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1  |  INTRODUC TION

Adenoviruses (AdVs) comprise more than 300 different types of 
pathogens, including more than 100 from humans (Greber,  2020; 
Harrach et al., 2019). Human AdVs (HAdV) are classified into species 
A to G, as curated by the Human Adenovirus Working Group (http://
hadvwg.gmu.edu/). They not only cause self-limiting respiratory, oc-
ular, blood-borne, or intestinal infections, but also severe infections 
in immunocompromised individuals, possibly involving reactivation of 
persistent viruses (Ghebremedhin, 2014; Lion, 2019; Matthes-Martin 
et al., 2013; Mohamed Ismail et al., 2019; Prasad & Greber, 2021).

Their large genomic capacity, the high stability, and ease of 
production have made HAdVs important vectors for gene therapy, 
oncolytic applications, and vaccinations (Brucher et al., 2021; Gao 
et al., 2019; Li, 2019; Schmid et al., 2018; Waehler et al., 2007). For 
example, AdVs can be grown to high titers and purified to near ho-
mogeneity under good manufacturing practice (Raty et al.,  2008; 
Verma & Weitzman,  2005). This has recently been achieved also 
with helper-dependent, so-called gutless HAdV vectors lacking any 
viral sequences except the encapsidation signal and the inverted 
terminal repeats (Brucher et al.,  2021; Parks et al.,  1996). Such 
vectors express no viral proteins and allow transgene expression 
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Abstract
Adenoviruses (AdVs) are widespread in vertebrates. They infect the respiratory and 
gastrointestinal tracts, the eyes, heart, liver, and kidney, and are lethal to immunosup-
pressed people. Mastadenoviruses infecting mammals comprise several hundred dif-
ferent types, and many specifically infect humans. Human adenoviruses are the most 
widely used vectors in clinical applications, including cancer treatment and COVID-19 
vaccination. AdV vectors are physically and genetically stable and generally safe in 
humans. The particles have an icosahedral coat and a nucleoprotein core with a DNA 
genome. We describe the concept of AdV cell entry and highlight recent advances in 
cytoplasmic transport, uncoating, and nuclear import of the viral DNA. We highlight 
a recently discovered “linchpin” function of the virion protein V ensuring cytoplasmic 
particle stability, which is relaxed at the nuclear pore complex by cues from the E3 
ubiquitin ligase Mind bomb 1 (MIB1) and the proteasome triggering disruption. Capsid 
disruption by kinesin motor proteins and microtubules exposes the linchpin and ren-
ders protein V a target for MIB1 ubiquitination, which dissociates V from viral DNA 
and enhances DNA nuclear import. These advances uncover mechanisms controlling 
capsid stability and premature uncoating and provide insight into nuclear transport of 
nucleic acids.
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over prolonged periods of time, weeks, and months (Alonso-Padilla 
et al., 2016; Sakhuja et al., 2003).

AdVs are widely used gene delivery agents because they effi-
ciently transduce both dividing and quiescent cells and have high 
physical and genetic stability. A large number of variants is available 
for tailored applications and can bypass preexisting immunity, which 
is a key issue in many therapeutic vector applications (Fausther-
Bovendo & Kobinger,  2014). Notably, infection pathways of AdVs 
have been elucidated in sufficient detail by mechanistic studies 
and omics approaches to grant clinical applications to AdV vectors, 
such as HAdV types of the species B and C and simian AdV (Capone 
et al.,  2013; Mendonca et al.,  2021; Zhao et al.,  2019). HAdV-E4 
and HAdV-B7 were successfully used as a vaccine to suppress 
acute respiratory diseases caused by adenoviruses in recruits (Hoke 
et al., 2012; Top et al., 1971).

Despite these achievements, major challenges for the field have 
remained, including the immunogenic features of AdVs, mechanisms 
limiting vector efficacies in therapies, or the nature of cell-to-cell in-
fection variability (Allen & Byrnes, 2019; Appaiahgari & Vrati, 2015; 
Atasheva et al.,  2019; Sohn & Hearing,  2019; Suomalainen & 
Greber, 2021). Here, we provide an update on the biology of AdV 
cell entry into cells with a focus on virion stability, uncoating, and 
nuclear import of the viral genome.

2  |  THE VIRION

AdV particles have an icosahedral symmetry of pseudo T = 25, where 
each of the 20 facets harbors 12 trimers of the major coat protein 
hexon (Benevento et al., 2014; van Oostrum & Burnett, 1985). The 
hexon protein (also referred to as protein II) contains hypervariable 
regions (HVRs) exposed to the virion outside. The HVRs are subject 
to immune recognition by both neutralizing antibodies and virus-
specific T-cell responses (Deal et al., 2013). Each of the 12 vertices 
is made up of 5 copies of penton base (III), which anchor the trim-
eric fiber protein (IV) protruding away from the capsid (Cheneau & 
Kremer, 2020; Stasiak & Stehle, 2020). The HAdV particles are held 
together by cementing proteins, as indicated by high resolution X-
ray and cryo-EM structure analyses (Dai et al., 2017; Liu et al., 2010; 
Perez-Illana et al., 2021; Rafie et al., 2021; Reddy & Nemerow, 2014; 
Yu et al.,  2017, 2022). Initial disputes about the location of minor 
proteins have now been settled (reviewed in 41). For example, five 
copies of protein IIIa are located inside the virion beneath each ver-
tex and they link the pentons to the peripentonal hexons. IIIa also 
links to the minor capsid protein VIII, but the location of the entire 
IIIa is unknown since the C-terminal 40% of the protein are not ico-
sahedrally ordered and remain unresolved. The roles of IIIa and VIII 
in virus entry are unknown, aside from the observation that they 
are released from the incoming HAdV-C2 particles before or during 
endosomal escape (Greber et al., 1993).

The minor capsid stabilizing protein IX is located on the virion 
surface. IX increases the thermoresistance of virions, as indicated by 
HAdV-C5 knockout mutants (Colby & Shenk, 1981). It has 140 amino 

acids in case of HAdV-C5, and the virion harbors 240 copies of IX. 
Like protein V (see below), IX is only found in human and nonhuman 
Mastadenoviruses. The N-terminal domains of three IX proteins form 
a triskelion in the valleys between hexons, four per facet, one in the 
center, and three toward each of the edges. The N terminus of IX is 
separated by an unstructured rope-like stretch of amino acids, which 
extend to the C-terminal alpha helical domain. Toward the edge of 
the facets, three α-helices (each originating from a distinct triskelion 
of the same facet) bundle up to a trimeric parallel coiled-coil struc-
ture, which projects toward the outside of the virion. This bundle is 
joined by a protein IX helix from a neighboring facet, and thereby 
forms a tetrameric bundle of three parallel and one antiparallel α-
helices (Dai et al., 2017; Yu et al., 2017). In this way, there are 20 
protein IX molecules per facet arranged into three tetrameric helical 
bundles and four trimeric triskelions. While the triskelions of IX me-
diate thermoresistance of the virion (Vellinga et al., 2005), the helical 
bundles help the virion to orchestrate the capsid disassembly at the 
nuclear pore complex (NPC) (Strunze et al., 2011).

Another small virion protein has a well-described function, the 
internal protein VI. VI disrupts membranes (Luisoni et al.,  2015; 
Moyer et al., 2011; Wiethoff et al., 2005). There are 360 copies of VI 
per virion. Some of the cryo-EM density of VI could be localized near 
the cavities of hexon trimers in HAdV-C5 and D26, although not in 
all cavities, of which there are 240 in the virion (Dai et al., 2017; Yu 
et al., 2017). The full protein VI has not been localized suggesting 
that large parts of it are icosahedrally disordered and positioned in 
various intravirion locations. It remains to be elucidated how the 
competition for hexon cavity binding by another internal protein, 
VII, impinges on the localization of VI in the virion (Dai et al., 2017; 
Hernando-Perez et al., 2020). Intriguingly, there are no traces of VII 
in the cavities of hexon in the membrane disruption-defective TS1 
virions, which lack sufficient activity of the viral protease p23 to 
process a range of minor virion proteins, including the precursors 
of IIIa, VI, VII, VIII, X, terminal protein and also the scaffold protein 
L1-52/55 K (Mangel & San, 2014; Yu et al., 2022). Likewise, virions 
lacking VII are defective at endosomal lysis (Ostapchuk et al., 2017), 
presumably because they fail to expose protein VI for membrane 
disruption (Burckhardt et al.,  2011; Hernando-Perez et al.,  2020; 
Pied & Wodrich, 2019).

Within the capsid, AdV particles harbor a single copy of a linear 
double-stranded viral DNA attached at both ends to a single copy 
of the terminal protein. The genome is condensed with about 800 
copies of the major DNA-associated protein VII (Martin-Gonzalez 
et al., 2019). It also contains about 150 copies of the minor DNA-
binding protein V, which link the DNA to the capsid by binding to 
penton base and protein VI (Perez-Berna et al., 2015; Perez-Vargas 
et al.,  2014). Another basic protein of the virion, protein X, also 
known as μ, has about the same abundance as V, but a mass of only 
9 kDa, four time less than V. Proteins VII, V, and μ make crosslinkable 
contacts and are part of the DNA core (Chatterjee et al., 1985). It 
has been proposed that VII wraps and bundles DNA segments by 
interacting with μ, and V has DNA decondensing functions (Gallardo 
et al., 2021).
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In sum, the structure, location, and function of proteins in the HAdV 
capsid are well understood thanks to cryo-EM analyses, cell biologi-
cal and immunological studies in model organisms, and applications of 
vectors in preclinical and clinical settings, although the molecular struc-
ture of the DNA core is much less understood. In turn, cryo-EM struc-
tures of nonhuman AdVs from dog, cattle, bats, or lizard are emerging, 
and report interesting similarities, but also differences to HAdV cap-
sids. Differences affect the location and interconnection of stabiliz-
ing proteins (Cheng et al.,  2014; Hackenbrack et al.,  2017; Marabini 
et al., 2021; Schoehn et al., 2008). It will be important to annotate the 
structural differences between human and animal AdVs and assign them 
to functions in entry and morphogenesis. This may then pave the way 
for systematic considerations of nonhuman AdVs in gene therapy and 
vaccinations (Bots & Hoeben, 2020; Greber & Gomez-Gonzalez, 2021).

3  |  STEPS IN AdV ENTRY UPSTRE AM OF 
THE CELL NUCLEUS

AdV entry is best characterized in epithelial cells, although entry 
into immune cells is of emerging importance (for reviews, see [Barry 
et al., 2020; Greber & Flatt, 2019]). Here we carve out the principles of 
AdV entry, as derived mostly from studies with HAdV-C, the best char-
acterized AdV. Entry occurs in sequential steps, starting with virion 
attachment (Arnberg, 2012; Stewart & Nemerow, 2007), cell signal-
ing (Wolfrum & Greber, 2013), endocytosis (Meier & Greber, 2003), 
endosomal rupture and removal of disrupted endosomes (Luisoni 
et al., 2016; Montespan et al., 2017; Suomalainen et al., 2013), trans-
port through the cytosol (Greber & Way, 2006; Scherer et al., 2020), 
separation of the genome from the capsid, and genome nuclear import 
(see Figure 1; [Flatt & Greber, 2017]).

3.1  |  Receptors, attachment factors, and 
facilitators

All viruses interact with extracellular proteins, sugars, lipids, 
and solutes before binding to target cells and initiating infection 
(Atasheva et al., 2019; Bremner et al., 2009; Doronin et al., 2012; 
Eichholz et al., 2016; Hendrickx et al., 2014; Kelkar et al., 2006; 
Khare et al., 2012). We use the terms “receptor, attachment factor, 
and infection facilitator” to refer to host molecules located out-
side of the cell and influencing the course of infection, as defined 
earlier (Yamauchi & Greber, 2016). Accordingly, receptors are cell 
surface molecules that directly bind to a component of the virus 
particle. This binding reaction leads to infection of a susceptible 
cell. Attachment factors are host molecules that directly bind to 
the virion but do not necessarily lead to cell infection, whereas 
facilitators are molecules that enhance the infection without di-
rectly contacting the virion.

HAdVs typically initiate infection by high affinity or high avidity 
binding of their fiber knob proteins. This has been widely demon-
strated with cells lacking fiber receptors and retargeted AdV particles 

(for conceptual reviews, see [Arnberg,  2012; Baker, Greenshields-
Watson, et al.,  2019; Barry et al.,  2020; Excoffon,  2020; Luisoni & 
Greber, 2016; Nemerow & Stewart, 2016; Wolfrum & Greber, 2013]). 
The importance of fiber knob binding to receptors was first demon-
strated with coxsackievirus AdV receptor (CAR), a high affinity attach-
ment factor for most HAdVs, including canine AdV-2 (CAdV-2) and 
avian AdV CELO (Soudais et al., 2000), but not for the B, D, and G 
types (Bergelson et al., 1997; Freimuth et al., 1999; Kirby et al., 2000; 
Roelvink et al., 1998; Tomko et al., 1997). Species B and D use CD46 
(Cupelli et al., 2010; Fleischli et al., 2005, 2007; Gaggar et al., 2003; 
Gustafsson et al.,  2010; Pache et al.,  2008; Persson et al.,  2009; 
Russell, 2004; Sakurai et al., 2006, 2007; Sirena et al., 2004, 2005; Tuve 
et al., 2006; Wang, Li, Yumul, et al., 2011; Wang, Yumul, et al., 2013) or 
desmoglein (DSG)-2 (Hemsath et al., 2022; Trinh et al., 2012; Vassal-
Stermann et al., 2019; Wang et al., 2015; Wang, Li, Liu, et al., 2011; 
Wang, Li, Yumul, et al.,  2011; Wang, Yumul, et al.,  2013). AdV-D26 
has been reported to use CD46 or sialic acid as a receptor through 
fiber knob or hexon as ligands (Baker, Mundy, et al., 2019; Hemsath 
et al., 2022; Persson et al., 2021).

Hexon was initially shown to be an AdV-C2, C5, D26, and B35 
ligand for virion binding to the scavenger receptor SR-A6 (MARCO) 
(Maler et al., 2017; Stichling et al., 2018). Scavenger receptors con-
stitute a large family of structurally diverse cell surface receptors. 
Besides viruses, they interact with and mediate the uptake of a wide 
range of ligands into immune cells. Ligands include modified and 
nonmodified self-molecules, nonopsonized particles, and microbial 
ligands. Regarding viruses, human and murine SR-A6 have been im-
plicated in infection of epithelial cells with herpes simplex virus type 
1, and SR-A1 and SR-F1/2 (SREC-1) are surface receptor candidates 
for HAdV-C5 on Kupffer cells and liver sinusoidal endothelial cells 
(Khare et al., 2012; MacLeod et al., 2013).

HAdV-C2/C5 hexon interactions with SR-A6 lead to virus entry, 
transduction, and cytokine responses in murine macrophages in 
vitro and in vivo, but not in human epithelial A549 cells, where 
CAR and integrins function as entry receptors (Khare et al., 2012; 
Maler et al.,  2017; Stichling et al.,  2018). Notably, the HAdV-C5 
hexon has a negatively charged hypervariable region 1 binding to 
SR-A6 (Stichling et al., 2018). Another hypervariable region of hexon, 
HVR7 is, however, likely not involved in the SR-A6 entry pathway, 
as the replacement of the HVR7 INTETL sequence with GNNSTY 
(ablating factor X binding) does not affect macrophage entry (Ma 
et al., 2015; Schmid et al., 2018). These results are in agreement with 
human mononuclear phagocyte data, where coagulation factor X 
(FX) in complex with HAdV-C5 did not lead to enhancement of an 
innate immune response via a Toll-like receptor pathway compared 
to HAdV-C5 alone (Eichholz et al., 2015).

3.2  |  Following receptor binding

Upon binding to a fiber receptor, HAdVs typically engage a second-
ary receptor for endocytic uptake, usually an active state αvβ3/αvβ5 
integrin through an arginine–glycine–aspartate (RGD) sequence in the 
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penton base protein. This elicits cell survival signals and triggers endo-
cytosis and eventually also endosomal lysis (Luisoni & Greber, 2016; 
Nemerow,  2000). The latter is triggered by upstream actomyosin-
dependent drifting motions of virus particles bound to CAR, which leads 
to exposure of the membrane lytic protein VI, and sphingolipid con-
version to ceramide in the plasma membrane (Burckhardt et al., 2011; 
Luisoni et al., 2015; Wiethoff & Nemerow, 2015). Although an early 
paper had reported that the function of incoming protein VI required 
intact microtubules (Wodrich et al., 2010), it is now accepted that en-
dosomal escape is independent of microtubules (Lagadec et al., 2021; 
Suomalainen et al., 1999). Protein VI readily separates from capsid upon 
rupture of endosomes, as shown by immunostainings and galectin-3/8 
reporter protein expression to monitor broken endosomes (Burckhardt 
et al., 2011; Luisoni et al., 2016; Maier et al., 2012).

In contrast to HAdVs, mouse AdV (MAdV) types 1 and 3 bind with 
their fiber knobs to integrins αvβ6 and αvβ8 at both high and low af-
finity and thereby trigger infection (Bieri et al.,  2021). Interestingly, 
MAdV-1 and -3 evolved a dual integrin binding motif, RGD, and LXXL 
(L for leucine and X for any amino acid). This motif has higher affinity for 
extended open integrins engaged in cytoskeletal interaction, and lower 
affinity for conformationally closed integrins that are not constrained 

by the cytoskeleton (Bieri et al., 2021; Campbell & Humphries, 2011). 
The former integrins are immobile, and the latter ones are mobile in 
the plasma membrane, arguing that virion interactions with extended 
open and closed integrins could be involved in the exposure of protein 
VI from the MAdVs. Such mechanism would be akin to HAdV-C2/5 
interactions with mobile CAR binding to fiber, and immobile αvβ3/5 
integrins binding to RGD of penton base. This situation gives rise to 
mechanical stress on the virion and the dissociation of fibers and some 
of the pentons, the activation of lysosomal secretion, the exposure of 
protein VI, endosomal lysis, and infection (Greber, 2016). Interestingly, 
HAdV-C5 containing a quadruple cysteine-constrained RGD in its 
fiber knob had a lower specific infectivity in CAR-negative cells than 
wild-type HAdV-C5 in the corresponding CAR-positive cells, indicat-
ing that both mobile and immobile receptors are together enhancing 
infection (Burckhardt et al., 2011; Nagel et al., 2003).

3.3  |  Cytoplasmic trafficking

Long-range cytoplasmic transport of virus particles is required 
for infection, particularly if the virus replicates in the cell nucleus 

F I G U R E  1  An inclusive model for adenovirus disassembly at the NPC and nuclear import of viral DNA. The HAdV-C5 capsid with pseudo 
T = 25 icosahedral symmetries effectively protects and efficiently delivers its DNA cargo into host cells. During infectious cell entry, virions 
are dismantled in a coordinated and well-controlled manner (Greber et al., 1994). At the plasma membrane, the virion sheds the fibers 
and some of the penton base proteins and, subsequently, also the internal stabilizing proteins IIIa and VIII (Greber et al., 1993; Nakano 
et al., 2000). It exposes the membrane lytic protein VI (Burckhardt et al., 2011; Wodrich et al., 2010), and upon rupture of the endosomal 
membrane, releases the protein VI, as well as a small fraction of the internal DNA decondensing protein V (Burckhardt et al., 2011; Puntener 
et al., 2011). The leaky virion attaches to microtubule motors and traffics toward the cell nucleus (Scherer et al., 2020; Wang et al., 2018), 
where it detaches from the microtubules and binds to the NPC protein Nup214 (Wang et al., 2017) (1). This binding occurs through the major 
capsid protein hexon (Cassany et al., 2015; Trotman et al., 2001). A locking factor, or the lack of critical ubiquitination providing a positive 
signal for dismantling, precludes the NPC-docked virion from disassembly (Bauer et al., 2021). The E3 ubiquitin ligase MIB1 primes the 
virion for disassembly at the NPC by recruiting the disassembly machinery (2), or targeting the locking factor for proteasomal degradation 
(3). The disruption of the capsid is mediated by the conventional kinesin KIF5C and its light chain KLC1/2 pulling on microtubules near the 
NPC against the holding force of the nucleus (Joseph & Dasso, 2008; Strunze et al., 2011) (4). The TPR domain of KLC1/2 attaches the 
motor complex to the facet-stabilizing protein IX (de Vrij et al., 2011; Strunze et al., 2011). Kinesin activation might be mediated by binding 
of Nup358 to the stalk of KIF5C, as shown by an unrelated in vitro study demonstrating allosteric activation of the ATPase activity (Cho 
et al., 2009). When the capsid is sufficiently disrupted, MIB1-mediated ubiquitination of protein V leads to the detachment of V from the 
capsid and the viral DNA (5). This reaction renders the viral DNA in complex with the condensing protein VII a nuclear import substrate 
recognized by nuclear import factors (6). Remarkably, insufficient ubiquitination of protein V increases the misdelivery of viral DNA to the 
cytoplasm, instead of the nucleus, as shown by the all lysine to arginine HAdV-C5 mutant (Bauer et al., 2021)
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(Dohner & Sodeik, 2005; Greber & Way, 2006; Scherer et al., 2020; 
Wang et al.,  2018; Welte,  2004; Witte et al.,  2018). HAdVs use 
motor proteins for bidirectional trafficking on microtubules to 
the nucleus after endosomal escape (Engelke et al., 2011; Gazzola 
et al., 2009). In nonpolarized cells, dynein/dynactin-based transport 
prevails over kinesin-based transport and leads to virion enrichment 
near the centrosome proximal to the nucleus (Raynaud-Messina & 
Merdes, 2007; Suomalainen et al., 1999). In polarized epithelial cells, 
kinesin-mediated transport may be required to bring incoming parti-
cles from the apical plasma membrane to the nucleus, as the micro-
tubule minus ends are located predominantly near the apical plasma 
membrane (Müsch, 2004).

While the ligand for intermediate chain (IC) and light IC of cyto-
plasmic dynein was identified to be hexon (Bremner et al., 2009), the 
nature of the trigger rendering hexon competent to bind dynein has 
remained controversial. Bremner et al. suggested that low pH was 
the trigger, and that the hexon HVR1 was involved in dynein recruit-
ment (Bremner et al., 2009; Scherer & Vallee, 2015). This was based 
on IC binding experiments with pH 4.4-treated hexon or virions, and 
dispase treatment of HAdV-C5, which cleaves in HVR1 and abro-
gates nuclear transport of incoming virus. However, infectious in-
coming HAdV-C penetrates from early endosomes and is not known 
to pass through acidic endosomes (Gastaldelli et al.,  2008; Maier 
et al., 2012; Suomalainen et al., 2013). This argues that another cue 
than low pH might render hexon competent to bind dynein. Likewise, 
the genetic ablation of HVR1 had no effects on HAdV-C5 transduc-
tion of human lung epithelial cells, although it strongly affected the 
binding of the particles to SR-A6 of murine macrophage MPI-2 cells 
(Stichling et al.,  2018). It thus remains unknown how dynein pre-
cisely binds to HAdV-C5.

An opposing cytoplasmic motor to dynein for HAdV-C5 trans-
port is conventional kinesin, which occurs in three isoforms, kine-
sin-1A, 1B, and 1C heavy chains (formerly known as KIF5A, 5B, and 
5C), and KLC1 and KLC2 light chains. The knockdown of KIF5B led 
to the enrichment of incoming particles near the centrosome sug-
gesting that this motor was involved in transporting virions away 
from the centrosome to the nuclear membrane (Zhou et al., 2018). 
Biochemical interaction studies further suggested that KIF5B binds 
to penton base via the stalk domain. Interestingly, stochastic sim-
ulations of HAdV-C motion bursts gave rise to a model, according 
to which a small number of 1–2 kinesin and dynein motors were at-
tached to motile virions in order to accommodate the motion bursts 
and the rapid directional switches (Gazzola et al.,  2009). Notably, 
microtubule-dependent HAdV burst are short, and cytosolic parti-
cles remain mostly inactive in the cytoplasm (Strunze et al., 2005; 
Suomalainen et al.,  1999; Zhou et al.,  2018). The stochastic simu-
lations also suggested that minus- and plus end-directed motors 
compete with each other for a common binding site on the HAdV-C 
particle. This notion is important in light of the observation that the 
incoming particles detach from microtubules preferentially very 
close to the nuclear membrane (Wang et al., 2017). This detachment 
depends on nuclear export mediated by the export factor CRM1 
(Lagadec et al.,  2021; Smith et al.,  2008; Strunze et al.,  2005), as 

indicated by the CRM1-specific inhibitor leptomycin B (LMB) and 
the rescue of infection by LMB-resistant CRM1 in LMB-treated cells 
(Wang et al., 2017). It is still unclear, if CRM1 directly binds to the 
viral capsids.

Interestingly, it was recently reported that the genetic knockout 
of the human noncoding RNA nc886, also known as pre-miR-886 
or CBL3, inhibited adenoviral gene expression and replication 
(Saruuldalai et al., 2022). Nc886 is transcribed by RNA polymerase 
III and known to inhibit the activation of protein kinase R (PKR) 
(Kunkeaw et al.,  2013). Its knockout (KO) in SV40 immortalized, 
primary thyroid follicular epithelial cells (Nthy-ori3-1) reduced the 
HAdV-C5 DNA delivery to the nucleus as measured by protein VII 
immunofluorescence, but it did not affect the entry of the virus into 
the cytoplasm. This effect was independent of PKR. The nc886 KO 
cells showed increased mRNA levels of four kinesin genes, namely 
KIF5C, KIF20A, KIF22, and KIF23. This might hint to the possibil-
ity that one or several of these kinesin heavy chains have antiviral 
functions when overexpressed, for example by dysregulating virion 
transport or uncoating. However, alternative interpretations of the 
nc886 KO effects are feasible, such as increased type 1 interferon 
levels (Lee et al., 2011, 2021).

4  |  C APSID DISA SSEMBLY AT THE NPC 
TRIGGERED BY MIB1

Recently, the Charlie Rice laboratory and the Urs Greber labora-
tory independently discovered the importance of the cellular E3 
ubiquitin ligase MIB1 for HAdV-C infection. They showed that 
MIB1 triggers the onset of capsid disassembly at the NPC. MIB1 
has well-described regulatory roles in endocytic pathways, for ex-
ample controlling WNT/β-catenin and DELTA/NOTCH signaling 
(Berndt et al., 2011; Luxan et al., 2013). MIB1 is a ring finger E3 
ubiquitin ligase with a catalytic cysteine residue in the C-terminal 
RING3 domain (Guo et al., 2016). The Greber laboratory initially 
identified MIB1 through an arrayed, genome-wide RNA interfer-
ence screen against the replication defective HAdV-C5_dE1-GFP 
lacking E1, scoring the expression of GFP (Bauer et al., 2019). The 
Rice laboratory used a gene-trap screen in haploid cells infected 
with replication defective or competent HAdV-C5 reporter vi-
ruses (Sarbanes et al., 2021). Besides blocking HAdV-C, the KO of 
MIB1 also blocked HAdV-A31, B3, and D8 infections, but did not 
affect a large panel of unrelated DNA and RNA viruses, indicating 
that MIB1 is rather specifically involved in HAdV infections (Bauer 
et al., 2019; Sarbanes et al., 2021).

The KO of MIB1 by both laboratories uncovered an unprec-
edented virus entry phenotype, namely a very strong arrest of 
incoming virions at the cytoplasmic side of the NPC. The block 
occurred at the stage of DNA uncoating and release, as shown by 
transmission electron microscopy, and fluorescence microscopy 
employing either direct DNA labeling using copper(I)-catalyzed 
azide-alkyne cyclo-addition (click) chemistry (Bauer et al.,  2019; 
Wang, Suomalainen, et al.,  2013), or immunostaining of protein 
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VII (Sarbanes et al., 2021). Protein VII condenses the viral DNA, 
helps to protect the genome in the leaky cytoplasmic capsid, and 
accompanies the genome into the cell nucleus (Martin-Gonzalez 
et al., 2019; Puntener et al., 2011).

Both laboratories excluded an involvement of MIB1 in steps 
upstream of the NPC by assessing viral endocytosis, protein VI 
exposure (a surrogate for endosomal rupture), and transport 
to the nucleus (Bauer et al.,  2019). They also used chemical in-
hibitors, such as LMB to block the attachment of virions to the 
NPC (Strunze et al.,  2005), and showed that LMB was effective 
also in the absence of MIB1 (Bauer et al.,  2019, 2021; Sarbanes 
et al., 2021). Furthermore, both laboratories ectopically expressed 
catalytically inactive MIB1 in MIB1-KO HeLa or Hap1 cells and 
demonstrated that the ubiquitination activity of MIB1 was cru-
cial for virion uncoating at the NPC. Sarbanes et al. also showed 
that the proteasome inhibitor MG132 blocked the separation of 
the viral DNA from the capsid but did not affect the targeting of 
the virus particles to the nucleus (Sarbanes et al., 2021). This sug-
gested that the ubiquitination activity of MIB1 promoted HAdV 
infection by triggering the proteasomal degradation of factor(s) 
that impair capsid disassembly at the NPC. Based on proximity li-
gation and proteomics data, Sarbanes et al. speculated that one of 
these factors might be ribonucleoprotein particles directly or in-
directly ubiquitinated by MIB1. It remains to be explored how this 
relates to an earlier observation that ribonuclease-sensitive fac-
tors blocked the binding of HAdV-C2 in reconstituted in vitro sys-
tems using nuclear envelopes from rat liver (Trotman et al., 2001).

Overall, the convergence of the RNAi and the Hap1 screens 
is remarkable. MIB1 was among the strongest RNAi hits and one 
among just a few that could be validated (Bauer et al.,  2019). 
Likewise, MIB1 was the sole host factor identified in the hap-
loid screen, besides the viral receptors (Sarbanes et al.,  2021). 
These notions illustrate the considerable noise in RNAi screens 
on one hand, and a possible bias of insertional mutagenesis 
screens toward entry factors in viral infection phenotypes, on the 
other hand. Regardless, the results discussed here highlight the 
power of genetic screens to elucidate host factors in viral infec-
tions, as shown earlier by pioneering RNA interference screens 
(Cherry et al., 2005; Coyne et al., 2011; Karlas et al., 2010; Panda 
et al., 2011; Snijder et al., 2012) and more recently insertional mu-
tageneses, and CRISPR KO screens (for a review, see [Puschnik 
et al., 2017]).

5  |  E XPLORING PERINUCLE AR 
INTERREL ATIONS

Live-cell imaging was used to explore how MIB1 interacted with 
NPC-docked HAdV-C5 particles (Bauer et al.,  2019). Tetracycline-
induced ectopic expression of GFP-MIB1 in MIB1-KO cells revealed 
not only a transient interaction of GFP-MIB1 with NPC-docked vi-
rions but visualized also a dissociation of the virion DNA from the 
capsid. Together with the notion that catalytically active MIB1 

is required for DNA release to the nucleus and infection (Bauer 
et al., 2019; Sarbanes et al., 2021), these results very strongly argue 
that crucial proviral ubiquitination events occur at the virion/NPC 
docking stage in MIB1 normal cells.

To identify viral targets of MIB1 ubiquitination, Bauer, Gomez-
Gonzalez et al. used differential ubiquitin pulldown assays with a 
diglycine-specific antibody from normal and MIB1-KO cells, followed 
by quantitative mass spectrometry (Bauer et al.,  2021). They found 
that four lysine residues of protein V were specifically ubiquitinated 
in normal, but not in MIB1-KO, cells. Two other incoming virion pro-
teins were also ubiquitinated, protein VI and penton base, but inde-
pendently of MIB1. Notably, purified HAdV-C5 particles contained no 
detectable ubiquitinated proteins, as concluded from mass spectrom-
etry experiments with good peptide coverage larger than 50%, except 
for the low abundant terminal protein, IVa2, fiber, and protein X where 
coverage was between 15% and 20% (Bauer et al., 2019).

Protein V occurs in about 150 copies per virion (Benevento 
et al.,  2014). It links the inner DNA core with the capsid wall and 
a fraction of it associates with proteins VI and VIII (Perez-Vargas 
et al., 2014; Reddy & Nemerow, 2014). Both protein VI and VIII are 
quantitatively released at early steps of HAdV-C2 entry (Burckhardt 
et al., 2011; Greber et al., 1993). In good accordance with these data, 
about one third of the protein V-GFP fusion proteins was rapidly re-
leased from incoming HAdV-C2 within the first 30 min, while the rest 
was released upon disassembly and DNA release at the NPC (Bauer 
et al., 2021; Puntener et al., 2011). Protein V has 368 amino acids, 
including 26 lysine residues, and strongly and unspecifically attaches 
to DNA through multiple binding sites (Perez-Vargas et al., 2014).

Interesting phenotypes were observed when cell entry of 
HAdV-C5 virions lacking protein V was compared to that of par-
ticles in which all lysines of V were changed to arginines (V-KR). 
The absence of protein V reduced the thermostability of the virion 
and nuclear import of the viral DNA. It also strongly increased the 
fraction of prematurely released virion DNA in the cytosol, before 
virus attachment to the NPC, as observed in cells treated with LMB. 
This gave rise to enhanced cytokine production in macrophages, 
depending on the cytosolic DNA sensor cGAS (Bauer et al., 2021). 
Importantly, the KO of protein V rendered the infection indepen-
dent of MIB1 but required more inoculum than infection of normal 
cells with wild-type HAdV-C5. These data indicate that protein V 
of incoming HAdV-C5 is a direct or indirect ubiquitination target of 
MIB1. Remarkably, the V-KR mutant was defective of DNA nuclear 
import in normal cells but was not impaired at DNA release from 
the NPC-docked virions. Instead, the uncoated viral DNA was mis-
targeted to the cytosol to a large extent, whereas in LMB-treated 
cells the incoming V-KR particles were stable, in contrast to virions 
lacking V. Similar to wild-type virions, uncoating of V-KR virions was 
impaired at the NPC in MIB1-KO cells. Reverting 2 of the 26 mutated 
arginine residues to lysines restored the nuclear import phenotype 
and infection. These data strongly argue that (1) ubiquitination and 
degradation of protein V are key for viral DNA nuclear import, and 
(2) MIB1 has another ubiquitination target besides protein V to li-
cense the uncoating process of the NPC-docked virion.
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6  |  AN INTEGR ATED VIE W ON HAdV 
CY TOPL A SMIC TR AFFICKING AND 
DISA SSEMBLY AT THE NPC

Based on the data discussed above, we suggest the following model 
for the cytoplasmic events in HAdV-C cell entry downstream of en-
dosomal escape. Cytoplasmic virions are destabilized by the detach-
ment of proteins IIIa, IV, VI, and VIII and lack a fraction of penton 
base and protein V. These particles engage with dynein/dynactin 
and kinesin motors and traffic on microtubules toward the nucleus. 
Although the particles are leaky and their DNA is accessible to stain-
ing by click chemistry reagents (Wang, Suomalainen, et al.,  2013), 
their protein V is inaccessible to proximity ligation by APEX-MIB1 
(Sarbanes et al., 2021). The resistance of protein V to MIB1 ubiqui-
tination allows V to function as a linchpin between the viral capsid 
and the DNA core. This greatly enhances the stability of the virions 
in the cytoplasm and protects them against premature disassembly. 
In subsequent steps, the virion detaches from the microtubules near 
the nuclear envelope, depending on a CRM1-mediated signal from 
the nucleus (Wang et al., 2017).

As depicted in Figure  1, the virion docks to the NPC by direct 
hexon binding to Nup214, as suggested by chemical cross-linking 
(Trotman et al., 2001) as well as depletion of Nup214 and restoration 
of NPC binding by expression of the N-terminal 137 amino acids of 
Nup214 (Cassany et al.,  2015). The NPC-docked HAdV-C5 is in a 
locked-in state and prevented from disassembly by a factor(s) that 
require MIB1-dependent ubiquitination and proteasomal degradation 
(Bauer et al., 2021; Sarbanes et al., 2021). Once the inhibitory factor(s) 
are released or the rupture process licensed, the virion is disrupted 
by KIF5C/TPR1/2-mediated pulling forces on protein IX, which work 
against tethering forces of the NPC (Strunze et al., 2011). This process 
may be assisted in yet unknown ways by the W142-P143 domain of 
CRM1 (Lagadec et al., 2021). Capsid rupture also disrupts the NPC, 
as shown by increased influx of fluorescent dextrans into the nucleus 
(Strunze et al., 2011). The viral DNA condensed with protein VII and 
linked to the terminal protein is then imported into the nucleus, de-
pending on a range of host factors, including histone H1, heat shock 
cognate protein 70, and importins α, β1, β2, and 7 (Hindley et al., 2007; 
Saphire et al.,  2000; Trotman et al.,  2001; Wodrich et al.,  2006). 
Further studies of viral DNA import into host cell nuclei may take ad-
vantage of live-cell imaging chemistry with sufficient signal to noise 
ratios combined with super-resolution microscopy. Such studies are 
required to provide mechanistic insights into the apparently stochas-
tic nature of viral DNA nuclear import and misdelivery to the cytosol 
(Flatt & Greber, 2015; Wang, Suomalainen, et al., 2013).
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