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ABSTRACT  
Allergic asthma, a type of chronic airway inflammation, is a global health concern because of its 
increasing incidence and recurrence rates. Camellia sinensis L. yields a variety type of teas, 
which are also used as medicinal plants in East Asia and are known to have antioxidant, anti- 
inflammatory, and immune-potentiating properties. Here, we examined the constituents of 
C. sinensis L. extract (CSE) and evaluated the protective effects of CSE on allergic asthma by 
elucidating the underlying mechanism. To induce allergic asthma, we injected the sensitization 
solution (mixture of ovalbumin (OVA) and aluminum hydroxide) into mice intraperitoneally on 
days 0 and 14. Then, the mice were exposed to 1% OVA by a nebulizer on days 21 to 23, while 
intragastric administration of CSE (30 and 100 mg/kg) was performed each day on days 18 to 
23. We detected five compounds in CSE, including (-)-epigallocatechin, caffeine, (-)-epicatechin, 
(-)-epigallocatechin gallate, and (-)-epicatechin gallate. Treatment with CSE remarkably 
decreased the airway hyperresponsiveness, OVA-specific immunoglobulin E level, and 
inflammatory cell and cytokine levels of mice, with a decrease in inflammatory cell infiltration 
and mucus production in lung tissue. Treatment with CSE also decreased the phosphorylation 
of nuclear factor-κB (NF-κB) and the expression of matrix-metalloproteinase (MMP)-9 in 
asthmatic mice. Our results demonstrated that CSE reduced allergic airway inflammation caused 
by OVA through inhibition of phosphorylated NF-κB and MMP-9 expression.
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1. Introduction

Asthma, a type of chronic airway inflammation, involves 
distinct respiratory symptoms, including coughing, 
wheezing, and shortness of breath with varying 
degrees (Asher et al. 2020). Asthma is related to inter-
actions between airway structural cells and immune 
cells through several cytokines, which are accompanied 

by activation of eosinophilic inflammation, airway hyper-
responsiveness (AHR), production of immunoglobulin 
(Ig)E, airway remodeling, and mucus overproduction 
(Luo et al. 2022). Corticosteroids and beta-agonists are 
the key therapeutics used in asthma because of their 
remarkable anti-inflammatory and bronchodilation 
effects (Miller et al. 2021). However, despite their 
efficacy, corticosteroids have limitations regarding their 
dose and duration due to the adverse impacts such as 
a reduction in growth velocity, osteoporosis, and dia-
betes (Heffler e lea. 2018). Therefore, identifying thera-
peutic agents treating asthma with high efficacy and 
low risk remains essential. Specific chemical compounds 
from natural products can be used for drug discovery 
due to their numerous biological and pharmacological 
properties (Kim et al. 2022a).

Numerous signaling pathways, including matrix 
metallopeptidase (MMP)-9 and nuclear factor kappa B 
(NF-κB) signaling, are involved in the development of 
asthma. The NF-κB is a critical player in several 
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inflammatory diseases by regulating the expression of 
many proinflammatory genes (Edwards et al. 2009). 
According to the external stimuli, the free p65/p50 of 
NF-κB translocates into the nucleus, binding to target 
gene promoters (Motolani et al. 2020). Additionally, 
MMP-9, which can be synthesized and released by 
several lung cells, is associated with airway remodeling 
by degrading the extracellular matrix (ECM) of the lung 
in asthma. Because MMP-9 has many substrates, not 
only the ECM proteins but also cytokines and anti-pro-
teases, it modulates cell migration and the activity of 
some proteases and cytokines (Atkinson and Senior 
2003). Therefore, regulating the NF-κB and MMP-9 
expression may be a treatment strategy for asthma.

The leaves of Camellia sinensis L. yield a variety of teas 
based on the degree of fermentation, and tea comes 
second after water as the most popular beverage world-
wide (Dou 2018). C. sinensis was originally cultivated in 
China before spreading to India, Europe, and America 
in the seventeenth century. In traditional oriental medi-
cine, tea is used for fever, wound healing, indigestion, 
and diuretic effects (Chopade et al. 2008). Since then, 
tea’s chemical components and health benefits have 
been investigated. According to previous studies, the 
main components of C. sinensis L. are polyphenols (cate-
chins and flavonoids), alkaloids (caffeine and theobro-
mine), and amino acids, which are associated with 
anti-inflammatory, antioxidant, hypoglycemic, anti- 
cancer, metabolic regulatory, and immune-boosting 
effects (Sharangi 2009; Hayat et al. 2015; Li et al. 2022; 
Zhao et al. 2022). Considering this evidence, we hypoth-
esized that C. sinensis L. would alleviate the ovalbumin- 
induced allergic airway inflammation (OVA).

Here, we evaluated the pharmacological effects of 
C. sinensis L. extracts (CSE) and elucidated the mechan-
ism of action by estimating the expression of proteins 
in asthmatic mice.

2. Materials and methods

2.1. Analytical sample preparation

C. sinensis leaves (500 g) were extracted for 3 h at 90 °C 
using 5L of 70% ethanol by a heat-reflux extractor 
(Misung Scientific, Republic of Korea). A rotary evapor-
ator (50 °C; SciLab, Republic of Korea) was used to 
filter and evaporate the extract solution. The dried 
extract was suspended in distilled water and freeze 
dried using a freeze dryer (Ilshin Biobase, Republic of 
Korea) for 120 h at -80 °C to give an extract powder of 
C. sinensis leaves (135.6 g, yield 27.1%). Then, dissolve 
this extract (20 mg) in 10 mL of methanol. Five reference 
standards (2 mg/mL, purity of >98%, ChemFaces, 

Wuhan, China), including (-)-epigallocatechin (EGC), 
caffeine (CAF), (-)-epicatechin (EC), (-)-epicatechin 
gallate (ECG), and (-)-epigallocatechin gallate (EGCG), 
were prepared as standard stock solutions in methanol 
(HPLC grade).

2.2. Chromatography conditions

An Agilent 1200 HPLC instrument (Santa Clara, CA, USA) 
was used to perform HPLC analysis. The column was 
Zorbax Eclipse Plus C18 (150 × 4.6 mm, 3 µm; Agilent 
Technologies) and thermostated at 35 °C. The mobile 
phase was acetonitrile (A) and 0.1% formic acid in 
water (B). The gradient solvent system was optimized 
as follows: 95–75% B (0–30 min) and 75% B (30–35 
min). The flow rate was 0.8 mL/min, and the injection 
volume of each sample was 3 μL. Detection was con-
ducted at 240 nm. Identification of chromatographic 
peak was conducted using an Agilent 1200 LC/MSD 
system with an electrospray ionization (ESI) source. The 
separation conditions for ESI/MS analyses were identical 
to those used for the HPLC/DAD analyses. Mass spectra 
were acquired in positive ion mode, and the operating 
parameters were as follows: nitrogen (330 °C; flow rate, 
9 L/min) was used as the drying gas, and the nebulizer 
was set at 40 psi; the mass analyzer was scanned from 
100 m/z to 1000 m/z; the capillary voltage was 3200 V; 
and the fragmentation amplitude was set at 1.0 
V. Data were analyzed using Agilent ChemStation soft-
ware. To validate the developed analytical HPLC 
method, its linearity, limit of detection (LOD), limit of 
quantification (LOQ), precision, and accuracy were eval-
uated. Its procedure was identical to that described in 
our previous study (Pak et al. 2024). For precision, the 
standard solution was analyzed 5 times over a single 
day for intra-day variation, and on 3 consecutive days 
for inter-day variation.

2.3. Animal experimental procedure

All experiments with mice were performed under proto-
cols approved by the Institutional Animal Care and Use 
Committee of Chonnam National University (CNU 
IACUC-YB-2021-100). Adult female BALB/c mice (6 
weeks old, Samtako, Osan, Republic of Korea) were accli-
mated a week and were randomized into groups. After 
intraperitoneal injection of sensitization solution 
(mixture of 20 µg of OVA and 2 mg of aluminum hydrox-
ide) or phosphate-buffered saline (PBS; normal control) 
on days 0 and 14, the mice were exposed to 1% OVA sol-
ution or PBS (normal control) for 1 h via a nebulizer 
(Omron, Tokyo, Japan) on days 21 to 23. On day 18, 
the intragastric administration of CSE (30 and 100 mg/ 
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kg) and DEX (2 mg/kg, positive drug) was started until 
day 23 once a day.

2.4. Measurement of airway resistance

On day 24, the airway responsiveness of the mice was 
assessed at single frequency forced oscillation of Flexi-
vent (SCIREQ, Montreal, Canada). Alfaxalone (Jurox Pty 
Ltd., Hunter Valley, Australia) was used to anesthetize. 
A tracheostomy to insert a cannula connected to a nebu-
lizer containing PBS or methacholine (0, 10, 20, and 40 
mg/mL) was performed. After inflation of the lung to 
open closed areas and standardization of the lung 
volume, the baseline values were measured in triplicate. 
A sequence of measurements, nebulizing methacholine 
solution for 10 s and recording airway resistance for 1 
min and refreshed for 2 min, was automatically repeated.

2.5. Analysis of serum and bronchoalveolar 
lavage fluids (BALF)

Blood samples were collected on day 25, following 
anesthesia with alfaxalone. To obtain BALF samples, a 
tracheostomy was performed to insert an endotracheal 
tube, and the lungs were lavaged with ice-cold PBS. 
The collected blood samples were centrifuged to 
obtain serum for measuring OVA-specific IgE by an 
enzyme-linked immunosorbent assay (ELISA) kit (BioLe-
gend Inc., San Diego, CA, USA). The collected BALF 
samples were centrifuged, and the supernatants were 
used to measure the levels of inflammatory cytokines 
using an ELISA kit (R&D Systems, Minneapolis, MN, 
USA). After the pellets were reconstituted in PBS, Cytos-
pin (Hanil Electric, Wonju, Republic of Korea) was used to 
adhere them to a slide glass, and then Diff-Quik staining 
(Sysmax, Kobe, Japan) to count the differential inflam-
matory cells was performed. The cell counter (Countess 
II, Thermo Fisher Scientific, San Diego, CA, USA) was used 
to determine the number of total inflammatory cells in 
BALF. The ratio of the differential inflammatory cells 
was applied to the total cell count.

2.6. Histological analysis

The left lobe of the lungs fixed with 10% neutral 
buffered formalin was embedded in paraffin. The sec-
tioned lung tissues were stained with hematoxylin and 
eosin (Sigma-Aldrich) and periodic acid–Schiff (IMEB 
Inc., San Marcos, CA, USA) to assess inflammation and 
mucus secretion indices, obtained using an image analy-
zer (IMT i-Solution software, IMT i-Solution Inc., Vancou-
ver, BC, Canada). Immunohistochemical studies were 
conducted using a commercial kit (Vector Laboratories, 

Burlingame, CA, USA) to evaluate the expression of 
8-hydroxy-2-deoxyguanosine (8-OHdG), phosphorylated 
p65 and MMP-9 with primary antibodies (diluted 1:200).

2.7. Western blot

Total lung proteins were lysed with tissue lysis reagent 
(Sigma-Aldrich), and 30 µg of protein were separated 
by SDS-PAGE and then diverted to PVDF membranes 
(Millipore, Burlington, MA, USA). The membranes were 
incubated with primary antibodies (1:1000) overnight 
at 4 °C and conjugated secondary antibodies (1:10,000) 
for 2 h at 24 °C, and finally developed with detection 
reagents (Thermo Fisher Scientific). The membranes 
were visualized using Chemi-Doc (Bio-Rad Laboratories). 
Used primary antibodies β-actin, p65, p-p65, IκBα, p- 
IκBα, and MMP-9 were acquired from Cell Signaling 
(Boston, MA, USA) or Abcam (Cambridge, MA, USA).

2.8. Statistical analysis

The data are expressed as the mean ± standard devi-
ation (SD). Statistical significance was evaluated using 
an analysis of variance followed by a multiple compari-
son test with Dunnett’s adjustment. Differences were 
considered statistically significant at P < 0.05.

3. Results

3.1. Identification of chromatographic peaks

The wavelength of 240 nm yielded the highest S/N ratio 
among the five reference standards. Through the opti-
mized chromatography conditions, five reference stan-
dards were successfully resolved and eluted within 30 
min. HPLC chromatograms of the CSE and five standard 
mixtures are shown in Figures 1(a,b), and the chemical 
structures of the five standards are demonstrated in 
Figure 1(c). Comparison of the retention times, UV 
spectra, and m/z of molecular ions (Supplementary 
Figure S1) of five major peaks in CSE five reference stan-
dards confirmed the identification of peaks 1–5 as 
(-)-epigallocatechin, caffeine, (-)-epicatechin, (-)-epigallo-
catechin gallate, and (-)-epicatechin gallate, respectively 
(Table 1).

3.2. Validation of the method and sample 
analysis

The regression equations, linear ranges, correlation coeffi-
cients, LOD, and LOQ values for the five reference stan-
dards are listed in Supplementary Table S1. All 
calibration curves displayed good linearity (r2 ≥ 0.9998) 
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within the given concentration ranges. The RSD values of 
the intra- and inter-day precision for the five reference 
standards were in the ranges of 0.06–0.85% and 0.11– 
0.57%, respectively (Supplementary Table S2), indicating 
that the current method exhibits high precision. The 
recovery test was conducted by spiking three known 

amounts (20%, 40%, and 60%) of five reference standards 
into the CSE; the recovery rate of each reference standard 
was in the range of 87.59–96.12%, and their RSD values 
were less than 4% (Supplementary Table S3), indicating 
the high accuracy of the proposed method. The devel-
oped HPLC method was applied to the simultaneous 
quantitative analysis of five marker compounds in the 
CSE thrice. The contents of the five markers in the CSE 
were in the range 21.81–127.41 mg/g (Table 2); the 
most abundant compound in the extract was 

Figure 1. HPLC chromatograms of CSE (A) and five reference standard mixtures (B). Chemical structures of the five standards (C). Peak 
identification: 1, EGC [(-)-epigallocatechin]; 2, CAF (caffeine); 3, EC [(-)-epicatechin]; 4, EGCG [(-)-epigallocatechin gallate]; and 5, ECG 
[(-)-epicatechin gallate]. Detection was performed at 240 nm.

Table 2. Contents of five marker compounds in the CSE

Compound

Content (Mean ± SD, n = 3)

mg/g %

(-)-epigallocatechin 73.08 ± 1.49 0.73
caffeine 48.41 ± 0.77 0.48
(-)-epicatechin 21.81 ± 0.62 0.22
(-)-epigallocatechin gallate 127.41 ± 0.78 1.27
(-)-epicatechin gallate 44.99 ± 1.45 0.45

Table 1. Identification of HPLC chromatographic peaks of CSE 
by HPLC-DAD-ESI/MS

Peak
tR 

(min)
λmax 

(nm)
[M + H]+ 

(m/z)
Chemical 
formula Identification

1 11.48 232, 
272

307.1 C15H14O7 (-)-epigallocatechin

2 13.47 227, 
272

195.1 C8H10N4O2 caffeine

3 16.58 227, 
278

291.1 C15H14O6 (-)-epicatechin

4 17.36 227, 
274

459.1 C22H18O11 (-)-epigallocatechin 
gallate

5 23.96 226, 
278

443.1 C22H18O10 (-)-epicatechin gallate
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(-)-epigallocatechin gallate (127.41 ± 0.78 mg/g), followed 
by (-)-epigallocatechin (73.08 ± 1.49 mg/g).

3.3. CSE inhibited AHR and OVA-specific igE in 
asthmatic mice

The AHR of the OVA group increased prominently as the 
concentration of methacholine increased compared to 
the NC group. The administration of CSE prevented 
OVA-induced increases in AHR. In particular, the 
CSE100 group showed an adequate deterrent effect at 
40 mg/ml of methacholine (Figure 2(a)). Sensitization 
and challenge of OVA increased the OVA-specific IgE 
level in the OVA group compared to that of the NC 
group. Compared to the OVA group, the level of OVA- 
specific IgE significantly decreased in both the CSE30 
and CSE100 groups. CSE inhibited the synthesis of 
OVA-specific IgE dose-dependently (Figure 2(b)).

3.4. CSE reduced the number of inflammatory 
cells in the BALF of asthmatic mice

The number of total cells in the BALF of the OVA group 
was prominently increased compared to that in the NC 
group, and eosinophils accounted for most of the total 
cells (Figure 3(a)). Administration of CSE reduced the 
number of total cells, eosinophils, and macrophages 
compared to the OVA group (Figure 3(b–d)). In particu-
lar, the counts of eosinophils showed significant 
decreases in both the CSE30 and CSE100 groups, while 
there was no significant difference in the counts of neu-
trophils and lymphocytes among all groups.

3.5. CSE prevented the production of inflammatory 
cytokines in the BALF of asthmatic mice

The levels of IL-4, -5, and -13 in the BALF of the OVA 
group were distinctly elevated compared to those of 
the NC group (Figure 4(a–c)). The levels of all three 
inflammatory cytokines decreased in the CSE-treated 
groups compared to the OVA group. Notably, the IL-5 
and -13 levels were effectively reduced in both the 
CSE100 and CSE30 groups.

3.6. CSE suppressed airway inflammation and 
mucus production in asthmatic mice

Inflammatory cell recruitment was prominently 
increased in the lung of the OVA group compared to 
that of the NC group (Figure 5(A, B)). The CSE-treated 
groups exhibited suppressed airway inflammation, 
which was evident in the CSE100 group. Additionally, 
the mucus secretion in the OVA group was significantly 
elevated compared to that in the NC group (Figure 5(A, 
C)). CSE100 effectively reduced mucus production com-
pared to that of the OVA group.

3.7. CSE suppressed oxidative damage and 
phosphorylated NF-κB in asthmatic mice

Compared to the control group, increased phosphoryl-
ation and nuclear translocation of NF-κB and 8-OHdG 
expression were observed in OVA-induced asthmatic 
mice by histological analysis (Figure 6(A, B)). Compared 
to the observations in the OVA group, administration 
of CSE inhibited the phosphorylation and translocation 

Figure 2. CSE inhibited AHR and OVA-specific IgE in asthmatic mice. (A) Airway resistance. (B) OVA-specific IgE level in serum. NC: 
normal control; OVA: asthma group; DEX: asthma with dexamethasone-treated group; CSE30 and CSE100: asthma with CSE- 
treated group (30 and 100 mg/kg). Data presented as means ± SD (n = 7). ##p < 0.01 compared to the NC group, *p < 0.05 and 
**p < 0.01 compared to the OVA group.
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of NF-κB and decreased the expression of 8-OHdG. The 
CSE30 and CSE100 groups showed effective decreases, 
which was apparent in the CSE100 group. Additionally, 
the phosphorylated p65 and IκBα level in the lung hom-
ogenates of the OVA group was increased compared to 
that of the NC group (Figure 6(C, D)). CSE100 inhibited 
the phosphorylation of p65 and IκBα compared to that 
observed in the OVA group.

3.8. CSE inhibited MMP-9 in asthmatic mice

The MMP-9 level was elevated in asthma-induced lung 
tissues compared to the NC group (Figure 7(A, B)). The 
CSE-treated groups showed distinct decreases in MMP- 
9 level compared to the OVA group. Similar to the 

result of histological analysis, MMP-9 expression in 
lung homogenates was increased in the OVA group 
compared to that in the NC group, which decreased sig-
nificantly in the CSE100 group (Figure 7(C, D)).

4. Discussion

Allergic asthma is steadily attracting attention not only 
because of its increasing incidence and recurrence rates 
but also due to its impact on patients’ health-related 
life quality, which encompasses both physical and 
mental aspects (Baiardini et al. 2006). Here, we evaluated 
the pharmacological effects of CSE on allergic asthma 
induced by OVA and revealed the underlying mechanism 
through a protein expression assay. Our results showed 

Figure 3. CSE reduced the number of inflammatory cells in the BALF of asthmatic mice. (A) Representative image of BALF cells. The 
number of (B) total inflammatory cells, (C) eosinophils, and (D) macrophages in BALF. NC: normal control; OVA: asthma group; DEX: 
asthma with dexamethasone-treated group; CSE30 and CSE100: asthma with CSE-treated group (30 and 100 mg/kg). Data presented 
as means ± SD (n = 7). ##p < 0.01 compared to the NC group, *p < 0.05 and **p < 0.01 compared to the OVA group. Scale bar: 50 μm.

Figure 4. CSE prevented the production of inflammatory cytokines in the BALF of asthmatic mice. The level of (A) IL-4, (B) IL-5, and (C) 
IL-13 in BALF. NC: normal control; OVA: asthma group; DEX: asthma with dexamethasone-treated group; CSE30 and CSE100: asthma 
with CSE-treated group (30 and 100 mg/kg). Data presented as means ± SD (n = 7). ##p < 0.01 compared to the NC group, *p < 0.05 
and **p < 0.01 compared to the OVA group.
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that administration of CSE decreased AHR and allergic 
inflammation by OVA challenge, which was demon-
strated by a decrease in eosinophil counts and the 
levels of IL-4, -5, and -13 in BALF, as well as reduced 
inflammatory cell infiltration and mucus production in 
the lung. CSE administration suppressed the phosphory-
lated NF-κB and MMP-9, both associated with the inflam-
matory response and lung remodeling.

Allergic asthma, an eosinophilic airway inflammation, 
is associated with inflammatory cytokines released by 
CD4 Th2 cells (Hammad and Lambrecht 2021). Increased 
IL-4 promotes B cell isotype switch to produce allergen- 
specific IgE, and increased IL-5 results in airway eosino-
philia and epithelial changes (King et al. 2018). Addition-
ally, elevated IL-13 levels are involved in airway 
hyperreactivity, survival and activation of eosinophils, 
and goblet cell metaplasia, which results in hyper 
mucus secretion (Doran et al. 2017). Excessive 

inflammation and mucus production cause airway 
smooth muscle spasms and result in airway narrowing. 
In the present study, CSE-treated groups showed a 
remarkable reduction in AHR, serum IgE levels, and the 
number of eosinophils and Th2 cytokine levels in BALF. 
Additionally, treatment with CSE resulted in decreased 
inflammatory cell infiltration and secretion of mucus 
based on the histological analysis. These findings 
support the protective effects of CSE on the OVA- 
induced Th2 immune response.

Reactive oxygen species produced during asthma 
development often act as a stimulant of the NF-κB 
pathway (Lim et al. 2021). In resting status, NF-κB is inhib-
ited by IκBα binding and exists in the cytoplasm of almost 
all cells. In perpetuating inflammatory responses to aller-
gen exposure, IκBα is phosphorylated and then free acti-
vated NF-κB translocates into nucleus and binds to a 
specific region of the promoter to increase expression of 

Figure 5. CSE suppressed airway inflammation and mucus secretion in lung of asthmatic mice. (a) Hematoxylin and eosin (H&E) and 
periodic acid-Schiff (PAS) stained lung tissue. (b) Inflammatory index. (c) Mucus secretion index. NC: normal control; OVA: asthma 
group; DEX: asthma with dexamethasone-treated group; CSE30 and CSE100: asthma with CSE-treated group (30 and 100 mg/kg). 
Data presented as means ± SD (n = 7). ##p < 0.01 compared to the NC group, *p < 0.05 and **p < 0.01 compared to the OVA 
group. Scale bar: 100 μm.
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inflammatory genes. Surprisingly, in asthma, NF-κB not 
only regulates the expression of several proinflammatory 
mediators but also adhesion molecules, mucin production, 
and angiogenic factors (Edwards et al. 2009; Mishra et al. 
2018). NF-κB also induces the expression of MMP-9 from 
inflammatory cells (Tacon et al. 2010; Shin et al. 2020; Al- 
Sadi et al. 2021), which is regarded as a marker for moni-
toring airway remodeling in asthma (Barbaro et al. 2014). 
The actions of MMP on the ECM, including degradation 
and repair, lead to the production of bioactive pro-inflam-
matory molecules (Atkinson and Senior 2003; Manicone 
and McGuire 2008). Therefore, the downregulation of 
NF-κB and MMP-9 may represent an essential approach 
to controlling asthma. In the present study, CSE treatment 
significantly suppressed the oxidative stress and phos-
phorylated NF-κB induced by OVA challenge, which was 
followed by a reduction in the expression of MMP-9. IHC 
in the histological analysis also demonstrated decreased 
expression of 8-OHdG, phosphorylated NF-κB, and MMP- 
9. These findings indicate that the therapeutic effects of 

CSE on OVA-induced allergic asthma are associated with 
the suppression of NF-κB.

The leaves of Camellia sinensis L. are processed to 
make tea, a fragrant herbal beverage consumed world-
wide for refreshment and health. Indeed, drinking 2–3 
cups of tea per day has been shown to be associated 
with lower morbidity of chronic respiratory diseases 
(Chen et al. 2022b). Moreover, the main active com-
pounds in tea, including polyphenols, saponins, polysac-
charides, and theanine, have anti-allergic properties (Li 
et al. 2021). The five compounds isolated from CSE 
included (-)-epigallocatechin (EGC), (-)-epigallocatechin 
gallate (EGCG), caffeine (CAF), (-)-epicatechin (EC), and 
(-)-epicatechin gallate (ECG). EGC, the second most 
abundant catechin in CSE, exhibits radical scavenging 
activities (Ambigaipalan et al. 2020), while CAF improves 
airway function through bronchodilation in asthma 
(Welsh et al. 2010; Loube et al. 2023). EC has also been 
shown to have anti-inflammatory and anti-obesity 
benefits in mice (Bettaieb et al. 2016; Cremonini et al. 

Figure 6. CSE suppressed the oxidative stress and phosphorylation of NF-κB in asthmatic mice. (a) 8-OHdG and phosphorylated NF-κB 
expression was determined by IHC. (b) 8-OHdG expression and NF-κB phosphorylation. (c) Phosphorylation of NF-κB on gel. (d) Rela-
tive protein expression value. NC: normal control; OVA: asthma group; DEX: asthma with dexamethasone-treated group; CSE30 and 
CSE100: asthma with CSE-treated group (30 and 100 mg/kg). Data presented as means ± SD (n = 7). ##p < 0.01 compared to the NC 
group, *p < 0.05 and **p < 0.01 compared to the OVA group. Scale bar: 100 μm.
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2019). EGCG, which is the most abundant component of 
CSE, has anti-allergic, antioxidant, anti-inflammatory, 
and anti-fibrotic benefits, which have been reported to 
benefit acute and chronic respiratory diseases including 
acute lung injury, bacterial pneumonia and asthma (Kim 
et al. 2006; Mokra et al. 2022). EGCG prevented cigarette 
smoke-induced inflammation and apoptosis by attenu-
ating oxidative stress via inhibition of NF- κB activation, 
similar to our results (Liang et al. 2019). Additionally, 
EGCG and ECG have been shown to inhibit inflammation 
in the intestine, microglia, and macrophages by suppres-
sing NF-κB (Bing et al. 2017; Chen et al. 2022a; Kim et al. 
2022b). Furthermore, four catechins of CSE (EGC, EC, 
EGCG, and ECG) inhibit pro-/active MMP-9 activities in 
pulmonary smooth muscle cells (Sarkar et al. 2016). 
Thus, our findings are strongly supported by these 
earlier studies.

Our study showed that C. sinensis L. effectively alle-
viated allergic airway inflammation induced by OVA, 
partly by reducing the expression of phosphorylated 
NF-κB and MMP-9. These findings suggest that 
C. sinensis L. has potential value as a therapeutic agent 
for allergic asthma. 
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Figure 7. CSE inhibited MMP-9 expression in asthmatic mice. (a) MMP-9 expression was determined by IHC. (b) MMP-9 expression. (c) 
MMP-9 expression on gel. (d) Relative protein expression value. NC: normal control; OVA: asthma group; DEX: asthma with dexametha-
sone-treated group; CSE30 and CSE100: asthma with CSE-treated group (30 and 100 mg/kg). Data presented as means ± SD (n = 7). 
##p < 0.01 compared to the NC group, *p < 0.05 and **p < 0.01 compared to the OVA group. Scale bar: 100 μm.
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