer cells tend to use biosynthetically low-cost amino acids

To understand how such a convergent pattern occurs, we

quantified the differential usage of each amino acid in tumors
vs. normal tissues and found no highly consistent trend across
cancer types in terms of increased or decreased usage (Fig-

ure S3C). However, when taking a higher view of the heatmap,
structurally complex amino acids, such as tryptophan and cys-
teine, tended to be significantly depleted in most cancer types,
whereas those with relatively simpler structures tended to be

significantly enriched in a majority of cancers. Because the
structural complexity of the amino acids correlates well with
the energy cost of their biosynthesis [1], we hypothesized an

association between the biosynthetic energy cost of amino
acids and their usage tendency in cancers. Indeed, we observed
a strong negative correlation between the biosynthetic energy

cost and the net number of cancer types in which the usage
of an amino acid was significantly increased (Figure 2A,
rho = �0.56, P = 0.01), suggesting that cancer cells prefer

amino acids with a lower biosynthetic energy cost. We previ-
ously introduced two indices, ECPAgene and ECPAcell, which
quantify the average biosynthetic energy cost per amino acid
for a gene and a cell (or a sample), respectively [27] (Figure 2B).

ECPAgene is based on the amino acid frequency encoded in a
gene, and ECPAcell considers the expression levels and amino
acid frequencies of all the genes in a cell. A high ECPA value

indicates that the gene or the cell tends to use biosynthetically
expensive amino acids. We found that compared to NAT
3

Figure 1 Pan-cancer convergence of transcriptome-based amino acid

A. Schematic diagram showing the computation of amino acid usage

RNA-seq sample. B.–D. t-SNE projection of the GTEx (B), developin

their amino acid frequency profiles. Samples are color-coded based on

developmental stages were classified into three categories and indicated

TSNE, with perplexity as 30, learning rate as 200, and the number of it

index between tumor samples and matched down-sampled normal sa

usage convergence index between tumor samples and adjacent normal

and the whiskers indicate quartile ± 1.5� interquartile range. A two

*, P < 0.05; **, P < 0.01; ***, P < 0.001. AA, amino acid; GTEx,

t-SNE, t-distributed stochastic neighborhood embedding.
samples, ECPAcell of the tumor samples became significantly
lower for 9 out of the 15 tested cancer types, while no signifi-
cantly opposite patterns were observed (Figure 2C). To con-

firm this pattern at the proteomic level, we extended these
analyses to six cancer proteomics datasets from the Clinical
Proteomic Tumor Analysis Consortium (CPTAC) [28] and

others [29,30], covering five cancer types. Strikingly, in all
the cases, proteins that were significantly up-regulated in
tumor samples (log2 FC > 0, FDR < 0.05) had significantly

lower ECPAgene than the proteins that were significantly
down-regulated (log2 FC < 0, FDR < 0.05) (Figure 2D).
These results indicate that cancer cells reshaped their gene/
protein expression programs to use biosynthetically inexpen-

sive (or structurally simpler) amino acids, thereby losing their
original tissue-specific amino acid usage profiles. Finally, we
sought to test if our ECPA index was insensitive to the expres-

sion of genes with extremely high abundance, including those
encoding certain housekeeping proteins as well as tissue-
specific proteins. After removing all genes that either encode

cytoplasmic and mitochondrial ribosome proteins or rank
among the top 200 genes in median transcripts per million
(TPM) of the same cancer type, we recalculated the ECPA

index for each sample and found that the decreasing pattern
of ECPAcell in tumor samples across multiple cancer types
was almost perfectly reproduced (Figure S4).

We next tested whether the amino acid usage convergence

level of a tumor was correlated with its ECPAcell. Indeed, we
found a strong inverse relationship for seven out of the nine
cancer types where ECPAcell was significantly lower in tumors

(Figure 2E). Thus, the more a tumor follows a convergent path
to a common state of amino acid usage, the higher the bias it
has toward using biosynthetically low-cost amino acids. These

results also suggest that ECPAcell is a simple, informative, and
interpretable index that effectively captures the overall prefer-
ence of amino acid usage for a specific sample. Therefore, we

focused on this index in subsequent analyses.

Biosynthetically expensive amino acids are increasingly used

during tissue development

To elucidate the underlying cause for the convergence of
amino acid usage in cancer, we first sought to understand
how tissue-specific amino acid usage patterns are established

during development. Using the ECPAcell index, we quantified
the overall amino acid usage of liver and kidney tissues across
usage

frequency based on the gene expression profile derived from an

g mammalian tissue (C), and TCGA tumor (D) samples based on

tissue or cancer types. In (C), marker shapes correspond to species;

by marker size. All t-SNE projections were generated using sklearn

erations as 1000. E. Comparison of amino acid usage convergence

mples across multiple cancer types. F. Comparison of amino acid

samples across multiple cancer types. Box plots show the quartiles,

-sided Mann-Whitney U-test was used to calculate the P values.

Genotype-Tissue Expression; TCGA, The Cancer Genome Atlas;
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different development stages in mammals, including humans,
mice, rats, rabbits, and opossums. Intriguingly, both tissues
showed an increasing trend of ECPAcell along their develop-

mental trajectories in all five mammals (Figure 3A and B). A
closer inspection of the ECPAcell trend lines led to two obser-
vations: 1) key turning points of ECPAcell in different species

tend to happen at corresponding developmental stages; and
2) the rise of ECPAcell in the liver takes concave trajectories
while that in the kidney takes convex trajectories, suggesting

that the establishment of high ECPAcell status is driven by evo-
lutionarily conserved synchronous molecular events that pos-
sess strong tissue specificity. To confirm this pattern, we
collected another three independent RNA-seq datasets on

mouse liver development and found a consistent ECPAcell

increase along the developmental paths in all three cases (Fig-
ure 3C–E).

To pinpoint which gene modules are responsible for the
tissue-specific build-up of a high ECPAcell status, we first
defined a ‘‘DECPAcell contribution index” for each gene,

which quantified the contribution of the gene to the global
shift of ECPAcell (see Materials and methods). We then
divided all genes into 15 equal bins based on their index val-

ues and employed a mutual information-based enrichment
identification algorithm called iPAGE [31] to detect the
enrichment of these gene groups with well-established func-
tional gene modules. We noted that genes contributing to

the ECPAcell increase were conserved among mammals but
were tissue-specific. For the liver, the enriched modules
included glucuronosyltransferase activity and complement

activation (Figure 3F, Figure S5A, C, and E); and for the
kidney, the enriched modules included sphingolipid biosyn-
thetic process and zinc/calcium ion homeostasis (Figure 3G,

Figure S5B, D, and F).
Development-related cellular states that are instituted in

adulthood can be prone to significant transformation or

even complete collapse during aging [32]. To further under-
stand how tissue-specific amino acid usage patterns alter
when the tissue undergoes senescence, we gathered indepen-
dent transcriptome profiles of aging livers and kidneys in

humans, mice, and rats, and characterized the ECPAcell pat-
terns. Both tissues showed a stable pattern of high ECPAcell

status with reasonable fluctuations (Figure S6A–C). We

concluded that tissue-specific, preferred usage of biosynthet-
ically expensive (or structurally complex) amino acids, char-
acterized by a high-ECPAcell status, was gradually formed
3

Figure 2 Amino acid usage preference in tumor evolution as quantifie

A. Correlation between the biosynthetic energy cost of an amino acid an

across 20 amino acids. The net number is defined as the number of canc

the number with significantly decreased usage. The colored region ar

Schematic diagram showing the computation of ECPAgene and ECPAce

C. ECPAcell of tumor samples and matched normal tissue samples acro

test was used to calculate the P values. D. Bar plots showing ECPAgen

cancer proteomics datasets. Error bars denote 95% confidence interva

values. E. Correlation between ECPAcell and amino acid usage converg

around the regression lines indicate 95% confidence intervals. *, P <

energy cost per amino acid per gene; ECPAcell, energy cost per amino
during development and remained largely unchanged in
aging.

Amino acid usage convergence of tumor follows a reversed path

of tissue development

The strong convergence of amino acid usage across different

cancer types is reminiscent of the ‘‘reverse-evolution” concept
for tumorigenesis. As demonstrated above, this idea is well
illustrated by the observation that there is a consistent decline

of ECPAcell in tumors, whereas there is a gradual increase of
ECPAcell during tissue development. To test the hypothesis
that cancer evolution and tissue development move in opposite

directions with respect to amino acid usage, we assessed
whether the genes that boosted ECPAcell in tissue development
were overlapped with those that reduced ECPAcell in tumors of
the corresponding tissue origin and vice versa. Following the

same method of computing DECPAcell contribution index for
tissue development, we measured the contribution of individ-
ual genes to DECPAcell in cancer evolution for three cancer

types for which gene expression profiles of normal developing
tissues are available, namely LIHC, KIRC, and KIRP. Based
on their contributions to DECPAcell in either development or

tumorigenesis, we divided individual genes into four quadrants
with zero as the cutoff. We then used Fisher’s exact test to ana-
lyze the overlap of developmental DECPAcell-positive-
contributing genes with tumorigenic DECPAcell-negative-

contributing genes and vice versa. We observed that genes
indeed tended to make opposite contributions to DECPAcell

in tumorigenesis and tissue development (Figure 4A–C,

Fisher’s exact test; LIHC, P = 1.6 � 10�156; KIRC, P =
1.9 � 10�39; KIRP, P = 8.9 � 10�30). Furthermore, for the
genes reducing ECPAcell in tumorigenesis and increasing

ECPAcell in development, their DECPAcell contribution
indexes in these two processes were significantly negatively
correlated (Figure 4D–F).

While the gene-level analyses above were possibly hindered
by the fact that cancer progression is highly heterogeneous
even within the same cancer type [33,34], we can expect that
a sample-level analysis would be more efficient to detect poten-

tial reverse relationships between cancer evolution and tissue
development regarding amino acid usage. To this end, we
defined the ‘‘developmental reversal index” for each tumor

sample, which quantifies how strongly its gene expression
pattern reversed what was instituted in tissue development.
d by ECPAcell

d the net number of cancer types with significantly increased usage

er types with significantly increased usage of the amino acid minus

ound the regression lines indicates a 95% confidence interval. B.

ll based on the gene expression profile derived from RNA-seq data.

ss TCGA cancer types. A paired two-sided Wilcoxon signed-rank

e values of significantly down- and up-regulated proteins in several

ls. A two-sided Mann-Whitney U-test was used to calculate the P

ence index across samples in nine cancer types. The colored regions

0.05; **, P < 0.01; ***, P < 0.001; ns, not significant. ECPAgene,

acid per cell.
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Specifically, we first calculated the gene-expression fold change
of each tumor sample in terms of that averaged over the adja-
cent normal samples in order to measure the transcriptomic

shift during tumorigenesis. We then measured the strength of
anti-correlation between such a shift and the expression
changes of the same gene set along the developmental trajecto-

ries of matched tissues (see Materials and methods). Interest-
ingly, using this index to stratify cancer patients in terms of
overall survival time, we found that a higher developmental

reversal value was consistently associated with a worse prog-
nosis (Figure 4G–I), suggesting that more aggressive tumors
tend to have gene expression profiles more reversed in the tis-
sue development trajectory.

Finally, we employed a multivariate linear regression model
to clarify the associations between how biased a tumor sample
tends to be in using biosynthetically inexpensive amino acids

(represented by ECPAcell), how far it travels on the path of
amino acid usage convergence relative to other cancer types
(represented by amino acid usage convergence index), and

how strongly its gene expression pattern reversed from what
was instituted in tissue development (represented by the devel-
opmental reverse index). Remarkably, both the convergence

level and the developmental reversal level were strongly anti-
correlated with ECPAcell across cancer types (Figure 4J–L).
We, therefore, put forward an integrated model in which can-
cer cells initiated from distinct tissue origins converge into a

common state favoring the use of biosynthetically inexpensive
amino acids through reversed paths of tissue development
(Figure 4M).

The amino acid usage index, ECPAcell, is a robust biomarker for

liver cancer diagnosis

Among different cancer types in our ECPAcell analysis, the dif-
ference between liver normal and liver tumor samples was
striking, making this tissue stand out from others (Figure 2C).

Indeed, by quantifying the downward shift of ECPAcell

(DECPAcell) between tumor and the matched NAT pairs, the
top two cancers were CHOL and LIHC, both of which origi-
nate from the liver (Figure 5A). We suspected that such a strik-

ing pattern could be attributed to liver-specific gene
expression. To test this, we calculated ECPAcell of both GTEx
normal samples and TCGA NAT samples based only on

tissue-specific genes [35] and ranked the tissues by their aver-
age ECPAcell. Indeed, the liver ECPAcell level was higher than
almost all other tissues (Figure 5B and C) (although the pan-

creas showed an even higher ECPAcell according to the GTEx
samples, the pattern did not hold for TCGA NAT samples).
Of note, while the sample size of LIHC-NAT was as large as
50, the variation of their ECPAcell based on tissue-specific
3

Figure 3 The increasing trend of ECPAcell throughout mammalian or

A. and B. Trend lines of ECPAcell during the development of the

Developmental stages of non-mouse species correspond to the mou

intervals. C.–E. Trend lines of ECPAcell along the developmental traje

bars denote 95% confidence intervals. F. and G. Heatmaps showing e

during the development of the human liver (F) and kidney (G). The red

designate the range of DECPAcell contribution index within every bin
genes was low. Furthermore, a comparison of the developmen-
tal ECPAcell trend lines for different human tissues revealed
that a fast and early build-up of a high-ECPAcell status only

existed for the liver (Figure 5D). We observed similar patterns
in other mammals as well (Figure S7A–D). These results sug-
gest that during development, the liver acquires a very high

ECPAcell state, and the liver-specific genes are the underlying
contributing factor.

Given 1) the extremely high ECPAcell level of liver tissue

and 2) the dramatic difference between liver tumor and
matched normal samples, we speculated whether ECPAcell

could be utilized as a novel biomarker for detecting liver can-
cer. To this end, we first collected 11 independent liver-cancer

RNA-seq datasets (including TCGA LIHC and CHOL) where
matched tumor and adjacent normal biopsies were simultane-
ously collected, thereby enabling a direct comparison of

ECPAcell between these conditions. In all cases, the tumor
samples showed significantly reduced ECPAcell with large
effect sizes (Figure 6A).

To evaluate more rigorously the capacity of ECPAcell to
serve as a diagnostic marker in discriminating liver tumors
from normal tissues, we employed the area under the receiver

operating characteristic curve (AUROC) as a performance
metric. To ensure the robustness of our analyses, we only
included six datasets with a sample size great than or equal
to 12. The ECPAcell index was able to separate tumor vs.

normal samples with very high AUROC scores (median
value = 0.993, range = 0.982–1.00, Figure 6B). To compare
the predictive power of ECPAcell relative to individual gene-

based biomarkers, we calculated the average AUROC of all
detectable genes across the six datasets and assessed their per-
formance in the same way. Among 9559 genes assessed, only

three genes (CCT3, DDX39A, and FLAD1) showed slightly
better performance than ECPAcell (0.992), but none of them
had statistically significant superiority (Figure 6C and D). In

addition, ECPAcell showed significantly higher discriminating
power than the usage of any single amino acid (Figure 6E).
Along with accuracy, a key feature of a successful biomarker
is its robustness. To assess this feature, we computed the coef-

ficient of variation (CV) for the optimal thresholds of ECPAcell

and individual genes across different datasets as an indicator
of robustness. ECPAcell showed exceptionally high robustness

with its CV as low as 7.9 � 10�3, about 5� smaller than the
lowest CV of any single gene-based biomarker (Figure 6F).
Notably, the three genes that had a statistically insignificant

advantage over ECPAcell by AUROC had extremely unstable
optimal cutoffs among different datasets, suggesting their lim-
ited power in detecting liver cancer across diverse clinical sce-
narios. Collectively, these results suggest that, as a system-level

feature capturing the global usage of amino acids in a sample,
ganogenesis

liver (A) and the kidney (B) across five mammalian species.

se stages shown in brackets. Error bars denote 95% confidence

ctory of the mouse liver across three independent datasets. Error

nrichment patterns of gene modules that contribute to DECPAcell

stripes embedded in the black background on top of each heatmap

.



Luo Y and Liang H /Convergent Usage of Amino Acids in Cancer 155



156 Genomics Proteomics Bioinformatics 20 (2022) 147–162
ECPAcell represents a promising biomarker for liver cancer
diagnosis, and possesses both high accuracy and exceptional
robustness.

Discussion

Here we performed a systematic analysis on transcriptome and
proteome-based amino acid usage across a broad range of can-
cer types. Using a previously introduced index, ECPAcell, our

results revealed, for different tumors, a convergent pattern
toward a cellular state of using more biosynthetically low-
cost amino acids. In parallel, we studied the amino acid usage
in the developmental trajectories of multiple organs and

uncovered diverse paths into a tissue-specific high-ECPAcell

status that were evolutionarily conserved across mammals.
Thus, a reverse relationship existed between cancer evolution

and tissue development, which can be viewed as reminiscent
of the widely accepted concept of the cancer cell ‘‘stemness”.
Furthermore, given the long-standing parallels between phy-

logeny and ontogeny [36], supported by recent evidence
[24,37,38], it would be reasonable to interpret cancer evolution
as a reversed process of not only the development of an organ-
ism or its tissues but also the evolution of species. It has been

argued that one key mechanism adopted by cancer cells to
obtain fitness despite the diversity of the microenvironments
is to unleash the force that is suppressed in multicellular organ-

isms but is borne by unicellular organisms that are at the very
bottom of the evolutionary hierarchy [39–43]. Thus, amino
acid usage, a key aspect of cellular metabolism, may provide

a unique perspective to understand the fundamental principles
governing cancer progression, tissue development, and
macroevolution, three evolutionary processes on different

scales.
With the advances in transcriptome profiling technology,

gene expression-based biomarkers have attracted wide atten-
tion for tumor detection and patient stratification. However,

due to the high heterogeneity of cancer and the intrinsically
stochastic nature of gene expression, biomarkers based on
either a single gene or a set of genes tend to suffer from numer-

ical instability, thereby performing poorly. As demonstrated
for liver cancer diagnosis, our ECPAcell index represents a
system-level biomarker that has at least three remarkable

advantages. First, ECPAcell captures a global cellular state
by retaining the entire transcriptome as its information source,
thereby conferring unparalleled robustness. Second, ECPAcell
3

Figure 4 A proposed model unifying developmental reversal, amino ac

A.–C. Stacked bar plots showing the proportion of genes that positive

development for LIHC-liver (A), KIRC-kidney (B), and KIRP-kidney (

contribution index in tumorigenesis and positive DECPAcell contributio

in tumorigenesis vs. scaled DECPAcell contribution index in tissue deve

(F). Colored regions around the regression lines indicate 95% confiden

for patients with LIHC (G), KIRC (H), and KIRP (I) stratified by deve

values were calculated from two-sided log-rank tests. J.–L. Multivaria

and amino acid usage convergence index as dependent variables for LIH

depicting a conceptual model in which cancer evolution is accompanied

which is a reversal of the tissue development process. LIHC, liver he

KIRP, kidney renal papillary cell carcinoma.
was derived de novo from the gene expression profile of a sam-
ple, thus independent of external reference, which might intro-
duce large noise predominantly attributable to batch effect.

Third, in contrast to data-driven metrics, ECPAcell has a
well-defined biological meaning, the biosynthetic energy cost
of amino acids. Because of these properties, ECPAcell is a

highly robust diagnostic biomarker for liver cancer with a
nearly constant threshold for tumor-normal segregation. Fur-
ther efforts are warranted to assess the utility of this index in

other cancer types and clinical applications.

Materials and methods

Data acquisition and processing

We obtained the gene-level expression values [e.g., fragments
per kilobase per million (FPKM) or TPM] of TCGA cancer
sample cohorts, the GTEx normal tissue cohort, and the

MET500 metastatic tumor cohort from the Xena data portal
(https://xenabrowser.net/datapages/); the HPA cohort from
the HPA data portal (https://www.proteinatlas.org/); and the

PCAWG cohort from the ICGC data portal (https://dcc.icgc.
org/releases/PCAWG/transcriptome/). We also obtained the
gene expression values of the mammalian tissue development
cohorts from ArrayExpress (https://www.ebi.ac.uk/arrayex-

press/), and two independent RNA-seq datasets of mouse liver
development from the Gene Expression Omnibus (GEO), as
well as from ArrayExpress. Finally, we obtained RNA-seq

datasets of aging mouse liver and kidney from GEO.
To convert gene-level FPKM values to TPM [44] values for

a gene gi in a sample sk; we used the equation:

TPMgi ;sk ¼
FPKMgi ;skPn
j¼1FPKMgj ;sk

� 106

where the denominator on the right side is the sum of FPKM
values of all the genes for an individual sample.

We downloaded raw RNA-seq fastq files of human liver

cancer from GEO, files of aging rat liver from the Sequence
Read Archive (SRA), and files of TCGA LIHC and CHOL
cohorts from the GDC Data Portal (https://portal.gdc.can-

cer.gov/). MultiQC [45] was used to assess the quality of the
sequencing files and the performance of the preprocessing
steps. Transcript-level abundances were quantified by Salmon
[46] using the GRCh38 transcriptome as the reference.
id usage convergence, and ECPAcell decline of cancer samples

ly or negatively contribute to DECPAcell in either tumorigenesis or

C). D.–F. Scatter plots showing, for genes with negative DECPAcell

n index in tissue development, scaled DECPAcell contribution index

lopment for LIHC-liver (D), KIRC-kidney (E), and KIRP-kidney

ce intervals. G.–I. Kaplan-Meier plots showing the overall survival

lopmental reversal index into two equal groups, respectively. The P

te linear regression of ECPAcell with developmental reversal index

C-liver (J), KIRC-kidney (K), and KIRP-kidney (L). M. Cartoon

by the convergence of amino acid usage and decrease of ECPAcell,

patocellular carcinoma; KIRC, kidney renal clear cell carcinoma;

https://xenabrowser.net/datapages/
https://www.proteinatlas.org/
https://dcc.icgc.org/releases/PCAWG/transcriptome/
https://dcc.icgc.org/releases/PCAWG/transcriptome/
https://www.ebi.ac.uk/arrayexpress/
https://www.ebi.ac.uk/arrayexpress/
https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/


Luo Y and Liang H /Convergent Usage of Amino Acids in Cancer 157



158 Genomics Proteomics Bioinformatics 20 (2022) 147–162
Gene-level TPM values were aggregated from transcript-level
TPM values by tximport [47].

We obtained the proteomics datasets of KIRC, COAD,

LUAD, and OV patient cohorts from the CPTAC data portal
(https://cptac-data-portal.georgetown.edu/). We obtained two
proteomics datasets of liver cancer from the NODE data por-

tal (https://www.biosino.org/node/index/) and the CNHPP
data portal (http://liver.cnhpp.ncpsb.org/), respectively.

All data used in this study are publicly available through

consortia websites and are listed in Table S1.

Calculation of transcriptome-based amino acid usage

We used the following equation to compute the amino acid fre-
quency matrix given an RNA-seq dataset (see also Figure 1A):

Fm�20 ¼ Em�nAn�20
T

where E is a matrix of genes g1; g2; � � � ; gn by samples

s1; s2; � � � ; sm with entries as TPM values, and A is a matrix
of genes g1; g2; � � � ; gn by amino acids a1; a2; � � � ; a20 with entries
as relative frequencies of amino acids computed using the
protein sequences annotated in the Swiss-Prot and TrEMBL

databases hosted by the UniProt website (https://www.uni-
prot.org/). When a gene has multiple isoforms, we used its
canonical sequence, as defined by UniProt based on criteria

such as transcript length, relative abundance, and evolutionary
conservation, in our analyses. We also repeated our analyses
using transcript-level TPM data, where all isoforms annotated

by Ensembl were included and had nearly identical results.

Variation analysis of amino acid usage for TCGA samples

To illustrate the variation of amino acid usage of NAT sam-

ples from different tissues, we computed z-scores based on
the average frequencies for individual amino acids across tis-
sues. To compare these with the variations in amino acid usage

of tumor samples across cancer types, instead of using de novo
standard deviations to compute z-scores, we used the set of
standard deviations derived for the NAT samples to obtain

z-scores for the tumor samples. We used hierarchically clus-
tered heatmaps with Euclidean distance as the distance metric
to visualize the tissue-specificity of amino acid usage. To iden-

tify differential amino acid usage between tumor and NAT
samples, we performed the Wilcoxon rank-sum test for fre-
quencies of individual amino acids using paired tumor and
NAT samples and used an FDR-adjusted P value of 0.05 as

the threshold for significance. Similarly, a hierarchically clus-
tered heatmap was used to display amino acid de-regulation
patterns across cancer types.
3

Figure 5 The liver shows the most dramatic ECPAcell reduction in tum

A. Distribution of DECPAcell between tumor samples and paired NAT

indicates the level of DECPAcell = 0. B. Distribution of tissue-specific

Distribution of tissue-specific gene-based ECPAcell of adjacent normal

The box plots show the quartiles. The whiskers indicate quartile ± 1.5�
across human developmental stages. Error bars denote 95% confid

conception.
Calculation of ECPAgene and ECPAcell

We calculated two indices of amino acid usage, ECPAgene and
ECPAcell, representing the average biosynthetic energy cost per
amino acid of a gene and a cell, respectively, as described pre-

viously [27]. Briefly, the biosynthetic costs of amino acids are
based on the amount of high-energy phosphate bond equiva-
lents required for amino acid biosynthesis in yeast and are nor-
malized by amino acid decay rates (the biosynthetic costs of

amino acids are highly correlated between different species).
We then calculated ECPAgene and ECPAcell by multiplying
the biosynthetic energy costs with the relative amino acid fre-

quency of a gene or a cell (sample).

Quantification of amino acid usage convergence for TCGA

samples

To quantify the similarity of NAT or tumor samples in the
TCGA cohort in terms of their amino acid usage patterns,

we applied Pearson’s distance metric to the amino acid fre-
quency profiles, derived as described above. We also employed
the Spearman rank correlation coefficient as an alternative
metric and obtained the same results. Specifically, to capture

the convergent pattern of amino acid usage across cancer
types, we defined, for a sample si of cancer type X, the amino
acid usage convergence index as:

1�
PN

j¼1dsi ;sj

N
ðsj R XÞ

where dsi ;sj is the Pearson’s distance between sample si from

cancer type X and sample sj not from cancer type X:

Calculation of DECPAcell contribution index

To estimate the contribution of individual genes to the alter-
ation of ECPAcell in a specific biological process, we consid-
ered both how different the ECPA of a gene is from the
baseline ECPAcell, as well as how much its expression level

has changed. Formally, we defined the DECPAcell contribution
index of a gene gi as:

ðECPAgi � ECPAbaselineÞ � Igi

where Igi is an importance score that describes the extent of

deregulation of gi. In tumorigenesis, we employed the log2
fold-change of average expression level between tumor and
NAT samples as the importance score. In tissue development,

we employed a different importance score that was not based
on binary comparison as in tumorigenesis since the nature of
origenesis

samples across multiple cancer types. The horizontal dashed line

gene-based ECPAcell of normal samples across multiple tissues. C.

samples across multiple cancer types ranked by the median values.

interquartile range. D. Trend lines of ECPAcell of multiple tissues

ence intervals. NAT, normal adjacent tissue; wpc, weeks post

https://cptac-data-portal.georgetown.edu/
https://www.biosino.org/node/index/
http://liver.cnhpp.ncpsb.org/
https://www.uniprot.org/
https://www.uniprot.org/


Figure 6 ECPAcell is a robust diagnostic biomarker for liver cancer

A. ECPAcell of tumor samples and matched normal tissue samples in 11 independent RNA-seq datasets of liver cancer and their matched

normal samples. A paired two-sidedWilcoxon signed-rank test was used to calculate theP values.B.ROC curves of ECPAcell as a diagnostic

biomarker in six independent liver cancer cohorts with sample size� 12. Colorful lines indicate the lines of identity.C.Density plot showing

the distribution of the average AUROC across the six cohorts for tumor-normal segregation using the mRNA expression level of each of the

9559 detectable genes. The vertical dashed line corresponds to the averageAUROCofECPAcell.D.Box plots showing theAUROCof the top

four metrics, including three genes and ECPAcell, in discriminating tumor samples from normal samples across the six cohorts. A paired two-

sidedWilcoxon signed-rank test was used to calculate the P values. E.Box plots showing the AUROC of ECPAcell and the frequency of each

amino acid in detecting tumors across the six cohorts. The box plots show the quartiles. The whiskers indicate quartile ± 1.5� interquartile

range. A paired two-sidedWilcoxon signed-rank test was used to calculate theP values. F.Density plot showing the distribution of CV of the

optimal thresholds in using individual genes for tumor-normal segregation. The vertical red dashed line indicates theCVofECPAcell. Vertical

lines in three other colors indicate the CV of three genes whose average AUROCs are higher than ECPAcell. ROC, receiver operating

characteristic; AUROC, area under the ROC curve; CV, coefficient of variation. *, P < 0.05; **, P < 0.01; ***, P < 0.001.
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the dataset is time-course measurements. Specifically, we

applied an R package designed for transcriptomic time
courses, maSigPro [48], to build a polynomial regression model
(degree = 3) for each gene using its expression level as the

response variable and the log-transformed post-conception
days as the independent variable. Such models yielded the
goodness-of-fit (R2) values that were then signed by the corre-
sponding Spearman correlation coefficients and were finally

used as the importance score.

Pathway analysis of DECPAcell contribution in mammalian tissue

development

We employed an information-theoretic framework [31] to
reveal gene modules or regulatory pathways that were enriched

in genes with a significant contribution to the increase of
ECPAcell during tissue development. First, we focused on
down-regulated genes with lower-than-baseline ECPAgene and
up-regulated genes with higher-than-baseline ECPAgene, both

of which could contribute to the increase of developmental
ECPAcell. Second, we distinguished these two groups of genes
by signing the index of down-regulated genes as negative, fol-

lowed by rank-transforming all retained genes, and dividing
the genes into equal bins. Third, we used the iPAGE algorithm
that calculated the mutual information between the gene ranks

and the pathway memberships (the number of genes belonging
to a pathway in each bin) for every Gene Ontology term. A
random-permutation test was used to estimate the significance

of the mutual information (MI) values so that significantly
informative pathways were identified with high MI values
and low P values. Finally, the hypergeometric test was used
to determine whether a specific pathway was over- or under-

represented in each bin. For visualization, heatmaps of path-
ways by bins were drawn using log-transformed P values.

Calculation of developmental reversal index of tumor samples

To assess the level of developmental reversal for tumor sam-
ples of TCGA LIHC, KIRC, and KIRP cohorts, we asked

how greatly the shift of a tumor transcriptome from a mega
NAT reference (averaging gene expression over all NAT sam-
ples of a certain cancer type) had reversed the shift of the tran-

scriptome along the developmental trajectory of a
corresponding tissue. Formally, we defined, for a sample si,
the developmental reversal index as:

qðlog2ðesi!�ðEm�1
��!ÞÞ; r!Þ

where � is element-wise division, q is the Spearman correla-

tion coefficient, esi is a vector of n gene expressions for sample

si, E is a matrix of genes g1; g2; � � � ; gn by NAT samples
s1; s2; � � � ; sm of a certain cancer type with entries as expression

level, m�1
��!

is a normalization vector of constant m�1, and r! is a

vector of signed goodness-of-fit values of genes g1; g2; � � � ; gn
derived from the developmental RNA-seq data of a matched
tissue type. We examined the association of this index with

patients’ overall survival times in TCGA LIHC, KIRC, and
KIRP cohorts using log-rank tests, where patients were split
into two equal groups based on the median value of develop-

mental reversal index.
Evaluation of the utility of ECPAcell as a diagnostic biomarker

To quantify the performance of ECPAcell in differentiating
tumors from related normal samples, we used the AUROC
metric to compare it with those of all detectable individual

genes (TPM � 1 in � 50% of samples in the cohort). To
determine the optimal threshold of ECPAcell or gene expres-
sion level for tumor-normal separation, we chose the value
that maximizes Youden’s J statistic, which equals

(sensitivity + specificity – 1). If multiple optimal cutoffs
existed for a biomarker whose average level was higher in
NAT than in tumors, the one with the highest value was

picked and vice versa.
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