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Abstract: In todays’ world, there is an increasing number of mature oil fields every year, a phe-
nomenon that is leading to the development of more elegant enhanced oil recovery (EOR) technolo-
gies that are potentially effective for reservoir profile modification. The technology of conformance
control using crosslinked microgels is one the newest trends that is gaining momentum every year.
This is due to the simplicity of the treatment process and its management, as well as the guaranteed
effect in the case of the correct well candidate selection. We identified the following varieties of
microgels: microspheres, thermo- and pH-responsible microgels, thin fracture of preformed particle
gels, colloidal dispersed gels. In this publication, we try to combine the available chemical aspects
of microgel production with the practical features of their application at oil production facilities.
The purpose of this publication is to gather available information about microgels (synthesis method,
monomers) and to explore world experience in microgel application for enhanced oil recovery. This
article will be of great benefit to specialists engaged in polymer technologies at the initial stage of
microgel development.

Keywords: microgels; preformed particle gels; enhanced oil recovery; reservoir conformance control;
pH-sensitive microgels; temperature sensitive microgels

1. Introduction

It has been estimated that an average of 210 million barrels of water and 75 million
barrels of oil are produced worldwide every day. An excessive amount of water leads to
undesirable consequences, including corrosion, scale formation, and a decrease in well
efficiency [1]. The promising method for reducing the water cut of production oil well and
decreasing residual oil saturation is the application of polyacrylamide gels.

Polymer gels are widely used in mature reservoirs due to their excellent profile control
ability, easy preparation, and disproportionate permeability reduction property [2]. A new
trend in gel preparation for EOR is the synthesis of preformed particle gels (PPG) having
significant potential for conformance control [3]. PPGs do not have the disadvantages of
other in-situ gels such as gelation time, insufficient strength in the presence of formation
water [4], gel structure deformation due to shear degradation and changing of gelant
composition induced by contact with reservoir minerals and fluids [5].

PPG is a macrogel with a particle size of more than 200 microns in dry form. These gels
swell several times in water, and are injected directly into the well. Due to its viscoelastic
properties, the gel’s particles are able to penetrate the high permeable layers [6]. However,
the effectiveness of PPG macrogel use is limited by the high permeability of the reservoir,
they are mainly effective at operational facilities with a permeability of 500 mD or more.
To increase the applicability of PPG-based technologies in the oil industry, it is relevant to
search for ways to use particles of a smaller granulometric composition. In this regard, a
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promising scientific field involves the development of reagents based on pre-cross-linked
microgels having a particle size of up to 100 microns. From international experience,
microgel application is effective in oil fields with a permeability starting from 10 mD. In this
review article, we gather the available information on microgels developed and applied
for EOR.

2. Methodology

In today’s world, due to machine learning [7] and other modern data processing tech-
nologies, multiple methods for search and systematization of relevant information for re-
view research [8–10] now exist. One prospective approach is the PICO model. This method
is used most commonly in health sciences, nursing, and medicine, but can also be adapted
for application in other areas. The PICO recognition model consists of the following
elements: P—problem, I—intervention, C—comparison, O—outcome [7,11]. It allows
researchers to organize their work, break the topic into its key components, and make the
article more precise. In our case, we will use the PICO model for research.

This article was organized based on the PICO technique. The first part of the article
describes the problem of reservoirs that have been in operation for a long time. We consider
this issue in connection with the problems experienced in Perm Krai, the territory of our
research interest. The second part of the article is dedicated to microgels used for oil
reservoir conformance control. We gather information on developed and in-development
microgels. In the third part, we summarize the chemical approaches to microgel synthesis
The article may be interesting for researchers at the initial stage of development of microgels
for reservoir conformance control.

A search using the keywords “microgels for enhanced oil recovery” gives 942 articles
published on the Science Direct website between 1998 and 2021. In the past year, the
number of published articles has increased by more than 1.5 times, with 91 articles for
2020 and 154 for 2021. The graph in Figure 1 shows a constant increase in the number
of articles, especially for the past year, which speaks to increasing interest in the topic of
microgel application for EOR. The quality of work is guaranteed by the research data taken
from the databases of Science Direct, ACS Publications, One Petro, etc. The main keywords
used are “microgels”, “microgels for enhanced oil recovery”, and “preformed particle gels”.
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2.1. Problem Description

The number of mature oil fields is constantly increasing [12,13]. One effective instru-
ment for maintaining the production levels of these oil fields is by applying oil recovery
enhancement methods, particularly reservoir conformance control methods [14,15]. One of
the cheapest and environmentally friendly [16] reagents that is used for this is polyacry-
lamide (PAM), which costs about USD 2.00–4.00 per kg [17]. There are several approaches
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for PAM application in mature reservoirs: polymer flooding [18–20], bulk gels [21,22],
preformed particle gels [17,23], and their combinations. The following comprehensive
reviews are dedicated to polymer gels systems, including preformed particle gels and its
application for enhanced oil recovery [17,24–26].

Preformed particle gels (PPG) were developed in 1996 by PetroChina [15,24]. PPGs are
hydrogels synthesized by free-radical polymerization of acrylamide, cross-linker (usually
N,N′-methylenebisacrylamide (BIS)), and other additives [27]. A PPG suspension prepared
using any available water is injected into the reservoir. PPGs are able to swell up to
200 times in water [17]. The swelling particles of the hydrogel penetrate to the highly
permeable fractured zones and block them. This helps redistribute injected water flows
to the lowly-permeable oil-saturated interlayers of the reservoir. PPG technology allows
reducing the water cut of the produced wells and increase the oil-well exploitation period.

PPG technology has been intensively developed in the last two decades. There are
now more than 10,000 successful cases of its application [28]. It has allowed to overcome
many difficulties and drawbacks of other PAM-application-based methods [25]. Experts
developing this technology admit the following advantages:

• high selectivity: particles preferentially enter fractures and fracture-like channels and
are unable to penetrate to low permeable oil saturated zones;

• simplicity of treatment: the suspension is usually prepared using only water (any
available water with a wide salt concentration range is acceptable) and PPG; particles
are easily dispersed in water;

• PPG properties: particles can be assigned their strength and size during synthesis
on the surface; PPG particles have predictable properties in reservoir conditions
due to their three-dimensional structure, while hydrogel particles are stable up to
120 ◦C [15,18,28,29].

Depending on size, PPGs can be divided into macrogels (more than 100 µm to mm)
and microgels (less than 100 µm) [17]. The different approaches to microgel and macrogel
synthesis are presented in Figure 2. Macrogels and microgels have different application
conditions due to their difference in size. Macrogels are used for reservoir conformance
control in the formation near the wellbore, while microgels are designed for the highly-
permeable zones deep in the reservoir (see Figure 3).
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It is known that the effectiveness of PPG macrogels is limited by the high permeability
of the reservoir. As laboratory studies and pilot projects show, macrogels are predominantly
effective at production facilities with a permeability of 500 mD or more [17,30]. To increase
the applicability of PPG technologies in local oil fields, it is important to search for ways to
use particles with a smaller particle size distribution. In this regard, a promising scientific
area involves the development of microgels with a particle size of up to 100 microns.
International experience shows that microgel application is effective in oil fields with a
permeability starting from 10 mD [31].

The authors of this article are engaged in extensive research on PPG technology, par-
ticularly for application in the Volgo-Ural province. Oilfields have been under continuous
development in the area for more than 50 years now. Extended oilfield exploitation leads
to an increase in the water content in well production. We obtained a PPG adapted to the
reservoir conditions of the Volga-Ural oil-and-gas province characterized by a low oil reser-
voir temperature (T < 30 ◦C) and a high mineralization of formation water (200–230 g/cm3).
The PPG was synthesized in a concentrated solution of polyacrylamide with the addition
of acrylic acid. During polymerization, the polymer chains cross-linked by imidization
reactions between –COOH and –NH2 groups. PPG obtained using this method has a
salt-water absorption capacity of 35–45 g depending on the salt concentration [32].

Analysis of the characteristics of 600 fields in the Perm Region, which can be considered
a sample area for the Volga-Ural region, shows that only about 10% of production facilities
have a permeability of more than 500 mD. With a decrease in permeability to 50 mD, the
number of facilities sharply increases to 70% of the total fund. Therefore, the development
of microgel compositions multiplies the number of potential facilities for the application.
In this regard, a promising scientific field is the development of reagents based on pre-
crosslinked microgels with a swollen particle size of less than 100 µm.

In this publication, we tried to combine the available chemical aspects of micro-
gel production with the practical features of their application at oil production facilities.
The purpose of this publication is to study the trends in microgel development (synthesis
method, monomers) and explore world experience in microgel application for enhanced oil
recovery. This article will be of great benefit to experts engaged in polymer technologies at
the initial stage of PPG development.

2.2. Microgels for Reservoir Conformance Control

Microgels are particles of cross-linked polymers (gels) 0.1–100 µm in size (according
to the IUPAC Gold book) having a three-dimensional structure and capable of swelling in a
solvent [33]. The swelling process is caused by conformational changes of the cross-linked
polymer network [34]. The interest in microgels is due to their unique properties, as they
combine the properties of three groups of compounds: colloidal substances, polymers,
and surfactants (see Figure 4) by compiling the unique properties of each class, including
structural integrity, functionalization, softness, deformability, permeability, and others [35].
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The most important characteristic of microgels is their average crosslink density
that determines parameters such as the swelling ability (absorption capacity). Microgel
swelling in an aqueous medium is determined by the balance between the solvent’s entropy,
the energy of its interaction with the polymer chain, and the rigidity of the polymer
chain [36]. The swelling capacity can also be improved by incorporating different functional
groups into the microgel structure [37]. However, there are many factors affecting microgel
absorption capacity, particularly temperature, ionic strength of the continuous phase, and
pH. These factors can be used to control microgel size and depth of penetration into the
reservoir. Several microgels with different properties are applied for EOR. In this part of
the article, we will consider each of them.

2.2.1. Colloidal Dispersed Gels (CDG)

CDG are microgels formed in-situ. Gel aggregates form in a lowly-concentrated
solution of partially hydrolyzed PAM with a high molecular weight (more than 22 million
Da) and a cross-linker (usually aluminum citrate of chrome citrate) [17,27]. The PAM
concentration must be below the critical overlap concentration of the polymer, usually
100–1200 ppm. At this concentration, the polymer chains undergo intramolecular cross-
linking, forming polymer coils. The ratio of the polymer to crosslinker concentrations
vary from 20:1 to 80:1 [35]. The CDG globules formed may reach 1–150 nm in size [38].
The end of the CDG globules formation process is identified by a decrease in the solution’s
viscosity [39]. CDG gels have been tested successfully in the fields of Argentina, China, and
the United States [40–42]. An analysis of 31 cases of pilot tests is presented in the paper [43],
the authors of which summarize the main parameters for implementing the technology on
the well. The temperature of reservoirs where CDG was applied was 25–100 ◦C, reservoir
permeability varied from 10 to 4200 µm2, and the oil viscosity of the treated deposits was
5–30 cPs.

During CDG injection, it is important to avoid any sudden pressure surges that could
lead to gel transfer into the production well. The injection pressure can be controlled using
the following parameters: injection rate, gel concentration, and polymer-to-crosslinker
concentration ratio. In cases where the reservoir has the pronounced heterogeneity, CDG
treatment is carried out after preliminary in-situ gel injection [44]. Depending on the
injection pressure, CDG treatment can be changed in stages. In cases where the initial
permeability of the formation is high, a high-concentration gel slurry is injected; after
increasing the injection pressure, the PAM concentration is reduced [44].

CDGs are in-situ gels, i.e., microgel globule formation takes place inside the reser-
voir. The CDG technology requires low concentrations of polymer and crosslinker having
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inherent drawbacks of poor water production control. Moreover, factors such as shear
degradation during injection, dilution by reservoir water, and interaction with minerals
leads to a decrease in effective polymer concentration [45]. All these factors in a case of CDG
application could lead to weak reservoir conformance control. The microgels considered
further in this article have a significant difference in that they are synthesized before being
injected into the dedicated equipment.

2.2.2. Dispersed Particle Gel (DPG)

DPGs are uniform spherical particles with the size adjusted from nm to mm (see
Figure 5). The DPG receiving process occurs in two stages. The first is bulk gel formation.
Here, gel strength and thermostability can be adjusted using the PAM with the suitable
degree of hydrolyzation and a suitable cross-linker. The second stage is gel cutting by
imposing high-speed shearing forces for several minutes [46]. A peristaltic pump [47] or
colloid mill [46] can be used for the shearing. In the paper [46], research on DPG made
of PAM and phenolic resin is described. The preparation procedure conditions are as
follows: the first stage involves the formation of bulk gel at a temperature 75 ◦C. Thereafter,
the gel is mixed with water (in similar proportions) and grinded using a colloid mill
(3000 rpm, 3 min) to produce uniform particles 2.5 µm in size. In the article [38], the
author used chromium acetate as a cross-linker. The results of experiments showed that
Cr-DPG demonstrates good salinity resistance at 30 ◦C. The experiment for determining
the thermostability showed that DPG size distribution dramatically changes after 15 days
at 90 ◦C. The size of the lowest particles was halved (from 186.6 nm to 400 nm), and that of
the highest particles increased by more than 5 times (from 796.2 nm to 4450 nm). Lab sand
pack core flooding experiments on samples with a permeability ranging from 0.47 µm2

to 8.89 µm2 showed that DPG has good injectivity, which makes it an effective in-depth
plugging agent.
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In the article [49], a novel strengthened dispersed particle gel (SDPG) is presented.
Silica nanoparticles (SiO2) were used as reinforced material to improve resistance to the
high temperatures and high-salt content in the reservoir water. A non-ionic PAM of
molecular weight 9,650,000 g/mol and a phenolic resin crosslinker were used. The SDPG
obtained demonstrated their stability at 110 ◦C and a total salinity of about 213 g/L [50].
Several research describe the effective combination of DPG with surfactants [45,49,50]. The
synergetic effect of the combination was confirmed during core flooding tests. The current
research of the team of scientists who developed DPG focuses on self-growing hydrogel
particles capable of growing after migration to deep fractures [51].
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2.2.3. Preformed Micro-Size Particle Gel

As mentioned above, PPG is a particle gel obtained from drying and grinding of the
bulk gel [52]. These gels have a three-dimensional structure that forms during synthesis by
cross-linking polymer chains with covalent polar bonds [30]. Preformed particle gels are
polyacrylamide-based gels that absorb water and become soft and elastic. Their properties
allow particles to penetrate into highly-permeable intervals of the formation. PPGs can
be applied both on the fracture and on sandpack reservoirs [52–54]. Depending on their
structures, PPGs have different mechanical properties that determine particle penetration
into the permeable interlayers of rock. Weak PPGs have a better penetration capability
and form a permeable crust on the surface of the lowly-permeable interlayer [55]. PPGs
block the fractures partially because they are able to form channels for water passage.
It is known that weak PPGs create internal channels more easily than strong gels [56].
Under harsh conditions (high salinity and temperature), ordinary PPGs shrink as a result
of amide group hydrolysis and crosslinking by polyvalent metal from the water [57,58].
Nanocomposite PPGs with a superior stability and improved mechanical properties are
presented in the paper [57]. The modified PPGs contained an equimolar ratio of the
acrylamide, vinylpyrrolidone, 2-acrylamido-2-methylpropane sulfonic sodium salt; BIS
as a crosslinker. The mechanical properties of the PPGs were enhanced by adding a
dispersion of modified bentonite (MB) to the formulation. The nanocomposite PPS obtained
demonstrated stability over 3 months at 130 ◦C. The swelling capacity in 25% total dissolved
solids (TDS) solution was 9.53 g/g and that in fresh water 53.43 g/g [57].

The authors of the article [59] studied the matching factor of PPG in coreflooding
experiments. Matching factor is the ratio of the PPG’s average diameter to the average
pore-throat diameter. PPGs with a swelling particle average size of 9.1 µm were used in
the experiments. Several cemented quartz cores were used with different permeability
characteristics. The plugging behaviors of the PPG particles were summarized as three
basic patterns: complete plugging (core permeability 26.26 mD); plugging-passing through
in a deformation or broken state–deep migration (strong plugging in test on core with
permeability 46.63 mD; general plugging in cores with 180.34 mD and 240.77 mD, weak
plugging in core with 327.74 mD); inefficient plugging—smoothly passing through—stable
flow (core permeability of 430.93, 633.29, and 857.86 mD).

Field trials of micro-sized PPG particles are represented in the paper [60]. Microgel
size is described as, for example, 28 pm, which means the particles size is less than 28 µm.
Particles were obtained from the grinding of bulk gel pieces. Microgel absorption capability
at 125 ◦C in fresh water is about 23, and decreases to 6.5–7.0 when the brine TDS is more that
5%. Microgels are stable during at least one year at a temperature of 125 ◦C. For the trial
treatment, a mature oil field in Northwestern China was chosen. The basic reservoir charac-
teristics include a severe vertical and lateral heterogeneity and an average permeability of
230 md (max permeability was about 1500 md, water-cut of production wells was 95%).
Treatment lasted 10 months, 169 tonnes of microgel were injected. The post-treatment
effect lasted 18 months, and the quantity of additional oil was about 29.6 thousand tonnes,
i.e., 175 tonnes of oil per 1 tonne microgel particles.

2.2.4. SMG Microgels (Small Microgels)

SMG Microgels (Small Microgels) are a great example of acrylamide-based covalent
cross-linked polymeric gels [31,61–63]. SMG are nontoxic [62]. Particle size varies between
0.3 and 2 µm. Their rigidity depends on the chemical composition, particularly of the
cross-linker concentration. The three-dimensional structure gives the particles mechanical,
thermal, and chemical stability. High shear-rate treatment (15,000 s−1) experiments have
demonstrated stable viscosity for 16 min. SMGs are almost two times stable in brine
containing H2S than in an ordinary PAM solution of a similar concentration. Thermal
stability tests at 120 ◦C have demonstrated stable viscosity over three months. First, SMGs
were considered for water shut off [64]; however, lab experiments on the SiC granular pack
and natural sandstones demonstrated that SMGs have a great in-depth propagation. It has
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also been established that due to capillary forces, SMGs may be absorbed on pore walls
forming thick layers, leading to water permeability reduction. The authors note that in
these conditions, oil permeability remains unaffected. As conventional polymers, SMGs
behave in the same way as relative permeability modifiers (RPM) [61]. The thickness of
the absorbed layer can be regulated by varying the injected flow rate, microgel size, and
concentration [31]. The paper [62] presents studies on how the high salinity of water affect
SMG properties. These experiments showed satisfactory dissolution of microgels in brine
with a salinity 215 g/L of TDS (sodium and calcium chloride). Layers adsorbing microgels
tend to swell in low-salinity solutions and shrink when the salinity increases due to a charge
screen on the gel particles surface. During coreflooding tests, the permeability reduction
was fixed for a wide range of SMG suspension brine concentrations (20–108 g/L of TDS).
When testing a suspension with a high salinity (200 g/L of sodium chloride and 15 g/L of
calcium chloride), the post-treatment core permeability was found to be less. However, post-
flush experiments allowed observing the hysteresis effect of microgel swelling behavior [62].
The first industrial case of successful SMG application was in 2005 for the treatment of
an underground gas-reservoir storage [61,62]. In the paper [62], the authors present the
first conformance control treatment using SMG. The chosen test well was an injection
well surrounded by 7 producers. The basic reservoir had the following characteristic:
permeability varying from 10–1000 mD (average around 200 mD), reservoir temperature
48 ◦C and reservoir water salinity 8000 ppm of TDS. A microgel suspension having a
concentration of 500 ppm (1500 ppm of commercial solution) was injected over three
months for a total volume of 9000 m3 (0.1 pore volume). Although the treatment pressure
increased, it remained below the maximum authorized pressure. One year after treatment,
the amount of additional oil was 1570 m3, and water production had been reduced by
23,830 m3 [31]. Two years later, the volume of additional oil was still increasing, reaching
5440 m3 after 26 months. 2.5 kg of microgel was injected for each tonne of additional
oil [63].

2.2.5. Microspheres

The authors of the paper [65] synthesized microgels by free-radical polymerization
in inverse emulsion using diesel oil in a continuous phase. The chemical structure of the
microspheres is formed by polyacrylamide cross-linked by BIS; a mixture of Tween-60
(polyethylene glycol sorbitan monostearate) and Span-80 (sorbitan monooleate) was used as
an emulsifier. The absorption capability was determined by changing the particle diameter:
the average diameter of the original macrogels was 50 nm, and after swelling, it reached
several µm. The authors discovered that the emulsifiers used during the synthesis in
combination with an additional surfactant or NaOH sharply reduce the oil/water interfacial
tension during microsphere injection, leading to increasing residual and remaining oil
saturation. Core flooding test on sandpacks models showed that microgel injection gives
about 20% of additional oil. It was proved that microspheres have a great potential in EOR,
particularly in reservoir profile control.

Other examples of microspheres based on polyacrylamide and synthesized using
the invers emulsion method are represented by different groups of researchers in the
papers [66–69]. The BIS crosslinked elastic microspheres described in [66] swell in 3 days.
The average microsphere diameter is 12.05 µm, the size of the swelling particle may
increase to 25 µm depending on the temperature. In the salt solution (15–20 g/L), the size
of particles is about 16–17 µm. Core flooding experiments on a sand pack demonstrated
that the ideal matching factor (microsphere diameter/pore size ratio) is 1.35–1.55. At this
ratio of microsphere diameter to pore size, gel particles are able to move while embedded
deep in the sand pack. Authors of the article [68] presented a visualization of the process of
pore filling by microspheres. A micro-visual model with a pore-throat size of 200–1000 µm
was created. After microsphere dispersion pumping, some microspheres were accumulated
and squeezed in the pore throat of the model, being used for plugging (see Figure 6). This
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observation proves that microgels are capable of changing the direction of the injected
water to a reservoir’s oil-bearing interval [67].
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Authors of the article [67] describe microsphere synthesis using the invers emulsion
method; however, the difference is in the absence of any cross-linker in the co-monomers
mixture (only acrylamide and acrylic acid). The average diameter of the microspheres
obtained was 5 µm (Figure 5). After swelling, the particle size increased 5 times, which
is more than with BIS cross-linked microgels described in the article [66]. Core flooding
tests on the sand pack also proved the ability to redistribute injected water flows in the low
permeable zones of the reservoir.

To adapt microsphere properties to the reservoir conditions, different types of mi-
crospheres with different viscoelastic properties were developed. The teams of authors
of the papers [70–72] presented low elastic polymer microspheres given names such as
L-EPM (i.e.) also synthesized using the invers emulsion method. The co-monomers of mi-
crospheres are acrylamide, acrylic acid, 2-acrylamido-2-metilpropansulfonic acid (AMPS),
and BIS. Aviation kerosene was used as the continuous medium. The emulsifier was made
from a mixture of Span-80 and Tween-60. The authors consider one important characteristic
of microgels responsible for particle deformability and injection ability as storage modulus.
The storage modulus G’ of L-EPM is 23.6 Pa. Experiments for determining microsphere
behavior in the core pore space are presented in the paper [73]. For the test, sandstone
cores with different porosities and pore sizes were taken. Depending on the microsphere-
diameter-to-pore-size ratio, the following mechanisms of L-EPM penetration in the core
were identified: (1) direct passing through the pore throat; (2) microsphere adhesion in the
pores; (3) dehydration, stretching, extrusion, and retention to original form; (4) squeezing
and breakage into pieces under pressure and its forward migration; (5) microspheres stack
at the injection end of the sand pack, forming an external filter cake [48]. The coreflooding
experiments showed that L-EPMs have a high selective profile control performance in
remote heterogeneous reservoir zones [71].

Microsphere modifications are micron-size silica-reinforced polymer microspheres
synthesized using the above-mentioned inverse suspension polymerization with the addi-
tion of 3-(methacrylyloxy)-propyl-trimethoxysilane (MPS) and silicon dioxide (nano sized)
(authors call these microspheres such as PNSCMs) [74–76]. By adjusting the content of
MPS-modified SiO2, the microsphere swelling ratio can be regulated well and the sensitivity
of the swelling behavior to the environment is weakened. With increasing SiO2 loading, the
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microsphere mechanical stability, thermal stability, viscoelasticity, and dispersion stability
were correspondingly improved [74]. PNSCM particle sizes vary between 10 and 100 µm.
The swelling capability of SO2-modified microspheres was 35.5 g/g (for comparing the
swelling capability of conventional microspheres was 47 g/g). Temperature has less ef-
fect on the swelling capability of silica-reinforced microspheres than that of conventional
ones. This can be attributed to the introduction of modified SiO2. The maximum degra-
dation temperature of silica-reinforced polymer microspheres was 430 ◦C (11 ◦C better
than conventional microgels). In the article [76], the results of sand pack core flooding
tests are represented. The main parameters of the experiment are as follows: the initial
permeability of the core was 2.17 µm2, porosity about 30%, the resulting permeability
decreases to 0.35 µm2. SO2-modified microspheres demonstrated excellent plugging prop-
erties in the micron-size pore throat, and the authors recommend it for deep conformance
control application.

To detect microspheres in the reservoir-produced fluid, a new type of microspheres
that fluoresce under ultraviolet irradiation was synthesized using an inverse suspension
polymerization method [77–80]. The following fluorescent co-monomers were used for
microgel synthesis: acryloyloxy coumarin [77,80], allyl-rhodamine B (RhB) [77,78], oxyfluo-
rescein [77] (see Figure 7, Table 1). Since the concentration of fluorescent monomers was
quite small, there were no significant changes in the initial particle size and the swelling
property of the polymer microspheres.
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(B) (co-monomer—allyl-rhodamine B), (C) (co-monomer—oxyfluorescein): under the uv light;
(A1–C1): under the ordinary light) [77].

Table 1. Comparison of PPG and DPG synthesis.

Comparison Point PPG DPG

Synthesis feature
(1) synthesis from the monomers and crosslinker mixture;
(2) initiation of free radical reaction of polymerization;
(3) drying and cutting;

(1) gel formation from solution of partially
hydrolyzed PAM and crosslinker;

(2) heating (temperature depends on type
of crosslinker);

(3) mechanical cutting;

Commercial product Dry powder Suspension in water

Particle size 30 µm and higher 0.4–2.5 µm

Swelling process Particles swell during suspension preparation of the oil field Particles swell in the product
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2.2.6. Thermal-Activated Microgels. Brightwater™ System (or “Popping” Microgel)

These microgels were developed by a consortium of BP, Chevron, Texaco, Mobil and
Nalco Exxon Energy Services representatives. The idea of thermal-activated microgels is
based on the fact that water injected into an oil reservoir is often cooler than the reservoir
rock, which leads to formation of a temperature front somewhere between injection and
the production wells [81]. Brightwater microgels are synthesized using the invers emulsion
method in light mineral oil. The commercial form is 30% wt concentrate in light mineral
oil. The chemical structure is based on highly cross-linked sulfonate-containing polyacry-
lamide. The three-dimensional structure is formed by two types of cross-linkers: stable
and unstable. If the temperature rises the unstable cross-linker dissevers, particles absorb
more surrounding water and expand. The author calls it the “popcorn effect”. Correct
selection of cross-linkers provides particles with a sensitivity to the required temperature.
Microgel particle sizes may vary from 0.1 to 3 µm. After popping, the particle size increases
to 15–20 µm. Core fluid experiments on kernel particles have demonstrated that swelled
microgels are able to penetrate the core with a permeability higher than 124 mD. The resis-
tance factor and residual resistance factor values depend on the microgel concentration and
core porosity [81]. Brightwater has been applied since 2001 starting from the Minas Field
(Indonesia) [82]. There have also been trials in Brazil (Salema Field, Campos Basin) [83],
and Alaska [84]. The main criteria for choosing the test oil-well for treatment include
available movable oil reserves, early water breakthrough to high water-cut, porosity of
highest permeable zones more that 17%, permeability in thief zones more than 100 mD,
minimal reservoir fracturing, reservoir temperature 50–150 ◦C, and salinity of injection
water not higher than 70,000 ppm [82]. The paper [84] presents tests of the Brightwater
product in Alaska, Mylne Point field. The reservoir was generally homogeneous, with
several macro-fractures mapped over the area. The tests were carried out on the area with
three wells: one injection and two production wells. The production wells had a water cut
of about 90%, the recovery factor was 20%. For processing, a microgel with a dry particle
size of 0.1 to 1 µm was used, in swollen form—5 µm. Laboratory tests of the microgel
demonstrated its stability for 2 years at elevated temperatures and a water salinity of
120 g/L. The reagent injection was divided into three sequential stages: (1) rapid injection
of particles to pass the particles across the near wellbore formation zone; (2) filling the
most permeable intervals with particles, heating to the formation temperature, destruc-
tion of temporary crosslinking; (3) popping and swelling of particles at a temperature of
50–75 ◦C. The temperature of the suspension when it acquires the perforation zone in the
injection well was about 45 ◦C. The formation temperature at the production well in the
same interval reached 80 ◦C. The treatment was carried out within 21 days. 60.8 tonnes
of microgel suspension with a concentration of 3300 ppm were injected and 30.4 tonnes
of surfactant were additionally pumped together. No change in injectivity was observed
during the pumping. The first decrease in injectivity occurred 9 months after treatment.
During the same period, recovery of additional oil was started for one oil production well.
For another well, the production response was 11 months after treatment. The effect lasted
2 years. The total incremental oil volume was about 8000 m3 [84]. Experiments conducted
on the test oil field demonstrated that Brigthwater is a thermally reactive particulate system
that functions as an in-depth reservoir conformance control agent.

2.2.7. pH-Activated Microgels

This type of microgel is highly sensitive to pH changes: the microgel suspension
has low viscosity at low pH, with the viscosity increasing with an increase in the pH
value. This gel is used for conformance control in remote formation zones: a microgel
suspension is injected into a low-pH environment, small particles penetrate and move
across the near-wellbore zone. During this process, acid from the microgel suspension
reacts with rock minerals, leading to an increase in pH, microgels swell and block the
highly-permeable zones deep in the reservoir. The pH-responsivity is provided by incor-
poration of co-monomers possessing carboxyl functional groups (e.g., acrylic acid) [85].
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With increasing pH, the carboxylic groups of polyacrylate networks are hydrolyzed, and
the charged groups repel each other. As a result, polymers chains are stretched and mi-
crogels swell [86]. To guarantee microgel penetration into the deep reservoir zone on the
first stage of the reservoir treatment, pre-flush of formation by acids is recommended [86].
The experiments showed that acetic acid is better as a pre-flush agent [86,87]. The second
stage is microgel injection, and the last stage of treatment is post water flooding. The higher
water mineralization, the lower the pH value of weak acids, and the less swelling capability
of microgels [87]. The most widely used pH-sensitive microgel is Carbopol® (Lubrizol,
Calvert, KY, USA). There have been several studies on the efficiency of microgels made
using sandstone and carbonate cores [86–91]. The average size of Carbopol dry microgel
particles is 2–7 µm. The permeability of cores used in the experiment was about 2.3 µm2 [87].
All experiments showed that at a pH of 2 (pH of microgel suspension), microgels block
the injection end of the core. pH correction using NaOH helps overcome this problem [88].
During the flooding experiments, it was shown that these microgels efficiently plug the
fractures and high permeable zones and redistribute filtration flows of water into the rock
matrix. [86,87].

2.3. Microgel Synthesis Approaches

Several review articles have been published outlining different microgel production
methods [89–91]. For microgels applied for EOR, the following basic approaches are used:
balk gels synthesis and its mechanical grinding, precipitation polymerization, inverse
emulsion polymerization.

The simplest microgel preparation method is mechanical grinding of bulk gel. Table 1
below describes two approaches. The resulting particle size differs at least 10 times.
Therefore, the obtained product is aimed at different properties of the reservoir.

Another microgel synthesis method is precipitation polymerization. Three compo-
nents are involved in the synthesis: monomer, crosslinker, and initiator [92]. The process
is followed by a radical mechanism. At the polymerization temperature (50–70 ◦C), the
water-soluble initiator (a compound based on peroxide or persulfates) decomposes on free
radicals. In the case of persulfate, decomposition of the initiator leads to the formation
of sulfate radicals that attack water-soluble monomers with subsequent propagation of
radicals and chain growth [92]. When the microgel particles reach a critical size, they are
stabilized by electrostatic stabilization mechanism. When microgel particles are formed,
electrostatic repulsion prevents particles coagulation [93].

The precipitation method of monomer synthesis does not appear in publications
on microgels for reservoir conformance control application. However, intra- and inter-
molecular crosslinking of partially-hydrolyzed PAM polymer chains may be considered
a special case of this method. An example of chemical crosslinking of polymer chains is
CDG formation. Chemical cross linkers of partially-hydrolyzed PAM may be inorganic
and organic in nature [94]. For CDG, aluminum citrate is the most common crosslinker.
Chromium triacetate is used in fields with a high salinity of reservoir water. The polymer-
to-crosslinker ratio may vary from 20:1 to 80:1 [95].

Crosslinking of PAM polymer chains may be achieved using not only chemical meth-
ods, but also a physical approach, particularly irradiation treatment. An example of
crosslinking by radiation is a PPG-resembling technology used on Russian oil fields (West-
ern Siberia and Tatarstan), and named similar to the polymer-gel system (PGS) Tempo-
screen [96]. This product is actually a macrogel, however, the approach could be considered
for microgels synthesis in future. The three-dimensional structure of the polymer gel
particles is formed by ionizing radiation at a dose of 10 kGy of PAM with a molecular
weight of 20 × 106 Da and a degree of hydrolysis of 30% [97]. The powder particle size
distribution is 0.5–2 mm; in water, the particle can expand up to 1–10 mm in diameter.
Depending on the size of the residual reserves and the geological structure of the reservoir,
use of the Temposcreen PGM can yield 2–8 additional tonnes of oil. The technology was
applied in high-temperature fields (85–95 ◦C) [97].
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The widespread microgel synthesis method for EOR application is inverse emulsion
polymerization that has a different modification and allows obtaining different-sized parti-
cles (see Figure 8). Depending on the conditions (emulsifier concentration, stirring speed,
initiator and dispersant concentrations), inverse emulsion-based polymerization may occur
as suspension polymerization, microemulsion and nanoemulsion, giving microgels of dif-
ferent particle sizes. Although all types of emulsion are prepared using the same reagents
(hydrocarbon solvent, water, and surfactant), the difference between these methods is the
thermodynamic stability of both types of emulsions, which may influence the sizes of
the microspheres obtained [90]. The inverse suspension method has many advantages:
reaction heating control, granular product can be obtained without the grinding process;
the product is easy to dry, and the resulting microgels have an excellent water absorption
capability [80].
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The main steps of the synthesis are: choosing the continuous phase (organic solvent,
usually mineral oil or refined kerosene); selecting emulsifier systems; selecting a mixture of
co-monomer and cross-linkers that will form physical and chemical properties of microgels;
selecting an initiator system (for example, chemical initiation, then free radical are produced
after chemical interaction, e.g., ammonium persulfate and sodium sulfite) [65,70,98,99].
The most important stage of inverse emulsion preparation is selection of the emulsifier
mixture. The hydrophilic-lipophilic balance (HLB) of the emulsifier mixture must match
the organic solvent HLB. Combinations of the following emulsifiers are usually used for
inverse emulsion synthesis: Tween 60, Tween 80, Span 80, and other, [66,71,99]. As already
mentioned above, such microgels such as microspheres and temperature- and pH-sensitive
microgels have been synthesized using this method. The commercial products of microgels
obtained using this approach is an organic solvent suspension (usually 30% mass). Figure 9
presents a diagram of the laboratory synthesis unit [66]. Table 1 lists compounds that are
usually used for microgel synthesis using the invers emulsion approach. Examples of the
synthesis of microspheres for reservoir conformance control are represented by the authors
of the publications [66–68].

The microgel structure consists of the following fragments: polymer chains network,
cross-linkers, and functionalized fragments embedded in the polymer backbone. Table 2
lists some compounds that are used for microgel synthesis and functionalization.

Table 2. Compounds used for microgels synthesis using the inverse emulsion method.
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Table 2. Cont.

Compound Formula Function

2-acrylamido-2-metilpropansulfonic acid
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3. Conclusions

Several types of microgels have currently been developed. Table 3 summarizes the
data about reservoir conditions where each type of microgel could be applied. Many
laboratory and trial tests have demonstrated and proved the high efficiency of microgels
for in-deep reservoir conformance control that is important today as the number of mature
oil fields grows every year.

Table 3. Microgels for EOR.

Type of Microgel Synthesis Method Particle Size
Target Reservoir Characteristics

Permeability Water Salinity
Limitation

Reservoir
Temperature

Colloidal dispersed
gels (CDG)

Precipitation
polymerization 1–150 nm 10 to 4200 µm2 Depend on

crosslinker type 25–100 ◦C

Dispersed particle
gel (DPG)

Balk gels formation
and its

mechanical grinding
0.4–2.5 µm 0.47 µm2 to 8.89 µm2 213 g/L stable under

110 ◦C

Preformed particle
gel of micro size

Balk gels synthesis
and its

mechanical grinding
30 µm and higher 230–1500 md (average

230 µm2 wide range stable under
125 ◦C

SMG Microgels
(Small Microgels)

Inverse emulsion
polymerization 0.3–2 µm 10–1000 µm2 (average

around 200 µm2)
215 g/L stable under

120 ◦C

Microspheres

Inverse suspension
polymerization,

inverse emulsion
polymerization

About 12 µm and
higher by inverse

suspension
polymerization
and 0.3–2 µm by
inverse emulsion
polymerization

Wide range wide range stable under
120 ◦C

BrightwaterTM
thermal-activated

microgels

Inverse emulsion
polymerization 0.1 to 3 µm higher than 124 µm2 120 g/L 50–150 ◦C

pH-activated
microgels

Inverse emulsion
polymerization 2–7 µm more than 10 µm2 Low salinity

is preferable -

Incorporation of additional monomers into the microgels’ structure make it possible
to obtain new unique characteristics: high strength [80–82], fluorescent [93,94,100], etc.
Additional characteristics expand the microgels’ application ways. For example, fluorescent
microgels can be used as markers to determine the formation lateral permeability.

Microgels have several advantages over other technologies for profile control with
PAM application. These include high treatment selectivity, possibility of technology adapta-
tion to reservoir conditions, easy treatment control, and guaranteed effect if the processing
conditions are correctly followed. The current progress in microgel development demon-
strates many possibilities for improving the technology relating to changing the mechanical
properties (i.e., low elastic microspheres and SiO2-reinforced microgels) and incorporation
of fluorescent monomers, which could improve lateral reservoir conformance control. Mi-
crogels can be considered the only component of injected suspension and in synergetic
combination with surfactants and polymers solution that has a complex effect on the
formation in terms of reducing residual and remaining oil saturation.

Based on the conducted review, the authors believe that technology of conformance
control using microgels is a promising one having great prospects, especially in the devel-
opment of mature oil fields.
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