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Abstract

In Canadian boreal forests, bryophytes represent an essential component of biodiversity

and play a significant role in ecosystem functioning. Despite their ecological importance and

sensitivity to disturbances, bryophytes are overlooked in conservation strategies due to

knowledge gaps on their distribution, which is known as the Wallacean shortfall. Rare spe-

cies deserve priority attention in conservation as they are at a high risk of extinction. This

study aims to elaborate predictive models of rare bryophyte species in Canadian boreal for-

ests using remote sensing-derived predictors in an Ensemble of Small Models (ESMs)

framework. We hypothesize that high ESMs-based prediction accuracy can be achieved for

rare bryophyte species despite their low number of occurrences. We also assess if there is a

spatial correspondence between rare and overall bryophyte richness patterns. The study

area is located in western Quebec and covers 72,292 km2. We selected 52 bryophyte spe-

cies with <30 occurrences from a presence-only database (214 species, 389 plots in total).

ESMs were built from Random Forest and Maxent techniques using remote sensing-derived

predictors related to topography and vegetation. Lee’s L statistic was used to assess and

map the spatial relationship between rare and overall bryophyte richness patterns. ESMs

yielded poor to excellent prediction accuracy (AUC > 0.5) for 73% of the modeled species,

with AUC values > 0.8 for 19 species, which confirmed our hypothesis. In fact, ESMs pro-

vided better predictions for the rarest bryophytes. Likewise, our study revealed a spatial con-

cordance between rare and overall bryophyte richness patterns in different regions of the

study area, which have important implications for conservation planning. This study demon-

strates the potential of remote sensing for assessing and making predictions on inconspicu-

ous and rare species across the landscape and lays the basis for the eventual inclusion of

bryophytes into sustainable development planning.
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1. Introduction

Canadian boreal forests represent 24% of the world’s boreal forest [1]. In these forests, anthro-

pogenic disturbances pose serious threats for boreal flora [2, 3]. This is particularly true for

sensitive plant species such as bryophytes, which have been recognized as reliable indicators of

environmental changes [4–6]. Bryophytes are key constituents of biodiversity in Canadian

boreal forests, promoting species richness [7, 8] and supporting important ecosystem func-

tions [8–10].

Forest management pressure is however affecting bryophyte diversity and community com-

position in the boreal biome, either through direct species removal or by altering habitat con-

ditions originally suitable for bryophytes [11]. Forestry practices are also reducing the

ecological continuity of forests, jeopardizing the recolonization processes after disturbance

events [4, 12]. Highly habitat-specific and/or dispersal-limited bryophyte species harbored by

old-growth boreal forests may therefore be at risk [12]. Despite their ecological importance

and sensitivity to disturbances, bryophytes are part of the vast unseen biodiversity that is cur-

rently ignored in most conservation plans [13, 14].

Less known and represented in natural history collections than other groups such as birds,

mammals or flowering plants, the large contribution of inconspicuous taxonomic groups to

diversity is difficult to assess, and thus commonly operationalized using diversity measures of

these other groups as surrogates [15, 16]. However, these better-known taxonomic groups are

poor surrogates for highly diverse but less showy or studied taxa [17]. Including inconspicuous

species groups, such as bryophytes (e.g. [18]), representativeness in systematic conservation

planning assessments would lead to more robust conservation measures [19].

From a conservation perspective, rare species deserve priority attention as they are at a high

risk of extinction [20, 21]. However, because of their own nature, many rare species of unseen

biodiversity groups [19] suffer from a lack of information on environmental requirements or

their distribution [22, 23]. Species Distribution Models (SDMs), which allow to quantify the

statistical relationships between species observations and environmental conditions from

known locations, can provide useful tools for assessing ecological preferences of rare species or

predicting their distributions [24, 25]. More precisely, SDM-based predictions are achieved by

using the relevant environmental conditions as proxies of species occurrence. However, the

ability of traditional SDMs to predict rare species has been strongly limited by the number of

occurrences available, with increases in prediction accuracy with increased sample size [26,

27]. Furthermore, modeling species with low prevalence often results in a high predictors/

occurrences ratio, which can lead to model overfitting and reduced applicability to new data

[28, 29]. Fortunately, recent advances in modeling techniques and approaches such as Ensem-

bles of Small Models (ESMs) have been shown to provide robust predictions for rare plants

[20, 28, 30]. ESMs are ensembles of bivariate models generated from all pairwise predictor

combinations from a larger set of predictors [20, 28]. ESMs can produce more accurate predic-

tions than traditional SDMs and reduce model overfitting for rare species [28]. In parallel,

remote sensing (RS) offers a powerful tool to derive and integrate environmental information

into SDMs and generate predictions on species distribution over large areas [18, 31, 32].

Although a considerable number of studies have successfully integrated RS predictors into

SDMs [33–35], no study has generated ESMs using only RS predictors, nor has used this

approach to generate SDMs of inconspicuous organisms such as bryophytes, much less of

their rare species.

In this paper we use RS-derived predictors in an ESMs framework to produce predictive

models of rare bryophyte species in Eastern Canadian boreal forests. Bryophyte rare species

were selected based on their prevalence in the study area (<30 occurrences; [36]). This rare
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species selection approach was chosen because of the lack of knowledge on bryophytes related

to their distribution, ecological preferences and abundance in the region [36], which make it

difficult to apply more informative approaches such as multicriteria rare species classification

methods (e.g. [37]). In fact, the most complete rare bryophyte species list published to date for

the region used species’ prevalence as the only criterion for rare species classification [38–40].

It should be noted that rare bryophytes from [38–40] were not targeted here as their low preva-

lence (�5 occurrences) greatly restricts the development of SDMs. We hypothesize that high

ESMs-based prediction accuracy can be achieved for rare bryophyte species despite their low

number of occurrences [28]. Our specific objectives are to assess i) if there is a relationship

between the number of occurrences and the predictive performance of ESMs, ii) if the predic-

tive performance of models varies by the modeled bryophyte guild (mosses, liverworts and

sphagna), and iii) if there is a spatial relationship between the richness patterns of rare bryo-

phyte species and overall bryophyte species both for bryophytes as a whole and at the guild

level [18]. A total of 52 rare bryophyte species were targeted in the present study, including 33

mosses, 14 liverworts and 5 sphagna.

2. Materials and methods

2.1 Bryophyte field data set

We used a 389-plot database of presences-only including the field data from three studies pre-

viously conducted in our study area [41–43], which integrated young, mature and old-growth

forests and both recent fires and cut-blocks. The study area of 72,292 km2 is located in the

southwest of the Nord-du-Québec administrative region of western Quebec (48˚ 51’ to 50˚

42’N and 74˚ 31’ to 79˚ 26’W; Fig 1), within the Black spruce–feathermoss forest bioclimatic

domain [44]. Natural dynamics of these forests are primarily driven by stand-replacing fires,

whose cycle has been estimated at 398 years after 1920 [45]. The region is characterized by a

flat topography, dominance of poorly drained clay soils and a moderately humid and cold cli-

mate (927.8 mm annual precipitation and 1.0˚C annual mean temperature) [46]. These condi-

tions favor the accumulation of organic layer between fires, which is known as the

paludification process [47, 48].

Bryophytes were collected following a “floristic habitat sampling” method, which consists

in collecting all bryophytes found in all microhabitats within 5 x 10 m plots [49]. Rare bryo-

phyte species were selected based on their prevalence within the study area (<30 occurrences)

[36]. From an initial set of 214 species, 142 rare species were pre-selected, and among them,

only those with a minimum of 5 occurrences were retained for modeling, since meaningful

predictions can be achieved at this sample size [50–52]. A total of 52 rare bryophyte species (33

mosses, 14 liverworts and 5 sphagna; S1 Table in S1 Appendix) were finally selected for model-

ing (species occurrence coordinates are shown in S1 Table).

2.2 Remote sensing environmental predictors

The selection of RS-derived predictors was carried out based on their sensitivity to environ-

mental factors known to influence bryophyte distribution, namely topography, canopy cover

and structure, and vegetation and soil moisture [18, 53–55]. Climatic variables were not

included due to their coarse spatial resolution (� 1 km) and low spatial variability across the

study area (annual mean temperature and total precipitation with an approximate variability

range of 1˚C and 150 mm respectively [18]), which could lead us to overestimate the distribu-

tion of rare species. In addition, the climatic variability that could be integrated into the indi-

vidual models of our rare species would be even more limited by the low number of available

occurrences. It should be noted that climate variables also present lower reliability compared
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to RS variables at the scale of our study. This is because climatic variables are based on interpo-

lation methods with high uncertainty, especially in northern latitudes where weather stations

are scarce, while RS information is spatially continuous by nature. Therefore, we selected RS

variables showing higher variability across the study area and capable of detecting changes in

local conditions more closely related to bryophyte occurrence.

RS-derived environmental data were acquired using Google Earth Engine (GEE) [56]. The

initial set of 6 predictors included topographic position index (TPI), 2-band enhanced vegeta-

tion index (EVI2), normalized difference water index (NDWI1), vegetation continuous fields

(VCF), PALSAR HV/HH polarization index (PALSAR_HVHH), and bare soil index (BSI; see

Table 1 for predictor descriptions). TPI was derived from the Shuttle Radar Topography Mis-

sion (SRTM) digital elevation model in ArcGIS v.10.5 [57] using an annulus neighborhood

with inner and outer radius of 15 and 20 pixels, respectively. EVI2, NDWI1, and BSI predictors

were derived from Sentinel-2 spectral bands. For each band, a mosaic was built from the

Fig 1. A: Study area and sampling plots (n = 389) in the boreal black spruce forest of western Quebec. B: Location of the study area within Quebec. C: Location of Quebec

(eastern Canada).

https://doi.org/10.1371/journal.pone.0260543.g001
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images available for the summer season (July 1-August 31) between 2015–2019 to ensure homo-

geneity in the reflectance values [58]. Cloudy pixels were masked in all selected images using the

Sentinel-2 QA60 band, which allows to identify pixels with opaque clouds and cirrus clouds.

Mosaics were performed by applying the median of the overlapping pixel values. We chose

EVI2 instead of EVI since EVI2 does not require the blue band, which is sensitive to the pres-

ence of residual clouds and aerosols [59]. VCF represents percent tree cover at 30 m resolution,

after rescaling the 250 m MODIS VCF Tree Cover layer using circa-2010 and 2015 Landsat

images and incorporating the MODIS Cropland Layer to improve accuracy in agricultural areas

(https://catalog.data.gov/dataset/global-forest-cover-change-tree-cover-multi-year-global-30m-

v003) [60]. The VCF predictor presented pixels (0.1% of the total) with missing values in the

study area. PALSAR_HVHH was calculated as the ratio of HV-polarized to HH-polarized L-

bands from the Advanced Land Observing Satellite (ALOS) Phased Arrayed L-band Synthetic

Aperture Radar (SAR) [61]. HV-polarized and HH-polarized L-bands were averaged from

yearly mosaics between 2015 and 2017. All predictors were generated and standardized at a 30

m spatial resolution (see Table 1 for original spatial resolutions). Pearson correlation coefficient

was used to identify pairs of highly correlated predictors (|r|)> 0.7) from a set of 10,000 random

background points. Only the NDWI1-BSI predictor pair showed a high correlation (r = -0.87).

We retained NDWI1 which is sensitive to vegetation and soil moisture [62], since bryophytes

are poikilohydric organisms whose distribution is highly dependent on available moisture [63,

64]. This resulted in a final set of 5 uncorrelated predictors to run the models (Table 1).

2.3 Modeling approach: Ensembles of small models

ESMs based on bivariate models were developed to spatially predict 52 rare bryophyte species

(5–29 occurrences) using two modeling machine-learning techniques: Maxent [69] and Ran-

dom Forest (RF) [70]. Both Maxent and RF techniques can provide robust predictions when

few occurrences are available [50, 71, 72]. Maxent estimates the probability distribution for a

given species by finding the probability distribution of maximum entropy according to a set of

constraints representing the input known locations [69]. RF uses a bootstrap aggregation tech-

nique to provide mean predictions from a multitude of independent decision trees built from

randomly selected subsamples from the training dataset [70]. A random subset of candidate

predictors is assessed to split each node of each individual tree, selecting the predictor that pro-

vides the most information in each case [73].

Table 1. Description of predictors by category and source.

Predictors Description Category Data source Source spatial

resolution (m)

TPI Topographic position index; relative elevation at one point compared to its surrounding

environment (m); indicative of microclimate conditions [65]

Topography SRTM 30 m

EVI2 2-band enhanced vegetation index (2.5 � (NIR—RED) / (NIR + 2.4 � RED + 1)); sensitive to

photosynthetic active biomass [59, 66]

Vegetation Sentinel-2 10 m

NDWI1 Normalized difference water index ((NIR–SWIR1) / (NIR + SWIR1)); sensitive to soil and

vegetation moisture [62]

Vegetation Sentinel-2 10 m; 20 m

VCF Vegetation continuous fields; percent tree cover (%) [67] Vegetation MODIS 250 m

PALSAR

HVHH

PALSAR HV/HH polarization index; indicative of forest structure [61] Vegetation ALOS

PALSAR

25 m

BSI Bare soil index ((SWIR1 + RED)–(NIR + BLUE) / (SWIR1 + RED) + (NIR + BLUE)); sensitive to

bare soil areas and vegetated areas with different background [68]

Soil Sentinel-2 10 m; 20 m

Uncorrelated predictors finally selected to model bryophyte distribution are shown in bold.

https://doi.org/10.1371/journal.pone.0260543.t001
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ESMs were generated in R v.3.6.3 [74] using the biomod2 package v.3.4.6 [75]. As we used

presence-only data, 10,000 background points were randomly generated within the study area

and used as pseudo-absences for all species. Presences and pseudo-absences were weighted

equally for training the ESMs. The pairwise combinations of our 5 final predictors resulted in

10 candidate bivariate models per modeling technique (Maxent and RF) for each species. We

used default settings of the biomod2 package for computing Maxent and RF models. Predictive

performance of each bivariate model was assessed via 10-fold cross-validation procedure,

using 80% of the data to train the model and 20% for its validation. While we acknowledge

that validation would be optimal using an external dataset, this is hardly available when dealing

with rare species. The Somers’ D metric was used to identify and select bivariate models better

than random (Somers’ D score > 0, i.e. AUC> 0.5). Maxent-ESMs and RF-ESMs were then

performed using a weighted mean of predicted probabilities from their corresponding retained

bivariate models based on their Somers’ D scores [20, 28]. The contribution of each bivariate

model was thus proportional to its predictive accuracy. The final ESMs selected for each spe-

cies was generated by weighted averaging predictions from Maxent-ESMs and RF-ESMs. Pre-

dictive performance of final ESMs was evaluated using the area under the receiver operating

characteristic curve (AUC), and the true skills statistic (TSS). AUC is not dependent on a

threshold and ranges from 0.5 for an uninformative model to 1 for a perfect fit model, while

TSS ranges from -1 to 1 and was chosen instead of kappa because it is not affected by preva-

lence [76]. Since AUC and TSS values were highly correlated (Pearson r> 0.95), the results

and discussion on models’ overall predictive performance will be based on the AUC statistics,

following [28] and [76]. The statistic sensitivity was also calculated, which allows the assess-

ment of the proportion of actual presences correctly predicted [77]. We computed sensitivity

for those species whose final ESMs were better than random (AUC > 0.5). Besides of the con-

tinuous models (values 0–1000), we generate binary models (presence/absence) using the max-

imum training sensitivity plus specificity threshold, or TSS optimum (Fig 2; predictive

mapping of the distribution of the target species is available in [78]). Finally, we mapped the

richness patterns (species number) for total rare bryophyte species, as well as for rare species

Fig 2. Example of (A) continuous and (B) binary predictive mapping of the moss Trematodon ambiguus (Hedw.) Hornsch. for the study area at 30 m spatial resolution.

https://doi.org/10.1371/journal.pone.0260543.g002
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by guild, by stacking their binary predictions (presence/absence). Missing values associated

with the predictions of the three species that included the VCF predictor in their final models

were classified as absences before richness computation. We then compared the spatial rich-

ness patterns obtained here for rare species with those obtained recently for overall bryophyte

species in a smaller region (28,436 km2) but fully included in our study area at the same spatial

resolution (30 m) [18]. The comparison was performed for bryophytes as a whole (i.e. rare

bryophyte richness versus overall bryophyte richness), and between homologous bryophyte

guild pairs. This spatial correspondence analysis was carried out using Lee’s L statistic [79]

through the lee() function from the spdep package v.1.1–5. [80]. Lee’s L statistic, in contrast to

non-spatial bivariate association measures such as Pearson’s correlation coefficient, integrates

and corrects for the spatial autocorrelation of each variable when computing the pixel-to-pixel

spatial correlation [79]. Due to the high computational requirements to carry out this analysis,

the 30 m pixels were previously averaged into 300 m pixels through the aggregate() function of

the raster package v.3.4–5 [81]. Outputs of lee() function were centered at 0 and re-scaled to -1

and 1 to facilitate the interpretation of the results by subtracting the overall mean and dividing

by the maximum value [82]. We then calculated, for each pixel, the quantile associated with its

Lee’s L value using a Monte Carlo test with 999 simulations in order to identify significant pos-

itive (quantile >0.975) or negative (quantile <0.025) spatial associations.

2.4 Species traits characterization

Species traits can influence the accuracy and therefore the ability of SDMs to predict their

occurrence [83, 84]. We evaluated the relationship between ESMs’ model performance, as

measured by AUC, and rare species traits, namely substrate preference (six categories), repro-

duction mode (three categories), and spore size (maximum and minimum; S1 Table in S1

Appendix), as well as their interactions. This assessment was performed using a multiple linear

regression through the lm() function from the stats package v.3.6.3 [74]. Relationships were

considered significant at α = 0.05.

3. Results

3.1 ESMs’ predictive performance versus number of occurrences and

bryophyte guilds

RS-based ESMs provided poor to excellent predictive accuracy for 38 of the 52 modeled rare

species, with AUC values ranging from 0.551 to 0.979 and a mean AUC (mAUC) of

0.795 ± 0.132. Of these 38 species, 19 species were predicted with AUC values greater than 0.8,

confirming our hypothesis that high ESMs-based prediction accuracy can be achieved for rare

bryophyte species despite their low number of occurrences (<30). Sensitivity for these 38 spe-

cies ranged from 0.8 to 1 with an average of 0.959 ± 0.063, indicating that actual presences

were usually accurately predicted. Only predictions for 14 species were not better than random

(AUC� 0.5). Regarding our first specific objective, a negative correlation (Pearson r = -0.34)

was found between the number of occurrences of the 52 target species and the predictive accu-

racy as measured by AUC. This negative correlation was also observed at the guild level

(Fig 3).

To accomplish our second specific objective, we grouped the 52 modeled species by guild

and found that predictive accuracy was similar for mosses (mAUC = 0. 715 ± 0.167) and

liverworts (mAUC = 0.735 ± 0.185), and lower for sphagna (0.663 ± 0.208). No significant

relationships were found between ESMs’ performance and rare species traits (or their

interactions).
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3.2 Richness patterns of rare bryophyte species

Predictive mapping of richness patterns of total rare bryophyte species and rare species at the

guild level (mosses, liverworts and sphagna) are presented in Fig 4. Predicted richness values

ranged from 0 to 30, 21, 9, and 3 species, respectively. The richness pattern of total rare bryo-

phytes was largely structured by the similar richness patterns observed for rare mosses and liv-

erworts, with high richness values mostly found towards the center and southwest of the study

area. Conversely, rare sphagna species were concentrated in very specific areas mainly towards

the north of the study area with two additional spots towards the southeast.

Regarding our third specific objective, the Lee’s L statistic identified areas of significant pos-

itive and negative spatial association between rare and overall species richness for the four

homologous bryophyte group pairs (Fig 5). Large areas in which the spatial association

between the two types of richness was not significant were also consistently observed across

pairs.

4. Discussion

Boreal regions are large areas lacking sharp environmental contrasts, as shown by the low vari-

ability of our predictors (Fig 6), and thus a habitat where obtaining high-performance SDMs

can be challenging. Despite this, our ESMs provided reasonably accurate predictions for rare

bryophytes using only 5 uncorrelated RS predictors. Specifically, RS-based ESMs provided

poor to excellent predictive accuracy for 73% of the target species despite their very low num-

ber of occurrences. Indeed, 16 species with less than 10 occurrences showed an AUC> 0.7. In

addition, the computation of the metric sensitivity allowed us to independently show the abil-

ity of our ESMs to accurately predict known presences, with high values for the 38 species

modeled better than random. Therefore, the combination of RS data at 30 m spatial resolution

and ESMs proved to be a powerful approach to predict the distribution of rare bryophyte spe-

cies in Eastern Canadian boreal forests.

The negative relationship found between models’ predictive performance and the number

of occurrences of all bryophytes, as well as at the guild level (Fig 3), illustrated the suitability of

ESMs for predicting the distribution of very rare bryophyte species regardless of guild. This

result agrees with those obtained in [28], who showed a higher predictive performance of

ESMs for the rarest vascular plants. Regarding bryophyte species by guild, we consider that the

Fig 3. AUC values versus number of occurrences (Overall Pearson r = -0.34). Bryophyte guilds are indicated.

https://doi.org/10.1371/journal.pone.0260543.g003
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lower overall predictive performance obtained for sphagna species compared to that of mosses

and liverworts may be an artifact resulting from the low number of rare sphagna species mod-

eled (n = 5). In fact, the occurrences of two of these five sphagna species were successfully pre-

dicted (AUC values of 0.76 and 0.97). However, we do not exclude the possibility that some

ecologically meaningful variables that describe the habitat of these species, such as drainage

class [18], were missing from our models.

In general, our results show that the development of SDMs from RS data allows not only to

make predictions of rare species distribution at spatial scales relevant to ecological planning,

but also to do so at a level of detail (30 m resolution) that can not be achieved using the tradi-

tionally used climatic variables at coarse resolutions (� 1 km). This is particularly important

for inconspicuous species such as bryophytes, which interact with their environment at more

local scales [85–87] and for which the use of coarse resolutions can result in a critical lose of

information. Likewise, SDMs developed at coarse resolutions can overestimate species

Fig 4. Mapping of (A) total rare bryophyte, (B) rare moss, (C) rare liverwort, and (D) rare sphagna richness (species number) for the study area at 30 m resolution.

Computed from stacked predicted rare species distributions.

https://doi.org/10.1371/journal.pone.0260543.g004
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distribution [88] and greatly limits the practical utility of derived predictions to subsequently

detect species in the field [89]. On the other hand, the wide variety of potentially relevant pre-

dictors for rare plants that can be derived from RS (related to vegetation, humidity, forest

structure, topography, etc.) [90], can allow a more realistic approach to the environment-spe-

cies relationship, which can be particularly useful for species with complex ecological niches.

Thus, our methodology can play an important role in filling existing knowledge gaps on bryo-

phyte distribution ranges, as well as their ecological preferences, in largely unexplored regions

such as boreal forests [36].

The Identification of diversity hotspots has been one of the most used criteria in biodiver-

sity conservation planning in order to locate areas of biological and ecological interest that

should be prioritized by decision makers [91–93]. Conservation measures targeting these areas

will be more effective if multiple components of biodiversity are spatially concentrated [92, 94,

95]. Specifically, both species richness and the presence of rare species have frequently been

cited as the main criteria to select areas for conservation [96, 97], while many rare species

Fig 5. Correlation between rare and overall (A) bryophyte, (B) moss, (C) liverwort, and (D) sphagna species richness as measured by re-scaled Lee’s L statistic for the

study area of [18] at 300 m spatial resolution. "Positive" (blue) and "Negative"(red) indicate significant positive (quantile>0.975) and negative (quantile<0.025) Lee’s L

values derived from Monte Carlo test. Continuous values of the re-scaled Lee’s L statistic are shown in S1 Fig in S1 Appendix.

https://doi.org/10.1371/journal.pone.0260543.g005
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might not be represented in species-rich areas [94]. Our study however revealed a spatial con-

cordance between the richness of overall bryophyte species and that of their rare taxa in differ-

ent regions of the study area (Fig 5). While more bryophyte biodiversity components could be

subsequently evaluated, this result have important implications for Canadian conservation

planning. We consider that the identification of areas harboring high level of both overall and

rare bryophyte species diversity, as well as the development of informative tools that serve

these purposes, is a significant and necessary step to promote the systematic integration of

these species into conservation plans and programs [91]. Likewise, conservation planning tar-

geting bryophytes and other inconspicuous taxa could further benefit from individual SDMs-

based predictions as a basis for assessing their representation in nature reserve networks [98],

to quantify the impact of land use changes on their distribution ranges [99], to inform assess-

ments of their conservation status [100, 101], and to identify suitable areas for their recovery

or reintroduction [102].

5. Conclusions

Our work demonstrates the ability for RS data to characterize the habitat of rare bryophyte

species and predict their distribution patterns across the landscape. This study also reaffirms

the effectiveness of ESMs in estimating rare plant distributions [20, 28], and highlights, for the

first time, the suitability of this modeling approach for making predictions of inconspicuous

rare species. We consider that our methods and results provide an important advance in the

application of techniques focused on the study of bryophytes, with potential valuable applica-

tions for their management and conservation. In fact, although our study focuses on a particu-

lar taxonomic group, the combined use of ESMs and RS would lend useful results for other

overlooked inconspicuous taxa lacking information on distribution, which would facilitate

their integration in systematic conservation planning.
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(XLSX)

Fig 6. Boxplots of standardized uncorrelated predictors used for modeling. See Table 1 for predictor descriptions.
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Formal analysis: Carlos Cerrejón, Jesús Muñoz.
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