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Introduction
The outbreak of disease-causing agents is continuously threat-
ening public health worldwide, particularly viruses. Millions of 
people die due to the effects of illnesses resulting from virus 
infections, and over the years, more aggressive epidemics are 
arising. A recent example is the COVID-19 pandemic, caused 
by the sudden acute respiratory syndrome (SARS) virus SARS-
CoV-2, a successor of SARS-CoV in 2002 and the Middle 
East respiratory syndrome (MERS) in 2012, which are the 3 
recorded outbreaks of a coronavirus.1 Although it is less deadly 
than its predecessors,2 COVID-19 has the highest transmissi-
bility,3 making it harder to control. Vaccines from the industry, 
such as Moderna, Pfizer-BioNTech, and CoronaVac, have 
been developed,4 but not everyone is vaccinated, and some are 
still getting infected, especially when exposed to the omicron 
variant, where the effectiveness can drop by 20% compared 
with the alpha variant (85% down to 65%) after 2 doses.5 As 
the risk of contracting COVID-19 persists after vaccination 
and increases depending on the conditions, there is a need to 
develop treatments to help alleviate the symptoms and remove 
the virus from the body.

To identify drug targets that can attack the virus, a widely 
used method is finding protein-protein interactions (PPIs) 
between the host and pathogen proteins.6 These PPIs can be 
used not only to develop new medicines but also to deter-
mine protein functions, biological pathways, protein com-
plexes, among other uses, and can be found through 
experimental or computational methods. Experimental 
methods can be either high-throughput or low-throughput. 
High-throughput methods can quickly identify a large num-
ber of PPIs, but may have a high false-positive rate, whereas 
low-throughput methods can detect interactions with high 
confidence, but only a few per run,7 making them inefficient 
for discovering interactions, unless there is a specific  
small group of proteins that researchers want to study. 
Computational methods have been developed as a comple-
mentary approach to support experimental methods due to 
their inability to produce a high number of interactions with 
high quality. These computational methods generally use 
machine learning, implementing classic algorithms like sup-
port vector machines or random forests, as well as deep 
learning (eg, neural networks), and other methods such as 
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interolog, functional domains, gene expression, and tertiary 
structures.8

In this work, we introduce Malivhu, a web server that 
employs convolutional neural networks (CNNs) and random 
forests (RFs) to filter input viral proteins belonging to SARS-
CoV, SARS-CoV-2, and MERS in 3 phases, and subsequently 
predicts human-virus PPIs. These 3 viruses are members of the 
Coronaviridae family, which fall under the ssRNA(+) class 
viruses according to the Baltimore classification. With this 
classification in mind, Malivhu operates through 4 phases to 
filter and predict the PPIs. Phase 1 predicts whether the input 
viral sequences are proteins from ssRNA(+) viruses. Phase 2 
assesses if the sequences that passed phase 1 are proteins from 
members of the a Coronaviridae family. Phase 3 predicts if the 
Coronaviridae sequences belong to SARS and MERS viruses. 
Phase 4 predicts if these viral sequences interact with the input 
human sequences. In addition, phase 4 can be executed sepa-
rately, allowing users to specify whether the viral sequences 
come from SARS-CoV, SARS-CoV-2 or MERS. The perfor-
mance of the models was evaluated using metrics such as 
Matthews correlation coefficient (MCC), F1-score, specificity 
(SP), sensitivity (SN), and accuracy (ACC) scores, resulting in 
accuracies of 99.08%, 99.8%m and 100% for the first 3 phases, 
respectively, and in the fourth phase, 94.7% for human-SARS-
CoV PPI, 94.68% for human-SARS-CoV-2 PPI, and 96.97% 
for human-MERS PPI. Furthermore, all models have been 
integrated into a web FFserver named Malivhu (MAchine 
LearnIng for Virus classification and virus-HUman interac-
tion prediction). From the results output, users can also predict 
the secondary and tertiary structure of the predicted proteins. 
In the fourth phase, an efficient visualization capability has 
been implemented to visualize both the human-Coronaviridae 
PPIs among the submitted sequences, and a prediction of all 
submitted human proteins against all popular proteins belong-
ing to SARS-CoV, SARS-CoV-2, and MERS. The Malivhu 
web server is publicly available at https://kaabil.net/malivhu/.

Methods
Data collection

In the first phase, to classify ssRNA(+) vs non-ssRNA(+) 
sequences, we collected 11 4 93307 sequences, divided into 8 
classes based on the Baltimore classification: dsDNA 
(1 429 752), ssDNA (143 948), dsRNA (212 123), ssRNA(+) 
(7 623 595), ssRNA(+) (1 495 895), ssRNA-RT (388 351), 
dsDNA-RT (78 113), and a group of non-viral sequences 
(67 530). Viral data was obtained from NCBI Virus9 with the 
Virus filter using each class as input, and the NIAID Virus 
Pathogen Database and Analysis Resource (ViPR)10 through 
the website at http://www.viprbrc.org/ by downloading the data 
sets of all the available viral families. Non-viral data were selected 
from 12 different species: Homo sapiens (20 395), Arabidopsis 
thaliana (16 043), Bos taurus (6014), Drosophila melanogaster 

(3638), Oryza sativa (4112), Saccharomyces cerevisiae (6721), 
Escherichia coli (4518), Bacillus subtilis (4191), Aeropyrum pernix 
(374), Pyrococcus horikoshii (494), Pyrococcus abyssi (477), and 
Archaeoglobus fulgidus (1030). We retrieved their reviewed 
(manually curated) proteins from UniProtKB.11 These 12 spe-
cies were selected due to their high number of reviewed pro-
teins in UniProtKB compared with other species in their own 
kingdom (ie, animal, plant, fungi, eubacteria, and archaebacte-
ria), so we could cover a wide range of proteins belonging to 
diverse species.

For the second phase, to classify Coronaviridae vs other 
ssRNA(+) sequences, we collected 1 589 097 sequences from 
NCBI Virus protein explorer with the Virus filter using each of 
the 51 ssRNA(+) found families as a filter (Additional file 1: 
Table S1), getting 2 998 608 Coronaviridae sequences and 
179 586 non-Coronaviridae sequences. This constituted our 
positive and negative training and testing data sets for this 
phase.

For the third phase, to classify SARS vs MERS vs other 
Coronaviridae sequences, we collected 5 966 105 sequences 
from NCBI Virus protein explorer with the Virus filter using 
each of the 7 selected virus subspecies: SARS-CoV (2 972 910), 
SARS-CoV-2 (2 977 492), MERS (8848), OC43 (2922), 
NL63 (1340), HKU1 (1362), and 229E (1231). As Malivhu 
focuses on the human species as a host, these 7 viral subspecies 
were selected due to them being the most common coronavi-
ruses in humans belonging to the ssRNA(+) class.12 For the 
SARS species, we also filtered by host to retrieve only human-
targeted sequences. We believe this could make the model 
identify only viruses infecting humans, whereas those that 
infect animals might be misclassified during the machine 
learning prediction process.

Then, we proceeded to remove all sequences with more than 
2 consecutive X amino-acids and with less than 31 non-X 
amino-acids. After that, we applied CD-HIT13 to remove 
highly similar sequences within the data sets; leaving 1 078 667 
sequences for phase 1 116 168 sequences for phase 2, and 
288 255 sequences for phase 3 (Table 1).

For phase 4, to predict whether there is an interaction 
between a viral protein and a human protein, we collected 
experimentally proved human-virus interactions from multiple 
data sets14-17 and the following databases: UniProt,11 going to 
the page for each known gene of the 3 viruses (Additional file 
2: Tables S2 to S4) and getting all the interactions listed in the 
Interaction section; in VirusMentha,18 going to the Download 
page and downloading the Coronaviridae file; IMEx,19 search-
ing the terms “cov2” for SARS-CoV2 filtering interactor spe-
cies by “SARS-CoV-2” and “Homo sapiens,” “Human SARS 
coronavirus” for SARS-CoV filtering interactor species by 
“Human SARS coronavirus” and “Homo sapiens,” and “mers” for 
MERS filtering interactor species by “Middle East respiratory 
syndrome-related coronavirus (isolate United Kingdom/
H123990006/2012) (Betacoronavirus England 1)” and “Homo 
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sapiens”; BIOGRID,20 searching each known gene of the 3 
viruses (Additional file 2: Tables S2 to S4) and limiting the 
search by virus using the dropdown list; HPIDB,21,22 searching 
by the keywork “sars”; and HVIDB,23 going to the search page 
and browsing Coronaviridae under the Single-Stranded RNA 
viruses class. We used a wide variety of sources, as described 
above, in order to collect the highest number of interactions 
available for predicting human-SARS-CoV/SARS-CoV-2/
MERS interactions. In total, we collected 22 844 interactions 
data for SARS-CoV2, 3981 for SARS-CoV and 997 for 
MERS (Additional file 3: Table S8). These interactions were 
filtered by duplicate protein name or ID pairs, removed non–
human-virus interactions, and we checked manually that the 
host was human. Finally, we filtered by duplicate amino-acid 
sequence pairs, which left us with 1337 interactions for SARS-
CoV, 14 001 interactions for SARS-CoV-2, and 318 interac-
tions for MERS-CoV (Additional file 3: Tables S5 to S8).

When predicting interactions, one of the difficult tasks is 
obtaining a negative data set. For our tool, we applied a dissim-
ilarity-based negative sampling based on the method proposed 
by Eid et al,24 which has multiple steps. First, we generated a 
fixed number of random interactions between the viral proteins 
found in the phase 4 data set and 26 573 human reviewed pro-
teins found in the UniProtKB database which were not a posi-
tive interaction, and we got 204 000 interactions for SARS-CoV, 
168 000 for SARS-CoV-2, and 144 000 for MERS-CoV. After 
this, the sequences were aligned using the Needleman-Wunsch 
algorithm and the BLOSUM30 matrix, which yields an 

alignment score for each of the interactions. Next, we removed 
the interactions with the best alignment scores from each virus 
(1500 from SARS-CoV, 15 000 from SARS-CoV-2, and 500 
from MERS-CoV) and randomly chose a subset of interac-
tions from each data set, which gave us the final negative data 
set with 2500 interactions from SARS-CoV, 25 000 from 
SARS-CoV-2, and 1000 from MERS-CoV (Table 1).

Feature extraction

Machine learning methods need all input data to have the 
same dimensions. This means that every protein or interaction 
must have the same number of features (or data length) before 
being passed to each one of the machine learning models. To 
solve this problem, there are multiple tools available such as 
iFeature,25 iFeatureOmega,26 iLearnPlus,27 ProFeatX,28 protr,29 
and Pfeature.30 In this study, we encoded the proteins using 20 
different algorithms found in the iFeature python package with 
the default configuration, and some combinations between 
them based on their performance by choosing the ones that 
yielded the best results for the models and joining them 
together. The 20 algorithms along with their respective number 
of features are presented in Table 2. Although the package con-
tained more features, certain algorithms required all proteins to 
have the same length, such as position-specific scoring matrix 
(PSSM) or amino-acid index (AAINDEX). Others needed 
prior data preprocessing (e.g., secondary structure elements 
content [SSEC] and secondary structure elements binary 

Table 1.  Count of data points per class for all phases with their training and test sets data count.

Data set Classes Data size Training set Test set

Phase 3 ssRNA(+) 271 783 59 449 212 334

non-ssRNA(+) 740 930 118 626 688 258

Non-viral 65 954  

Phase 2 Coronaviridae 56 592 50 811 5781

Non-Coronaviridae 59 476 51 054 8422

Phase 3 SARS 281 951 253 766 28 185

MERS 1694 1511 183

Non-SARS/MERS 2305 2078 227

Human-SARS-CoV interactions Positive 14 001 1208 126

Negative 25 000 2692 308

Human-SARS-CoV-2 interactions Positive 1337 12 624 1377

Negative 2500 17 976 2024

Human-MERS interactions Positive 318 286 31

Negative 1000 899 101

For phase 1, there are no training and test set count for non-ssRNA(+) and non-viral classes independently because these groups were merged into 1 single class in 
order to become the negative data set for training and test.
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[SSEB]). In addition, tripeptide composition (TPC) had too 
many features (8000) for the GPU memory to handle.

Training and testing sets

Table 1 shows that our data sets were overly unbalanced among 
classes. To address this issue, for the first 2 phases, we randomly 
picked the same number of samples from each of the majority 
classes as the minority class, so in phase 1, we truncated the 
number of data points from the non-ssRNA(+) and non-viral 
classes down to the same number of ssRNA(+) sequences, 
then joined both of ssRNA(+) and non-viral data sets as the 

negative data set, and in phase 2, we truncated the number of 
proteins from the non-Coronaviridae data set to match the 
number of Coronaviridae protein count. All the samples that 
were left out were then used for independent testing. From the 
picked samples, we used 90% of the data to train the models 
and 10% for independent testing, joining the previous samples 
(Figure 1A). Phases 3 and 4 were split 90% for the training set 
and 10% for the test set from the original data set. Table 1 also 
displays the count of data points per class per phase. All models 
were trained using 5-fold and 10-fold cross-validation.

Machine learning models

We developed a general CNN architecture depicted in Figure 
1B for all 4 phases, which consists mainly of 2 convolutional 
1-dimensional (1D) layers, 2 max-pooling layers, and 2 dense 
layers. Convolutional layers apply a filter to a subset of con-
secutive data in order to make certain features dominate over 
others, usually images. However, our data are not 2-dimen-
sional (2D), but 1D, so we applied 1D convolutions instead of 
2D convolutions. Max-pooling layers choose the maximum 
value from each patch of data and pass it to the next layer. 
Dense layers are linear layers that fully connect all neurons in it 
with the neurons of the previous layer and apply a mathemati-
cal function to every data point. Also, there is a batch normali-
zation after the second convolutional layer, so it standardizes 
the data and prepares it for the dense layers, and a dropout layer 
between the dense layers, with the aim of dropping some neu-
rons and reducing overfitting. Along with CNN, we trained an 
RF model for all phases as a baseline and candidate model.

Random forests were trained and tested with all 20 encod-
ings, whereas the neural networks were not able to run GAAC 
encoding due to its low number of features (5), which caused the 
convolutions fail as a result of a minimum of features needed 
according to the convolution kernels and max-pooling dimen-
sions; hence, we ran the training and testing with 19 encodings.

Benchmarking

Owing to the imbalance of the testing data, we decided to use 
the MCC31 as the primary score for the models, so we based 
our choices of the best models on this score. We also measured 
the SP, SN, ACC, and F1-score. These scores are calculated as 
equations (1) to (5) specified below. For phase 3, as it is a mul-
ticlass classification task, we got the 5 scores for each class and 
averaged them over the total count of samples using equation 
(6). After all the scores were gathered, we selected the fold with 
the best MCC score for the prediction for each combination of 
encoding and machine learning method (eg, CNN or RF)

MCC
TP TN FP FN

TP FP TP FN TN FP TN FN
=

−

+( ) +( ) +( ) +

* *
 *  *  * ( ) �

(1)

Table 2.  List of the iFeature descriptors used for encoding the 
proteins.

Short name Full name Dimension

AAC Amino acid composition 20

APAAC Amphiphilic PAAC 80

CKSAAGP Composition of k-spaced 
amino acid group pairs

150

CKSAAP Composition of k-spaced 
amino acid pairs

2400

CTDC Composition/Transition/
Distribution (Composition)

39

CTDD Composition/Transition/
Distribution (Distribution)

195

CTDT Composition/Transition/
Distribution (Transition)

39

CTriad Conjoint triad 343

DDE Dipeptide deviation from 
expected mean

400

DPC Dipeptide composition 400

GAAC Grouped amino acid 
composition

5

GDPC Grouped dipeptide 
composition

25

Geary Geary correlation 240

GTPC Grouped tripeptide 
composition

125

KSCTriad Conjoint k-spaced triad 343

Moran Moran correlation 240

NMBroto Normalized Moreau-Broto 
correlation

240

PAAC Pseudo-amino acid 
composition

50

QSOrder Quasi-sequence-order 
descriptors

100

SOCNumber Sequence-order-coupling 
number

60
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SP TN

TN FP
=

+ �
(2)

	
SN TP

TP FN
=
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+
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F TP

TP FP FN
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2
=
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globalScore

score samples

totalSamples
classes class class

= ∑  * 

�
(6)

Web server implementation

The Malivhu web server was developed in Python and the 
front end is built on the Django framework, whereas the back-
end is based on Python scripts that run on our HPC as SLURM 
jobs due to the time and resources submissions can take. The 
neural networks were trained using the Tensorflow32 wrapper, 

Figure 1.  Training and test split, and neural network architecture. (A) A, B and C are the classes that the model will try to predict, A with size = 9, B with 

size = 8, and C with size = 6. As C is the smallest class, for building the training set, we take 6 random samples of each class, which would leave 3 samples 

from class A and 2 samples from class B out. This yields 18 data points. Here, we take 90% of those (16) for training the model, and 10% (2) for testing it. 

Added to these 2 test samples would be the 3 samples from class A and the 2 samples from class B that were left aside. (B) Diagram of the neural 

network for all phases. The first convolutional layer outputs 16 filters. The second convolutional layer outputs 32 filters. The first dense layer varies in 

number of neurons. The final layer has 2 neurons, except for phase 3, which has 3 neurons due to having 3 classes. All layers have an ReLU activation 

function and use a He initializer, except for the last one, which applies softmax and uses the default Tensorflow initializer.
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Keras,33 whereas the RF models were trained using the scikit-
learn34 Python library. For secondary structure prediction, we 
use PSIPRED.35 For tertiary structure prediction, we use 
AlphaFold.36 For displaying the tertiary structures, we use 
NGL Viewer.37 For displaying the interaction network in 
phase 4, we use Cytoscape.js.38

Workflow

The Malivhu workflow works on the previously described 
4-phase process, with a previous preprocessing step which eval-
uates all sequences by their length, and if any sequence is 
shorter than 31, the whole process completely stops (Figure 2).

Results
Phase 1—ssRNA(+) virus proteins vs other sources

After training and testing all encodings and some combina-
tions for all the 4 main models, whereas composition of 

k-spaced amino acid pair (CKSAAP) performed the best for 
the CNN as a single encoding for both 5-fold and 10-fold 
cross-validation with 0.933 and 0.935, respectively, the win-
ning CNN model was trained with 5-fold cross-validation 
using the dipeptide deviation from expected mean 
(DDE) + dipeptide composition (DPC) combination for 
the protein encodings, getting a 0.9742 MCC, whereas the 
one 10-fold cross-validation was close with 0.973 MCC. In 
contrast, the RF models did not perform well on this phase, 
getting at most 0.6731 MCC with 10-fold cross-validation 
using CKSAAP encoding (Table 3). The receiver operating 
characteristic (ROC) (Figure 3A) and precision-recall (PR) 
(Figure 4A) curves show that the area under the curve 
(AUC) is 1.0 for the training set, whereas for the independ-
ent test set, it is quite close to 1.0 (0.9964 and 0.9988, 
respectively), which indicates that the classifier doing a 
close to perfect distinction between ssRNA(+) proteins and 
other proteins.

Figure 2.  Workflow of the Malivhu backend. The user inputs a viral protein set and a human protein set. Viral proteins go through a preprocessing phase, 

which evaluates if all sequences are longer than 31 amino-acids. If not, the process is aborted. If they are, they go to phase 1, where Malivhu filters 

proteins from virus belonging to the ssRNA(+) class, discarding those proteins that do not pass the filter. Those that pass go to phase 2, where it filters 

viral proteins that belong to the Coronaviridae family, discarding those proteins that do not pass the filter. Coronaviridae proteins go to phase 3, where 

Malivhu filters those proteins that belong to the SARS or MERS species, again discarding those proteins that do not come from any of those species. 

These proteins go to phase 4 plus the human proteins, where it uses BLAST to find whether the SARS proteins belong to SARS-CoV or SARS-CoV-2. 

After the viral proteins are split in 3 groups (SARS-CoV, SARS-CoV-2, and MERS), they go to their respective machine learning model to predict their 

interactions with all human proteins.

Table 3.  Phase 1 independent-testing results between CNN and RF models with 5-fold and 10-fold cross-validations.

Model Encoding Folds MCC SP (%) SN (%) ACC (%) F1 (%)

CNN DDE + DPC 5 0.9742 97.44 99.07 99.07 99.07

CNN DDE + DPC 10 0.9730 97.26 99.03 99.03 99.03

RF CKSAAP 5 0.6652 91.74 92.89 92.85 94.43

RF CKSAAP 10 0.6731 91.82 93.03 92.99 94.51

The best score for each metric is in bold.
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Figure 3.  ROC curves for every phase. (A) ROC curve for phase 1, which filters ssRNA(+) proteins. (B) ROC curve for phase 2, which filters 

Coronaviridae proteins. (C) ROC curve for phase 3, which filters SARS and MERS proteins. This graph shows 6 labels in the legend due to the model 

being a multiclass predictor instead of a binary one, like other phases, but all lines followed the same behavior. (D) ROC curve for prediction of human-

SARS proteins. (E) ROC curve for prediction of human-SARS2 proteins. (F) ROC curve for prediction of human-MERS proteins.
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Figure 4.  PR curves for every phase. (A) PR curve for phase 1, which filters ssRNA(+) proteins. (B) PR curve for phase 2, which filters Coronaviridae 

proteins. (C) PR curve for phase 3, which filters SARS and MERS proteins. This graph shows 6 labels in the legend due to the model being a multiclass 

predictor instead of a binary one, like other phases, but all lines followed the same behavior. (D) PR curve for prediction of human-SARS proteins. (E) PR 

curve for prediction of human-SARS2 proteins. (F) PR curve for prediction of human-MERS proteins.
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Phase 2—Coronaviridae proteins vs  
other ssRNA(+) virus proteins

The results for phase 2 were incredibly close for all main mod-
els, and the scores were outstanding, with CKSAAP encoding 
yielding the best predictions for every model. Here, the RF 
models got more than 0.99 (or 99%) in all metrics, being the 
10-fold model performing slightly better in the independent 
tests. Simultaneously, the CNN for both 5-fold and 10-fold 
cross-validations had the same score for MCC, SN, ACC, and 
F1, and SP was higher in the 5-fold model by just 0.01%, 
respectively. As MCC is the main criteria to choose a model, 
we picked the 5-fold cross-validation CNN model to be ran on 
Malivhu despite every single model having high scores (Table 
4). Phase 2 presents almost perfect ROC (Figure 3B) and PR 
(Figure 4B) curves with an AUC of 1.0 for training set both 
PR and ROC, while getting 0.9997 for ROC and 0.9998 for 
PR for the independent test set, which shows that here the 
model comfortably distinguishes between Coronaviridae and 
non-Coronaviridae proteins.

Phase 3— severe acute respiratory syndrome and 
Middle East respiratory syndrome proteins vs other 
Coronaviridae proteins

Among all phases, the best scores were obtained by phase 3 
(Table 5). Here, RF beat phase 2 CNN best MCC (0.9965), 
obtaining 0.9976 using Composition/Transition/Distribution 
(Composition) (CTDC) encoding and 5-fold cross-validation. 
However, the most astonishing result is the CNN getting 1.0 
in every single score with 10-fold and 3 different encoding 
combinations for both training and testing phases. Owing to 

the perfect scores obtained by a basic encoding, we did not try 
any combinations (Additional file 4: Table S9). This indicates 
that both SARS and MERS species are easily identifiable 
among the Coronaviridae family. It is also remarkable how 
GAAC was one of the 2 best encodings for the 10-fold RF 
model while only having 5 features (Additional file 4: Table 
S9). Phase 3 generated perfect ROC (Figure 3C) and PR 
(Figure 4C) curves, having an AUC of 1.0 with both training 
and test sets, except for the non–SARS-MERS class PR curve, 
which had 0.9999. These results confirm what the metrics say 
about the impeccability of the model’s ability to predict each 
class.

Phase 4—interaction between human proteins  
and SARS-CoV, SARS-CoV-2, and Middle  
East respiratory syndrome proteins
For phase 4, we trained and tested the interactions for all 3 
viruses separately (Additional file 4: Table S10), so each one 
has a different model. In general, the scores were not as good as 
the previous phases, especially the MCC and the SP, possibly 
caused by 3 reasons: data set imbalance, data set size (in the 
cases of SARS-CoV and MERS), and a small overfitting (in 
the case of the CNNs). For SARS-CoV, the RF models per-
formed better than the CNN models, where the 10-fold model 
with Composition/Transition/Distribution (Distribution) 
(CTDD) encoding got the best results with an MCC of 
0.8303, but the SN, ACC, and F1 score were over 93% (Table 
6), whereas the RF model with 10-fold cross-validation 
achieved 0.8722 MCC and over 94% in SN, ACC, and F1 
score. On the contrary, the ROC (Figure 3D) and PR (Figure 
4D) curves show a more optimistic result, where all curves have 

Table 4.  Phase 2 independent-testing results between CNN and RF models with 5-fold and 10-fold cross-validations.

Model Encoding Folds MCC SP (%) SN (%) ACC (%) F1 (%)

CNN CKSAAP 5 0.9965 99.80 99.83 99.83 99.83

CNN CKSAAP 10 0.9959 99.80 99.80 99.80 99.80

RF CKSAAP 5 0.9926 99.48 99.64 99.64 99.64

RF CKSAAP 10 0.9929 99.51 99.66 99.66 99.65

The best score for each metric is in bold.

Table 5.  Phase 3 independent-testing results between CNN and RF models with 5-fold and 10-fold cross-validations.

Model Encoding Folds MCC SP (%) SN (%) ACC (%) F1 (%)

CNN CTriad 5 0.9999 99.9999 99.9999 99.9999 99.9999

CNN CKSAAP 10 1.0000 100.00 100.00 100.00 100.00

RF CTDC 5 0.9976 99.95 99.85 99.89 99.85

RF GAAC
CTDD

10 0.9956 99.89 99.68 99.83 99.68

The best score for each metric is in bold.
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an AUC of more than 0.95, which means that despite having a 
lower MCC, it still has a high degree of confidence when pre-
dicting the interactions.

For SARS-CoV-2, the MCC and F1 were slightly better 
than in SARS-CoV, and the SP improved by more than 6 
points, even though the SN and ACC decreased by 0.2%. For 
these interactions, the CNN models performed better than the 
RF models in all metrics using the CKSAAP encoding, having 
both 5-fold and 10-fold cross-validation models similar scores, 
where the MCC and SP were 0.886 and 93.06% for 5-fold 
cross-validation, respectively (Table 7). Here, the ROC and PR 
curves show that the model perfectly adjusts to the training set, 
while it still somewhat struggles with the test data set, but still 
has high AUC values of 0.9763 for ROC (Figure 3E) and 
0.9815 for PR (Figure 4E) for independent tests.

Interestingly enough, even if it had the smallest data set, 
MERS was the virus species in phase 4 which had the best 
scores. Nonetheless, probably due to the data set size, the RF 
models had the best scores, except for SP. In this case, the RF 
with 10-fold cross-validation achieved the highest MCC 
(0.9153), followed by the RF with 5-fold cross-validation, 
which had an MCC of 0.8940, both higher than the one 
achieved by both CNN. In addition, the 10-fold RF model has 
3 possible encodings, but for simplicity, we chose pseudo-
amino acid composition (PAAC) as the encoding for Malivhu 
(Table 8). On the same line as the other phase 4 viruses, the PR 
(Figure 3F) and ROC (Figure 4F) curves had an AUC above 
0.97, showing that the model predicts with a high degree of 
certainty notwithstanding the small data set.

Comparison with other human-virus  
protein-protein interaction prediction tools

We compared the Malivhu performance against 2 human-virus 
PPI prediction tools that also use machine learning, namely 
HVPPI39 and LSTM-PHV.40 As LSTM-PHV web server 
only allows sequences up to 1000 amino-acids long, we removed 
from our phase 4 test sets those interactions that contained 
sequences longer than this limit. After this filtering, the SARS-
CoV data set was left with 117 interactions, the SARS-CoV-2 
data set with 1618, and the MERS data set with 38 (Table 9).

The tests show that Malivhu got accuracies over 90% for all 
3 viruses, resulting in 94.87% for SARS-CoV, 95.92% for 
SARS-CoV-2, and 92.11% for MERS. HVPPI obtained 
42.74% for SARS-CoV, 41.78% for SARS-CoV-2, and 31.58% 
for MERS. Finally, LSTM-PHV got 66.67% for SARS-CoV, 
63.84% for SARS-CoV-2, and 57.89% for MERS (Table 10).

Web server

Malivhu can run up to its 4 phases sequentially, or the users can 
choose to skip the first 3 phases and run only phase 4 specify-
ing the strain that the viral proteins come from. For phases 2 
and 3, previous phases must be run too. All sequences must 
have, at least, 31 amino-acids and they must be in a valid 
FASTA format. The user can also input their e-mail, so the 
server can send a notification when it finishes predicting the 
selected phases.

The results page displays the score for each prediction in 
each phase for every protein and PPI. The user can predict the 

Table 6.  Phase 4—SARS-CoV independent-testing results between CNN and RF models with 5-fold and 10-fold cross-validations.

Model Encoding Folds MCC SP (%) SN (%) ACC (%) F1 (%)

CNN PAAC 5 0.8590 87.33 94.24 94.24 94.09

CNN CTDD 10 0.8303 88.73 93.09 93.09 93.04

RF PAAC + CKSAAP 5 0.8658 86.95 94.47 94.47 94.30

RF CTDD 10 0.8722 87.05 94.70 94.70 94.53

The best score for each metric is in bold.

Table 7.  Phase 4—SARS-CoV-2 independent-testing results between CNN and RF models with 5-fold and 10-fold cross-validations.

Model Encoding Folds MCC SP (%) SN (%) ACC (%) F1 (%)

CNN CKSAAP 5 0.8860 93.06 94.50 94.50 94.47

CNN CKSAAP 10 0.8856 92.96 94.28 94.28 94.25

RF DDE 5 0.8555 89.87 92.86 92.86 92.74

RF APAAC + DDE 10 0.8640 90.72 93.33 93.33 93.23

The best score for each metric is in bold.
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secondary and tertiary structure of the proteins in phases 1 to 
3, and the secondary structure of proteins in phase 4. The sec-
ondary structure will be displayed in PSIPRED format, 
whereas the tertiary structure can be viewed as a 3-dimensional 
(3D) model and downloaded as a PDB file or an image. If the 
phase 4 was executed, the resulting table shows that each 
human protein contains the symbol name, gene tissue expres-
sion (GTEx), gene ontology (GO), KEGG, subcellular loca-
tion information, given that these entries have a UniProt ID or 
Swiss-Prot ID in their names, and an mass spectometry inter-
action statistics (MiST) score for experimentally verified inter-
actions found in Gordon et al.15 Along with this, the user can 
view the interactions network between the viral and human 
proteins interactively and will be able to download the image 
and the network JSON, and the nodes (or proteins) in the net-
work contain links to UniProt and NCBI, whenever available 
according to the entry name, and also a prediction of all sub-
mitted human proteins against all popular proteins belonging 
to SARS-CoV, SARS-CoV-2, and MERS. Each node in these 
networks is linked to NCBI and UniProt, depending on 
whether they are found in these or not.

Discussion
In this study, we demonstrate significant differences between 
ssRNA(+) viral proteins and other proteins, as well as the ease 
of identifying Coronaviridae proteins. In addition, we show 
that proteins from SARS and MERS exhibit distinct charac-
teristics compared with other Coronaviridae species. These 
findings suggest that the protein divergence within the SARS/
MERS viruses is substantial enough to classify them into sepa-
rate groups from other viral proteins. Furthermore, our 

benchmarks indicate an increase in the classification difficulty 
when predicting interactions between proteins from different 
species compared with distinguishing the origin of a protein. 
Despite this challenge, Malivhu significantly outperforms 
other tools, likely attributed to having a specific model for each 
virus rather than a general model for any virus. Even without 
the need to predict interactions, Malivhu serves as a reliable 
tool for verifying the classification of viral proteins.

Protein-protein interaction prediction worked better with 
RF than CNN for human-SARS-CoV and human-MERS, 
and, while human-SARS-CoV-2 PPI prediction could use 
some more work, the results were satisfactory when looking at 
the ACC, ROC AUC, and PR AUC values. Nonetheless, there 
is already a big enough data set to improve the results with a 
better model; hence, we should be able to raise the prediction 
power. This can be achieved not only using standard convolu-
tional networks but also using other novel architectures, layers, 
and techniques like transformers or residual neural networks 
for raw amino acid sequences due to their sequential nature, 
while training with linear layers other descriptors, combining 
the output of those layers into 1 vector and pass it to a final set 
of layers. With new deep learning methods based on trans-
formers being developed for natural language processing, such 
as XLNet,41 BERT,42 or UniLM,43 and scientists applying 
transformer and attention-based deep learning models for 
drug-target interactions prediction,44,45 compound-target 
interactions prediction,46,47 and PPIs prediction,48,49 highlight-
ing PRoBERTa, a PPI predictor reporting up to 99% accuracy, 
it might be worth testing these architectures. This, in addition 
to applying dimensionality reduction to the encoded proteins, 
so the models have to compute less variables and achieve con-
vergence with more ease, and using more encoding combina-
tions that do not only mix high-scoring representations but 
also separate approaches that can depict different perspectives 
of a protein, which by themselves might not yield a good pre-
diction, but when complemented with other encodings that 
contain unrelated attributes, it can show a full picture of the 
protein and further help the model to make more accurate 
classifications.

In addition, we establish evidence of how different encod-
ings and combinations can work for different situations, 

Table 8.  Phase 4—MERS independent-testing results between CNN and RF models with 5-fold and 10-fold cross-validations.

Model Encoding Folds MCC SP (%) SN (%) ACC (%) F1 (%)

CNN APAAC 5 0.8818 96.37% 95.45% 95.45% 95.55%

CNN PAAC 10 0.8735 91.90% 95.45% 95.45% 95.45%

RF DDE 5 0.8940 87.66% 96.21% 96.21% 96.09%

RF APAAC + DDE
APAAC + CTDD
PAAC

10 0.9153 90.13% 96.97% 96.97% 96.89%

The best score for each metric is in bold.

Table 9.  Phase 4 data set for comparison with other human-virus PPI 
prediction tools.

Virus Positive 
interactions

Negative 
interactions

Total 
interactions

SARS-CoV 77 40 117

SARS-CoV-2 653 965 1618

MERS 17 21 38
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making them situational, so there is no best encoding for every 
model, even though generally the CKSAAP encoding seems to 
be excellent when there is a large amount of data, albeit not so 
much for RF models with a small data set (Additional file 4: 
Tables S9 to S14).

Malivhu can grow its prediction capabilities by not only 
including SARS and MERS viruses, but other viral species too, 
focusing on viruses that affect humans. However, this also 
requires more interactions found in the laboratories to increase 
the data set size due to the dependence of deep learning models 
on the training data size,50 and therefore, the ability for the 
model to learn. Following this reasoning, the next step might 
be including well-studied viruses like the ones that cause hepa-
titis, the herpesviruses, or the ever-changing influenza, all fol-
lowing the same 4-phase procedure. Nevertheless, the main 
priority remains on enhancing the existing phase 4 models.

Applications of Malivhu

Since its inception, the main objective for Malivhu was to pre-
dict human-virus interactions, especially SARS and MERS. 
Thus, whenever a person wants to verify if a certain set of viral 
proteins from those species interact with a set of human pro-
teins, they can input their FASTA files and get the probabilities 
of interaction, so they can proceed to perform experiments to 
confirm if the positive interactions are true. Computational 
predictions are exceptionally useful for scientists, so they do not 
spend time and resources testing interactions that otherwise, 
with a tool like Malivhu, would have been discarded 
immediately.

Despite being a tool that was mainly for predicting interac-
tions, its first 3 phases can also be helpful for finding out whether 
a set of proteins belong to a ssRNA(+), Coronaviridae, or SARS 
or MERS. Considering that these phases were trained with, not 
only whole proteins but also fragments of these, the utility it 
provides increases greatly, allowing researchers to input their 
incomplete and unconfirmed sequences to see whether they 
belong to any of these groups or not. Moreover, Malivhu also 
lets the user predict the secondary structure and download the 
PSIPRED file for all proteins, as well as letting them predict 
the tertiary structure, plus being able to view these structures 
and download the files for further applications.
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