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Abstract

The increasing availability of large network datasets derived from high-throughput experiments requires the development of
tools to extract relevant information from biological networks, and the development of computational methods capable of
detecting qualitative and quantitative changes in the topological properties of biological networks is of critical relevance. We
introduce the notions of node interference and robustness as measures of the reciprocal influence between nodes within a
network. We examine the theoretical significance of these new, centrality-based, measures by characterizing the topological
relationships between nodes and groups of nodes. Node interference analysis allows topologically determining the context
of functional influence of single nodes. Conversely, the node robustness analysis allows topologically identifying the nodes
having the highest functional influence on a specific node. A new Cytoscape plug-in calculating these measures was
developed and applied to a protein-protein interaction network specifically regulating integrin activation in human primary
leukocytes. Notably, the functional effects of compounds inhibiting important protein kinases, such as SRC, HCK, FGR and
JAK2, are predicted by the interference and robustness analysis, are in agreement with previous studies and are confirmed by
laboratory experiments. The interference and robustness notions can be applied to a variety of different contexts, including,
for instance, the identification of potential side effects of drugs or the characterization of the consequences of genes
deletion, duplication or of proteins degradation, opening new perspectives in biological network analysis.

Citation: Scardoni G, Montresor A, Tosadori G, Laudanna C (2014) Node Interference and Robustness: Performing Virtual Knock-Out Experiments on Biological
Networks: The Case of Leukocyte Integrin Activation Network. PLoS ONE 9(2): e88938. doi:10.1371/journal.pone.0088938

Editor: Petter Holme, Umeå University, Sweden
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Introduction

Study of complex networks currently spans several disciplines,

including biology, pharmacology, economy, social science, com-

puter science and physics [1]. One of the major goals of modern

network science is the quantitative characterization of network

structure and functionality with the purpose of inferring emergent

properties of complex systems, abstracted as networks and

represented as graphs [2]. The topological analysis approach

allows understanding the functionality of networks through the

analysis of their specific architecture. For instance, the topological

structure of a road network affects critical traffic jam areas, the

topology of social networks affects the spread of information or

diseases, and the topology of power grids affects the robustness and

stability of the energy distribution [3]. Thus, few unifying

principles, underlying the topology of networks, span different

fields of science [4]; [5]; [6]; [7]; [8]; [9]; [10]. Remarkable results

have been obtained in the field of biological network analysis,

either in case of gene, protein or metabolite networks, and, even if

far from being completely unveiled, several key notions have been

introduced. In this context, indexes of network centrality such as

degree, eccentricity, closeness, betweenness, stress, centroid and

radiality [9], [10], [11] are topological parameters allowing

quantifying the topological relevance of single nodes in a network.

To date, network analysis is mainly focused on global network

properties and on their global modifications [12]; [13]; [14]; [15]

as in the case of the vitality index [9] or attack tolerance of

networks [16]. Recent fundamental results [17] show how analysis

on the topology of the network allows identifying the driving nodes

of a network, i.e. the nodes that have to be controlled in order to

control the entire network, suggesting that identification of these

nodes depends on the network topology and not on the network

dynamics. These results may suggest the utility of a deeper analysis

of biological networks, with the purpose of analyzing not only

global network properties, but especially local properties affecting

those nodes that are, more than others, central to the global

functionality of the network. In this study we introduce the notions

of node interference and robustness to characterize the domain of

influence of single nodes. The interference notion applies the same

principle of the ‘‘variable interference’’ used in security for

computer programs [18]. It consists on changing the starting value

of a single target variable and evaluating the changes on the other

program variables during the computation: those variables

showing greater changes are the set of program variables more

dependent on the target variable. The node interference notion

applies the same principle, based on the general perspective of a

virtual knock-out experiment which can be summerized as follow:

a node is removed from the network and the effects of such
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removal on the network structure are analyzed. In a node-centered

perspective, centralities are the right parameters to evaluate in

order to detect the effects of a single node alteration. As the

centrality value of a node is strictly dependent on the network

structure and on the properties of other nodes in the network, the

consequences of a node deletion are well captured by the variation

on the centrality values of all the other nodes. Notably, this kind of

approach can model common situations where nodes are really

removed or added from/to a physical network. In some cases, such

as in social and financial networks, the structure of the network is

naturally modified over time; in other cases this can be due to

specific network changes: power grid failures, traffic jam or work

in progress in a road network, temporary closure of an airport in

an airline network and so on. In a biological network one or more

nodes (genes, proteins, metabolites) are possibly removed from the

network because of gene deletion, pharmacological treatment or

protein degradation. For instance, in the case of a pharmacological

treatment, it is possible to infer side effects of a drug by looking at

the topological properties of nodes in a drug-treated network,

meaning with that a network in which a drug-targeted node

(protein) was removed [19]. Similarly we can simulate the

consequences of gene deletions, which implies loss of coding

genetic material and corresponding encoded proteins, thus

resulting in the removal of one or more nodes from the network.

The robustness notion is complementary to the interference one. It

is computed evaluating the interference of all the nodes in the

network with respect to a single target node. This allows

identifying the node or the group of nodes that more than others

affect the functionality of a selected node, and if its role is

dependent on any particular node. In the next section we describe

the interference and robustness computation methodology along

with few explanatory examples. Following, we describe a case

study, corroborated by data derived from an experimental setting

of in vitro human leukocyte integrin activation, showing how node

interference and robustness can predict network functionality and

the effects of network modifications.

Results and Discussion

Nodes Centralities Interference: Definition
Due to its importance and wide diffusion for applications in

several fields of science we focus on node interference for the

betweenness centrality index [20],[21],[22],[23],[24],[16],[25],

[26],[27],[28],[29],[30],[31],[32],[33],[34],[35],[36]. Following,

the results are extended to other centrality indexes (see File S1).

All definitions consider connected networks (i.e. networks where

each node is reachable from all the others), which remain

connected even after node removal. This hypothesis is in

agreement with results in attack tolerance for scale-free networks

[14].

Given a network G~(N,E) where N is the set of nodes and E is

the set of edges we consider the betweenness centrality and its

relative value i.e. the value normalized by the sum of the

betweenness of all the nodes (see Materials and Methods). This

give the fraction of betweenness of each node with respect to the

rest of the network. To introduce the notion of betweenness

interference we consider the network in figure 1a. Node0 is

connected to the rest of the network through nodes node4 and

node5. If we remove node5 from the network, node4 become the

only node connecting node0 to all the other nodes of the network

(figure 1b), consequently its betweenness value will increase. This is

a case of betweenness interference of node5 with respect to node4

since there is ‘‘interference’’ of node5 with respect to the

betweenness value of node node4. Such interference, and the

interference of node5 with respect to all the other nodes, is

detected by removing node5 from the network and can be

measured as follow: Gji is the network obtained from G removing

node i and all its edges from the network. The betwenness
interference of a node i with respect to another node n in the

network G is:

IntBtw(i,n,G) ~ relBtw(G,n){relBtw(Gji,n) ð1Þ

The measure shows which fraction of betweenness value a node

loses or gains with respect to the rest of the network when the node

i is removed. The definition is not symmetric and in general we

have IntBtw(i,n,G)=IntBtw(n,i,G). Notably, expressing interfer-

ence values as percentage may facilitate understanding the

meaning of the calculated data. The complete analysis of the

network in the example is shown in table 1.

Positive and Negative Interference
As in the example of figure 1, the interference value of a node i

with respect to a node n can be positive or negative. The example

Figure 1. Betweenness interference. a. Node5 and node4 are in the shortest paths from node0 to the other nodes. b. Node5 have been
removed. Node4 is now essential for connecting node0 to the rest of the network: it is the only node in the shortest paths connecting node0 to the
other nodes: node4 betweenness increases.
doi:10.1371/journal.pone.0088938.g001
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of the network in figure 2, explains the difference of the two

notions of positive and negative interference.

Positive interference. If a node (n), upon removal from the

network of a specific node (i), decreases its value for the considered

centrality index, its interference value is positive. This means that

this node (n), topologically speaking, takes advantage (is positively

influenced) by the presence in the network of the node (i). Thus,

‘‘removal’’ of node (i) from the network, negatively affects the

topological role of the node (n). This is called positive interference.

For instance, consider Node4 in figure 2. It has high value of

betweenness (15% of the total, see table 2), since it is important to

connect the top of the network with the bottom. But this

importance strictly depends on node6. Indeed, by removing

node6, node4 results a peripheral node, as shown in figure 2b, and

its betweenness consistently decreases (from 15% to 3.57% of the

total. See table 2). This is a typical case of ‘‘positive interference’’,

since the high betweenness of node4 depends on the presence of

node6: if node6 is part of the network node4 has higher between-

ness value.

Negative interference. If a node (n), upon removal from the

network of a specific node (n), increases its value for the considered

centrality index, its interference value is positive. This means that

this node (n), topologically speaking, is disadvantaged (is negatively

Figure 2. Positive and negative interference. a Node3 and node4 are the nodes connecting the top of the network with the bottom. b Node6
has been removed: node4 becomes a peripheral node, its betweenness decreases. The presence of node6 is important for node4 to play a central
role (positive interference). At the same time, node3 and node5 become fundamental connections betweenn the top and the bottom. Their
betweenness values increase. The presence of Node6 in the network on the left damages the ‘‘central role’’ of node3 and node5 (negative
interference).
doi:10.1371/journal.pone.0088938.g002

Table 2. Node6 and Node9 interference values of the
network in figure 2, expressed as percentage.

Node
Betweenness
Network a

Betweenness
Network b

Node6
Interference

Node9
Interference

node0 0.98 3.97 22.99 20.407

node1 0.98 3.97 22.99 –0.407

node2 0.98 3.97 22.99 20.407

node3 32.05 41.67 29.61 –4.613

node4 15.00 3.57 11.43 21.667

node5 15.00 42.86 227.86 23.333

node6 32.05 24.554

node7 0.98 0.00 0.98 –0.685

node8 0.98 0.00 0.98 20.685

node9 0.98 0.00 0.98

Global
interference

60.80 16.758

Max
Interference

27.857 4.613

The highest positive interference is with respect to node4. This node is more
important if node6 is part of the network. The highest negative interference
values are with respect to node5 and node3. These become part of the unique
connection between the top and the bottom of the network when node6 is
removed. The presence of node6 is negative for these nodes to have a ‘‘central’’
role.
doi:10.1371/journal.pone.0088938.t002

Table 1. Interference values of the network in figure 1,
expressed as percentage.

Node
name

Betweenness
(with node5)

Betweenness
(node5 removed)

Interference
value

node0 4.167 0.000 4.167

node1 0.000 0.000 0.000

node2 54.167 50.000 4.167

node3 4.167 0.000 4.167

node4 18.750 50.000 231.250

node5 18.750

As expected node5, node4, and node2 have high betweenness value (first
column). Node5 has negative interference with respect to node4. If it is
removed from the network, node4 gains more than 30% of the total
betweenness value (from 19.00 to 50.00). This is reflected by the negative sign
of interference (231.00): the presence of node5 is negative for node4 to play a
central role in the network.
doi:10.1371/journal.pone.0088938.t001
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influenced) by the presence in the network of the node (n). Thus,

‘‘removal’’ of node (i) from the network, positively affects the

topological role of node (n). This is called negative interference.

For instance consider node3 in figure 2a. It is evident from the

graphical representation that node3 plays a role similar to node4:

they both connect the top of the network with the bottom, and

they can be considered ‘‘competitors’’ in playing such a role.

When removing node6, (fig. 2b), node3 remains the only node

connecting the top with the bottom and its betweenness value

increases (from 32.05% to 41.67% of the total. See table 2). This is

a case of negative interference of node6 with respect to node3,

since the presence of node6 negatively affects the central role of

node3 in the network: node3 is more central if node6 is not part of

the network thus node6 negatively interferes with node3

(betweenness values are reported in table 2).

A further step for a complete analysis of interference is to

quantify the interference of a single node with respect to the global

network architecture. In this case the goal is to quantify the

influence of a node i on the global topology of the network.

Indeed, a node can have low interference value with respect to few

nodes but can interfere significantly with the majority of the nodes

in the network. In this case the node can be more relevant to the

overall network topology (and, possibly, functionality) than to the

topology of few nodes. In order to quantify the interference with

respect to the entire network we can use the global interference
value defined as the sum of all the interference values of a node

and the max of the interference values (see File S1). If the max of

the interference is high, it means that at least one node is

consistently affected by node i. If the global interference value is

high, it can be supposed that the node interferes with high values

with respect to the a great number of nodes in the network.

Consider Node9 in the network of figure 2. Node9 is a peripheral

node and this is reflected by the low values of global interference

and max interference, if compared for example with the same

values of node6 (respectively 16.758 vs 60.800 and 4.613 vs 27.857

see table 2). Indeed the removal of node9 does not significantly

affects the global structure of the network.

Nodes Centralities Robustness. Who is Affecting a Node?
We now describe node robustness, the reverse problem of

interference. As above, we focus on betweenness. Here the

emphasis is not on the effects of an individual node removal on the

network, but on how other nodes can affect the functionality of a

specific node. This corresponds to ask whether a node is resilient to

modification of the network. To answer to this question, we

introduce the notions of node robustness, competition and

dependence. The betweenness robustness of node n is obtained

by computing all the interference values from the other nodes with

respect to node n and is defined as

RobBtw(n,G) ~
1

max
i[Njn
fjIntBtw(i,n,G)jg : ð2Þ

It depends on the maximum interference value affecting the

betweenness value of the node. If it is low, the node can be easily

‘‘attacked’’ by removing particular nodes. If it is high, the node is

‘‘robust’’, i.e. there is no node removal that can affect its

betweenness value and consequently its functionality. Notably,

we consider the absolute value of interference. Similarly to

interference, positive and negative robustness can be defined (see

File S2) but it is more intuitive to consider their reciprocal values

respectively dependence and competition values. The dependence

value of a node n is

DepBtw(n,G) ~ max
i[Njn
fIntBtw(i,n,G)g ð3Þ

where IntBtw(i,n,G)§0: DepBtw is the maximum over the positive

interference values. If high it means that the node is ‘‘central’’

because of the presence of at least another node in the network: if

that node is removed then node n loses a consistent part of its

central role (its betweenness value decreases). It is the case of

node4 in the network of figure 2 where it has a central role

depending on node6. When node6 is removed node4 becomes a

peripheral node: it strongly depend on node6 (see fig. 2b). If the

dependence value of a node n is low, its central role is not

dependent on other nodes and there is no node removal that can

consistently affects its relevance in the network. Similarly we define

the competition value of a node n as

CompBtw(n,G) ~ max
i[Njn
fjIntBtw(i,n,G)jg ð4Þ

where IntBtw(i,n,G)ƒ0: CompBtw is the maximum over the

negative interference values. High competition value means that

the central role of node n can be ‘‘improved’’ removing a

particular node from the network (node n betweenness increases).

In this sense the two nodes, node n and the removed one are

‘‘competitors’’ in the network. It is the case of node3 and node4 of

the network in figure 2. Removing node3, node4 becomes the

unique node connecting the top and the bottom of the network,

and conversely removing node4: node3 and node4 are ‘‘compet-

itors’’ in the role of connecting the two parts of the network. If the

competition value is low, the central position of the node cannot be

improved removing a particular node from the network. To

improve the significance of the betweenness variation expressed by

the robustness analysis, the competition and dependence values

can be also related to the betwenness of the node in the starting

network (the network with no node deletion, see File S2). Total

robustness, dependence and competition can be also used as global

parameters in order to characterize the entire network (see File

S2).

Interpretation of robustness analysis. Consider again the

network in figure 2a. Its betweenness values are reported in table 2.

Node3 and node6 have the highest value of betweenness (32.05),

node4 and node5 present the third highest value (15). The

robustness analysis of node3 and node4, reported in table 3, allows

understanding if and how much their high betweenness values

depend on other nodes. Node4 has a dependence value of 11.429,

higher than node3 which is 9.995. The reason of this difference is

that even if they have both the role of connecting the top and the

bottom of the network, if we remove node6, node4 becomes a

peripheral node, while node3 mantains its connecting role because

it is connected also to node5. Thus the dependence value of node4

is higher and only mediated by node6. The highest dependence

value of node3 is due to node5: if we delete node5, node3 still

remains a connecting node, but its betweenness become the same

of node4, since they connect the same nodes through the same

paths, those passing through node6. Also the competition value of

both nodes is very informative. The highest value of node3

depends on deletion of node4 (21.623) and the highest value of

node4 depends on node3 (27.857). In this sense they are really

‘‘competitors’’ in the network.

But this also means that, if one of the two nodes is missing, the

role of the remaining node can be replaced by the other, and in

this sense we can say that they have similar roles. The robustness

Node Centralities Interference and Robustness
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value also confirm that node3 is nore resilient to node deletion

than node4 (0.046 vs 0.036).

The notion of interference and robustness can be applied to

other centrality measures (see File S1 for extended definitions). An

example of application of interference to a kino-phosphatome

network [11], a network of human kinases and phosphatases can

be found in the File S3 and File S8). The notion of Interference

and Robustness can also be applied to directed networks. Even if

some centralities definition cannot be applied to directed networks,

we recently released CentiScaPe 2.1 [11] where several centralities

parameters definition are modified to be used in directed

networks. Such definitions (see File S1) can be used for a directed

version of the interference and robustness notion, in order to be

used in directed biological networks as for example signal

transduction or metabolic networks. In the next section we discuss

the application of interference and robustness to a network of

signaling proteins regulating the leukocyte integrin activation

process.

Interference in a Protein-protein Interaction Signalling
Network Regulating the Immune Response

The modality of network analysis described in previous sections

can be applied to biological networks analysis. To easily apply the

interference and robustness notions to real networks, we developed

the Interference plugin for the Cytoscape platform, based on the

existing CentiScaPe plugin [11] for node network centrality

calculation. We analyzed an intracellular protein-protein interac-

tion network regulating the immune response. Particularly, we

analyzed a sub-network of the human protein interactome

involved in adhesion modulation during the process of leukocyte

recruitment. Leukocyte recruitment is the ‘‘primu movens’’ of

every immune response and consists of a complex sequence of

cellular events leading to leukocyte accumulation into sites of

inflammation [37]). Each step of this homeostatic mechanism is

finely regulated by combinatorial molecular mechanisms. A

central event is the regulation of a family of activable adhesion

surface receptors called integrins. Integrin activation is mandatory

to the completion of leukocyte recruitment and is regulated by

chemoattractants, which, in turn, trigger an intricate network of

signaling proteins devoted to integrin function modulation. Till

now, at least 61 intracellular signaling molecules have been shown

to be involved in positive or negative modulation of leukocyte

adhesion [38], each one potentially interacting with a number of

upstream regulators and downstream effectors. In this context, it is

of pharmacological interest to be able to identify which proteins

are most suitable for potential target anti-inflammatory therapies.

Here the interference analysis may allow a qualitative prediction of

such potential target proteins identifying which of them are

candidates to be mostly affected by the inhibition of one or more

nodes. Since the topological structure of biological networks

reflects functionality [39]; [40], we wished to verify, in the context

of signaling events regulating integrin activation, whether network

centrality interference might unveil the prominent functional

relevance of specific signaling proteins. We followed the same logic

normally applied in experimental biology to identify a cause-effect

relationship. Accordingly, a cell is treated with a pharmacological

inhibitor specific for a certain signaling molecule and the effect on

the regulated cell phenomenon is quantified. In our case, a virtual

pharmacological treatment is achieved by removing a node and

calculating the interference on the centrality of the remaining

nodes. To achieve this goal, we reconstructed the interactomic

network generated by the 61 known molecules (see fig. 3 and File

S4) and calculated the specific interference of selected proteins on

centrality indexes of all other proteins involved in adhesion

regulation. The network consisted of 241 unique binary interac-

tions (see Materials and Methods). As proof of concept, we focused

our analysis on the betweenness interference of 3 kinases: SRC,

HCK and FGR. We focused on these related kinases, as they are

negative regulators of integrin affinity maturation and specific

pharmacological inhibitors are widely available and, thus, their

analysis may provide more meaningful, testable, data. The three

kinases have either negative as well as positive interference on the

network (see File S5). The analysis highlighted that SRC, HCK

and FGR have the highest negative interference on a group of 15

proteins including JAK2, PIK3R1, PIK3R2, PIK3CG, HCK,

PLCG1, RHOA, RAP1A, RAC1, PRKAB1, TLN1, SYK, PLD1,

SRC and HRAS (see fig. 4 and 5). Thus, the presence of SRC,

FGR and HCK in the network modulating integrin activation

negatively affects the topological role, quantified as betweenness,

of these proteins. Importantly, this result is perfectly in keeping

with published experimental data. Indeed, RHOA, RAC1, PLD1,

RAP1A, HRAS, TLN1, PIK3R1, PIK3R2 and PIK3CG, are

well-known positive regulators of integrin triggering [38]; [41],

which is the crucial step in leukocyte arrest in vivo [42]; [43]. In

this context, the analysis is fully confirmed by published

experimental data, showing that FGR and HCK play a negative

role in integrin affinity triggering [44]. Thus, the negative role of

FGR and HCK, detected at topological level, fully reflects their

biological activity. Notably, the negative interference on PLCG1 is

also coherent with published data, since PLCG1 may generate

second messengers leading to RAP1A activation, whose positive

role in integrin triggering has been widely demonstrated [45].

Intriguingly, SRC and FGR interference on HRAS are opposite.

However, HRAS role in integrin modulation is more complex,

showing both positive and negative activities [46]. It is also of

interest the reciprocal negative interference of SRC and HCK

whereas, in contrast, FGR displays a positive interference on HCK

and SRC, suggesting hierarchy and possible competition for

similar effectors between these tyrosine kinases. This is not

Table 3. The robustness analysis of node3 and node4.

node name
interf. w.r.t.
node3 node name

interf. w.r.t.
node4

node5 9.995 node6 11.429

node0 4.554 node0 3.333

node1 4.554 node1 3.333

node2 4.554 node2 3.333

node7 24.613 node7 21.667

node8 24.613 node8 21.667

node9 24.613 node9 21.667

node6 29.613 node5 27.059

node4 221.623 node3 227.857

node3 node4

robustness 0.046 robustness 0.036

dependence 9.995 dependence 11.429

competition 21.623 competition 27.857

Interference values are expressed as percentage. The robustness, competition
and dependence values are inferred from the interference values of all the
nodes with respect to node3 (left) and node4 (right). Node4 is highly
dependent on node6 (11.429) more than node3 on node5 (9.995). Note the
high competition values of node3 due to node4 and the high competition
values of node4 due to node3, denoting their high reciprocal influence.
doi:10.1371/journal.pone.0088938.t003
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completely surprising since SRC, HCK and FGR, are highly

structurally and functionally related kinases. Notably, the analysis

also highlighted that SRC, HCK and FGR have positive

interference on a group of proteins including, among the others,

PRKACB, PRKAB2, SKAP1, ARF6, HRAS, SRC, SYK, HCK,

VAV1 and CDC42. Here, CDC42 is of specific interest. Indeed, it

was recently demonstrated that CDC42 has a negative regulatory

role on rho-mediated integrin affinity triggering [41], similarly to

the role of FGR and HCK. Thus, the fact that the presence of

HCK in the network leading to integrin activation positively

affects the topological role of CDC42, quantified as betweenness,

further confirms the correspondence between topological interfer-

ence and biological activity. Interestingly, JAK2 resulted the most

sensitive to SRC negative role, and rather sensitive to FGR and

HCK negative roles. This could suggest that JAK2 is an important

positive player in the overall mechanism of integrin activation.

Importantly, the involvement of JAK-related tyrosine kinases in

leukocyte trafficking was previously suggested, although in mouse

and with rather indirect evidence [47]. Thus, to corroborate the

prediction of an involvement of JAK2 in the regulation of integrin

activation suggested by the interference computation, we set out to

experimentally verify whether the computed JAK2 interference

does correspond to the experimental biological outcome. To this

end, we measured the effect of tyrphostin AG490, a well-known,

specific, JAK PTKs inhibitor on adhesion triggering by chemoat-

tractants in human primary T-lymphocytes (see Materials and

Methods and [41]). As shown in fig. 6, AG490 prevented in a

dose-dependent manner rapid adhesion to ICAM-1 of human

primary T-lymphocytes, thus confirming the involvement of JAK2

in integrin triggering and corroborating the prediction of the

interference analysis. Moreover, the role of JAK2 is confirmed also

by the JAK-dependent negative interference on the other

molecules in the network (see fig. 5 and File S6). The highest

interference value of JAK2 is with respect to SRC. Thus, SRC and

Figure 3. Integrin network. The network of the 61 integrins and 241 binary interactions, involved in the process of adhesion regulation.
doi:10.1371/journal.pone.0088938.g003
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JAK2, that have been experimentally detected respectively as

integrin inhibitor and activator, have reciprocal high interference.

Importantly, the key role of the proteins in the network is also

corroborated by their robustness analysis reported in Table S1.

Here, we computed all the interference values affecting JAK2 and

SRC. Among all proteins, JAK2 is mostly affected by SRC with a

negative interference value of 22.525. Then, JAK2 is the second

highest negative interference with respect to SRC with 21.337

(the first is PIK3R1 with 21.648). Thus, there is not only a

reciprocal influence between the two proteins, but it is the highest

between all the proteins of the network. Note that SRC and JAK2

are direct interactors. They have respectively 27 and 15 direct

interactors for a total of 31 different proteins (11 are common

interactors). The interference analysis allowed identifying SRC

and JAK2 as the two most important interactors in a set of 31

nodes. High dependence of SRC on SKAP1 and ACTN1

(respectively 1.277 and 1.175) and competition value of SRC

due to PIK3R1 should be further experimentally investigated.

JAK2 is also dependent on RAP1A but with a less significant value

(0.792). The interference analysis indicates SRC and JAK2 as

preferential targets for further experiments. Also the average and

max interference values are interesting. In Table S2 are reported

all the average and max interference values. Among all proteins

PIK3CD, PIK3R3, RHOH, PRKAG3, PRKAG2, PRKAG1

have both the max and average values in the last 20 scores. This

possibly suggests that they may have a marginal role in the integrin

Figure 4. Interference of HCK and FGR. First fifteen negative interference values of HCK and FGR, expressed as percentage.
doi:10.1371/journal.pone.0088938.g004

Figure 5. Interference of SRC and JAK2. First fifteen negative interference values of SRC and JAK2, expressed as percentage. Note the reciprocal
high interference of SRC and JAK2.
doi:10.1371/journal.pone.0088938.g005
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activation as also showed by previous studies [37], [38]. Not all

data of the interference analysis could be linearly interpreted, such

as the role of SYK or PRKACB and PRKAB2, likely due to

complexity of the network and lacking of experimental data.

Conclusions

In this study we introduced the new centralities based notions of

interference and robustness. The interference notion allows

identifying the context of major influence of a particular node,

removing it from the network and evaluating the effects of the

removal as a variation of centrality values. If applied to a protein-

protein interaction network, this is similar to perform a virtual

knock-out experiment on the network allowing topologically

predicting side effects of protein inhibition. Conversely, the dual

notion of interference is the robustness notion that allows

evaluating how much a node is influenced by other nodes

removal. A robust node is a node that is minimally affected by the

removal of other nodes from the network. The effects of proteins

inhibition in the integrin activation process have been predicted by

the interference analysis performed in the study suggesting new

perspectives in biological network analysis such as the possibility of

predicting potential side effects of drugs or the characterization of

the consequences of genes deletion, duplication or of proteins

degradation in biological process. Indeed, given the proper

protein-protein network, the output of the interference and

robustness analysis possibly unveils non trivial functional interac-

tions between proteins (as in the case of SRC and JAK2)

contributing to a qualitative comprehension of the biological

process and thus driving further experiments. The method can be

applied to both undirected and directed networks not only in

biological contexts, and is mainly limited by the overall quality of

the analyzed networks. The method gives also the opportunity to

explore the robustness of biological networks and the relation

betweenn strongly connected components or cliques and the

variation of network centralities. In clique where the nodes are all

connected or in strongly connected components we expect that

removal of nodes has a low effect on the centralities of other nodes.

So nodes beeing part of a strongly connected network should have

high robustness and low interference. In biological networks (that

are robust) when nodes are randomly removed the effects are low

but become relevant when important nodes are removed [14]. A

future works should consider to use the interference values to

identify nodes that are part of a strongly connected components or

that connects different strongly connected components. Similarly,

the effects of removal nodes in network motifs should be furtherly

investigated. Network motifs are variable for structure and

function, so they need dedicated studies to be related to the

variation on the centralities values when removing nodes. The

removal of one node in a motif can completely destroy a motif

(and its biological role) or can have no impact depending on its

structure and on the removed node. Further studies are necessary

to identify which network motifs are mostly affected by node

removal and to relate them to the interference notion.

Materials and Methods

Betweenness Definition
We consider a network as a graph G~(N,E) where N is the set

of nodes and E is the set of edges. Betweenness of node n is defined

as

Btw(G,n) ~
X

s=n[N

X

t=n[N

sst(n)

sst

ð5Þ

where sst is the number of shortest paths between s and t and

sst(n) is the number of shortest paths between s and t passing

through the node n. We consider the relative value of betweenness

by normalizing it as

relBtw(G,n) ~
Btw(G,n)P
j[N Btw(G,j)

ð6Þ

in order to have the fraction of betweenness of each node with

respect to the rest of the network.

Software: the Interference1.0 Cytoscape Plug-in
To calculate the interference values the Interference.1.0

Cytoscape plugin have been developed and released. The software

is based on the last version of our CentiScaPe plug-in [11],

developed to compute several nodes centralities. The Interfer-

ence.1.0 computes the interference for Betweenness, Stress,

Closeness, Eccentricity, Radiality and Centroid Values. The

software calculate also the min, max and average values of

interference. Results are displayed as Cytoscape attributes or as an

heatmap that can be exported in pdf format. The Interference

values can be also computed for set of nodes (i.e. removing more

than one node at the same time. See File S7 for interference

definition extended to subset of nodes). The plugin is available at:

http://www.cbmc.it/%7Escardonig/interference/Interference.php

or via the Cytoscape website. Computational complexity of the

algorithm for centralities values is O(mnzn2) except for

betweenness where the algorithm used is O(n3) (n is the number

of nodes, m the number of edges). This can results in a long

computation time for large networks, depending on the charac-

teristics of the computer used. The interference computation

requires two computation for each centrality doubling the

computation time. Moreover, the robustness computation requires

to calculate the interference values for each node, resulting in a

computational complexity of O(n4) for betwenness interference

and of O(mn2zn3) for the other centralities further increasing the

computation time.

Figure 6. Effects of Jak2 inhibition. Lymphocytes were pre-treated
with the indicated concentrations of tyrphostin AG490 at 37uC for
15 min and stimulated with 200 nM CXCL12 for 1 min. Plots are
averaged values of adherent cells=0:2 mm2 with standard deviation
N = 5.
doi:10.1371/journal.pone.0088938.g006
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Integrin Network
To apply the interference analysis we reconstructed the protein-

protein interaction network generated by the 61 known molecules

involved in the positive or negative modulation of leukocyte

adhesion [38]. The network of the known interaction betweenn

these proteins have been obtained crossing the information from

six different databases (HPRD, BIND, DIP, IntAct, MINT,

BioGRID) and consists of 241 unique binary interactions (File S7).

To limit the presence of false positive, the interactions are

considered only if they are validated by two or more databases,

and by two to six proteomics methods. Otherwise, if an interaction

is present in only one database it is considered as a potential false

positive and have not been added to the network.

Ethics Statement
Samples were collected under a protocol approved by Ethics

Committee of the Azienda Ospedaliera Universitaria Integrata of

Verona, Italy (Comitato Etico per la Sperimentazione AOUI) and

data were analyzed anonymously. In accordance with the Declara-

tion of Helsinki, all donors provided written informed consent for the

collection and use of their blood samples for research purposes.

Lab Experiment: JAK2 Inhibition
To test the involvment of JAK2 in integrin triggering we

measured the effect of tyrphostin AG490, a well-known JAK-

specific inhibitor on adhesion triggering by chemoattractants in

human primary T-lymphocytes. Human primary T-lymphocytes

were isolated from healthy donors and rapid static adhesion assays

on ICAM-1 have been performed as reported in [41]. Lympho-

cytes were pre-treated with the indicated concentrations of

tyrphostin AG490 at 37uC for 15 min and stimulated with

200 nM CXCL12 for 1 min.
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integrin activation network.
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