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Abstract

Chronic stress is both theoretically and methodologically challenging to opera-

tionalize through biomarkers. Yet minimally invasive, field-friendly bio-

markers of chronic stress are valuable in research linking biology and culture,

seeking to understand differential patterns of human development across eco-

logical contexts, and exploring the evolution of human sociality. For human

biologists, a central question in measurement and interpretation of biomarkers

is how stress-responsive physiological systems are regulated across diverse

human ecologies. This article aims to describe a conditional toolkit for human

biologists interested in the study of chronic stress, highlighting a mix of long-

standing and novel biomarkers, with special focus on hair/fingernail cortisol,

latent herpesvirus antibodies, allostatic load indices, and serial/ambulatory

data collection approaches. Future trends in chronic stress biomarker research,

including epigenetic approaches, are briefly considered. This overview con-

siders: (1) challenges in separating a distinctly psychosocial dimension of

chronic stress from adversity more broadly; (2) essential characteristics of

human ecology that shape interpretation; (3) retrospective vs. longitudinal

sampling; (4) the role of age, developmental effects, and local biologies; (5) dif-

ferent timescales of chronicity; and (6) the role of culture.

1 | INTRODUCTION

In human biology and allied fields, identifying associa-
tions between stressors, especially psychosocial stressors,
and biomarkers of the associated physiological stress
response has proven a powerful way to link biology and
culture, understand differential patterns of human devel-
opment across ecological contexts, and explore the evolu-
tion of human sociality (Brown, 1981; Dressler, 2012;
Flinn et al., 2011; James & Brown, 1997; McDade, 2012;
Worthman & Costello, 2009). Often these purposes are
best served by a focus on measuring how stress responses

unfold over extended periods of time; that is, chronic
stress. Hence, minimally invasive biomarkers indexing
chronic stress generally, and when practicable chronic
psychosocial stress specifically, are of value to human
biologists to the extent that they are applicable in a wide
range of field conditions.

While terminology varies somewhat in the literature,
we use as our starting point the convention that stressors
are environmental challenges (including social challenges)
that carry the potential to threaten homeostasis, stress is
the resulting pressure against homeostasis, and the stress
response is a suite of physiological and behavioral
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responses that have evolved to restore or maintain homeo-
stasis, but in some cases may fail to achieve this end
(e.g., James & Brown, 1997; McEwen & Wingfield, 2003).
When considering the psychosocial dimension of stress,
cognitive appraisal of experience creates a bridge from
stressor to stress response. This bridging is well illustrated
by the capacity for a strong stress response to be elicited by
the anticipation of challenges, and the subjective percep-
tion of unpredictability or loss of control (Sapolsky, 2021).

Moreover, we understand human ecology to comprise
a comprehensive, integrated set of interactions among
humans and their environments, including social interac-
tions, interactions with the built environment, and with
the natural world. Human biology is invariably and pro-
foundly shaped by the interplay of individuals with local
conditions and broader political-economic forces. The
concept of “local biologies” has been employed in medical
and biocultural anthropology to describe the process
through which structural inequalities and other macroso-
cial forces are variably embodied within specific, local set-
tings, often producing fundamental differences in patterns
of biological regulation (Brewis et al., 2020; Leatherman &
Goodman, 2020; Leatherman & Hoke, 2016; Lock &
Kaufert, 2001; Worthman & Kohrt, 2005). For instance,
distress related to water insecurity is dependent on inter-
actions among institutions for distributing and sharing
water, social status, gendered division of labor, and other
local sociocultural/ecological considerations (Brewis
et al., 2020), and the response of arousal regulation sys-
tems to the vagaries of daily life is heavily dependent on
early life experiences (Worthman & Kohrt, 2005).

The development and interpretation of biomarkers of
chronic stress have been hampered by several interrelated
theoretical and practical challenges, however. First, physi-
ological responses to diverse stressors share common fea-
tures. Primary mediators of the stress response, such as
the autonomic nervous system and the hypothalamic-
pituitary-adrenal (HPA) axis, are evolutionarily ancient,
and have broad roles in regulating arousal, sociality, and
energetics (Porges, 2001; Sapolsky, 2021). Chronic activa-
tion of the stress response is particularly likely to carry
adverse consequences for health, but chronic stress
responses with a limited capacity to mitigate the underly-
ing stressors are a relatively recent phenomenon closely
tied to the evolution of primate social complexity and
arguably serve as an example of mismatch (McEwen &
Wingfield, 2003; Sapolsky, 2021). Reflecting the broad,
multisystem regulatory role and complex evolutionary
history of the HPA axis, glucocorticoid levels may reflect
psychosocial distress, positive emotions, diurnal rhythms,
nutrient intake, physical activity and, generally, the man-
agement of life history trade-offs across the lifespan
(McEwen & Wingfield, 2003; Pollard, 1995). When

measuring biomarkers, the theoretical impediment to iso-
lating a single dimension of stress by simply controlling
for all the others is illustrated by two observations:
(1) psychosocial and “physical” stress often flow from the
same font of systematic disempowerment, and thus are
not truly independent, and (2) physical deprivation and
ill health are themselves psychosocially stressful. See, for
instance, the excellent discussion regarding psychosocial
dimensions of food insecurity by Weaver and Hadley
(2009). We will argue throughout this paper that it is
most appropriate to view these biomarkers as reflective of
chronic adversity in socio-ecological context, including
but not limited to psychosocial stress.

Second, local biologies may develop in specific biocul-
tural and political-economic contexts (Lock &
Kaufert, 2001; Worthman & Kohrt, 2005), resulting in suf-
ficiently profound divergences in biological regulation as
to challenge the uniform interpretation of biomarkers.
Consider, for instance, elevated Epstein-Barr virus (EBV)
antibody titers as a marker of chronic stress, via EBV reac-
tivation following suppression of cell-mediated immunity
(McDade, Stallings, Angold, et al., 2000). While poten-
tially powerful, this presumes consistency in the “non-
stressed” baseline operation of a complex system. Hence,
when Worthman and Panter-Brick (2008) found evidence
of lower EBV titers in their apparently most stressed sub-
set of children in Nepal, they raised the possibility that
modified functioning of the humoral immune response
due to nutritional and other stresses intersecting with the
distinct political and cultural ecologies of four groups of
Nepalese children fundamentally alters the interpretation
of the biomarker, compared to Western settings where it
had been applied. Among the local factors critical to inter-
pretation were the fluid nature of urban homelessness,
and certain special risks associated with rural poverty in
this sociocultural context.

Finally, while it is tempting and simplifying to freeze
research participants in time, as Worthman and Costello
(2009) note, “by shaping both objective and subjective
conditions of living, culture informs biology through
development, across the life course, and even across gen-
erations.” (Internal citations omitted.) Hence, neither the
conceptualization nor the measurement of stress can be
divorced from human development.

Here, we build a case for a conditional toolkit, rather
than propose any single solution to these longstanding
challenges. A conditional toolkit requires a measurement
strategy that is maximally sensitive to person-in-context;
that is, an ecological approach. It also requires that for
any given study, stress is rigorously theorized rather than
loosely presupposed, and the linkage between research
questions and the strengths and limitations of available
methods is closely examined on a study-by-study basis.
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Exploring all possible methods and their contingencies
is far beyond the scope of any single article, although
excellent resources are available (e.g., Brewis et al., 2021;
Ice & James, 2007). Some promising new methods are
included here only by brief reference, such as the con-
served transcriptional response to adversity (Cole, 2019;
Snodgrass et al., 2018), telomere length (Rej et al., 2021;
Rej et al., 2020), and epigenetic aging (Gettler et al., 2020;
Palma-Gudiel et al., 2020). Our focus will be on a subset of
methods that are (1) currently accessible to the broadest
possible range of human biologists working in a variety of
field contexts; (2) minimally invasive; and (3) sufficiently
well-established to provide for a discussion of strengths,
weaknesses, and ecological contingencies when working
across diverse human populations. For the purposes of this
article, recognizing that there is no one definition of “mini-
mally invasive,” we focus principally on the collection of
saliva, hair, fingernail, and capillary blood samples
(through finger prick), although where appropriate we also
briefly reference other less-invasive methods such as urine
collection and blood pressure measurement.

2 | CORTISOL AS A BIOMARKER
OF CHRONIC STRESS

Anticipated or realized insults to homeostasis lead to acti-
vation of the HPA axis, initiating a stress response. This
triggers production of cortisol, the main glucocorticoid pro-
duced by humans. Cortisol increases blood pressure, allow-
ing greater blood flow to muscles in case there is a need
for physical exertion, and directs glucose to mobilize the
energy needed to sustain a response to the situation at
hand. Further, cortisol inhibits the function of nonessential
processes, allowing the body to focus energy on responding
to an acute stressor. Additionally, cortisol plays several
other important roles in the body, including maintenance
of metabolism, regulation of the sleep–wake cycle, reduc-
tion of inflammation, and regulation of immune function.
Long-term or excess activation of the HPA axis, however,
can have negative consequences for both the brain and the
rest of the body, including (but not limited to) high blood
pressure, suppression of immune function, metabolic dis-
orders, depression, and deficiencies in memory and cogni-
tion (Bellavance & Rivest, 2014; Chrousos, 2009; Moylan
et al., 2013; Newcomer et al., 1999).

The effects of cortisol also reflect its complex interac-
tions with other hormones. For instance, dehydroepian-
drosterone and its sulfate (DHEA/S) is a known cortisol
antagonist, suppressing some of cortisol's more damaging
effects, particularly in the brain (Goodyer et al., 2001).
High cortisol/DHEA ratios are indicative of increased
risk to mental or physical health due to stress and have

been correlated with major depression in children 8–
16 years old (Goodyer et al., 1998) as well as increased
risk of metabolic syndrome among adult males (Phillips
et al., 2010). Yet low cortisol/DHEA ratios also carry risks
(see Kamin & Kertes, 2017 for a review). Thus, it is likely
that a delicate balance of these hormones over time is
essential to well-being.

Additionally, while cortisol is generally understood as
a chronic stress marker in its persistently elevated state,
hypocortisolism also has been identified as a correlate of
severe stress in some circumstances. Generally viewed as
a form of HPA dysfunction, the etiology and correlates of
hypocortisolism are complex, incompletely understood,
and beyond the scope of this article. However, caution is
warranted in interpreting cortisol levels when working
with populations at elevated risk for hypocortisolism,
such as among those with post-traumatic stress disorder
(Heim et al., 2000).

Cortisol can be detected in numerous matrices,
including blood (serum/plasma or capillary whole blood),
urine, saliva, hair, and fingernails. Blood, saliva, and
urine samples provide insight into stress responses on a
short (acute) timeframe, with elevations in cortisol evi-
dent within minutes to hours following exposure to a
stressor (Dickerson & Kemeny, 2004; Flinn, 1999;
Nicolson, 2008; van Eck et al., 1996). Hence, repeat sam-
pling is typically required to make inferences regarding
chronic stress. By contrast, hair provides a retrospective
account of stress ranging from 1–6 months, depending on
sample length (Gao et al., 2010; Kirschbaum et al., 2009;
Russell et al., 2012). Fingernails generally capture stress
experienced 5–6 months prior (Fischer et al., 2020).

By far the most common matrix in human biology
field research has been saliva. Rather than review salivary
cortisol methods in detail here, we point the reader
toward an extensive literature (e.g., Brewis et al., 2021;
Decker, 2000; Ellison, 1988; Flinn, 2006; Flinn &
England, 1997; Gettler et al., 2011; Nepomnaschy
et al., 2012; Pike & Wllliams, 2006; Pollard, 1995). Dried
blood spots (DBS; McDade et al., 2007; Worthman &
Stallings, 1997) are another well-established, field-friendly
alternative for measuring acute cortisol responses, easier
to store and ship than saliva and far less invasive than
serum or plasma. When using DBS or saliva samples,
researchers must at minimum control for time of day as
well as day of the week, and repeated collection is essen-
tial (Hruschka et al., 2005; Kudielka & Wust, 2010).

Limitations on interpreting serially collected DBS or
salivary cortisol as markers of chronic stress include the
potential for the collection methods to trigger a stress
response (Lorenz, 2021), and a variety of well-
documented confounds such as recent food intake, physi-
cal activity, and smoking (Pollard, 1995). Regular sample
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collection to address chronic stress requires habituation
to the method, can lead to high overall participant and
investigator burden, and requires a clear understanding
of the context of each measurement to evaluate individ-
ual patterning and environmental influences. These chal-
lenges are not insurmountable, however. Flinn and
colleagues' extensive body of research over the past 30+
years has demonstrated the utility of regular saliva sam-
pling in studying long-term effects of stress on child
development (Flinn, 1999, 2006; Flinn & England, 1997;
Flinn & England, 2003; Flinn & Ward, 2005). A key
advantage of this approach is that it provides the granu-
larity to link chronic stress to specific day-to-day varia-
tions in experience (Flinn, 1999).

Hair and fingernails provide an attractive alternative
because collection may be experienced by subjects as less
physically invasive than saliva or DBS, and a single sam-
ple provides retrospective insight into cortisol production
(Fischer et al., 2020; Russell et al., 2012; Van Uum
et al., 2008). Hair and fingernails also do not require spe-
cialized training for collection and can be stored indefi-
nitely at room temperature. Moreover, serially collected
hair/fingernail samples may yield novel insights into
associations between chronic stress and health across
development. For instance, by following changes in corti-
sol output throughout pregnancy, repeated maternal hair
collection during each trimester and postpartum may help
reveal mechanisms linking maternal chronic stress and
perinatal/infant health outcomes (Horan et al., 2022).

An important caveat is that social and cultural con-
cerns around hair collection may reduce advantages rela-
tive to saliva or DBS in terms of invasiveness. Such
considerations include social expectations or experiences
around hair tied to ethnicity, gender and/or religion, hair
styling/cutting, and what hair signals about the wearer
(e.g., Alexander, 2003; Mageo, 1994; Pergament, 1999). In
addition, hair is considered powerful in some cultural con-
texts and, should it fall into the wrong hands, a variety of
ailments are possible. Clear explanations of the proposed
research and methodology are essential to successful use of
this approach (Coetzee et al., 2012). While the literature on
fingernail collection is less developed, the sociocultural
acceptability of providing fingernails similarly should be
considered in collaboration with local experts.

Although hair hormone analysis has a long history,
Davenport et al. (2006) were among the first to validate its
use in rhesus macaques for studies of cortisol and their
methodology has been adapted for use in humans. Hair
hormone analysis allows for a calendrical examination of
hormone production from a single hair sample, at least for
1 to 6-months prior to the time of collection (Gao
et al., 2010; Kirschbaum et al., 2009; Russell et al., 2012),
as growth rates are a relatively predictable 1 cm per month

(Wennig, 2000), albeit with some individual, population,
and possibly sex variation, and differences depending on
collection site (Greff et al., 2019; Loussouarn, 2001).
Numerous studies have demonstrated the utility of hair
cortisol concentrations (HCC) in investigations of chronic
psychosocial stress and mental health (e.g., Dettenborn
et al., 2012; Faresjö et al., 2014; Karlén et al., 2011; Luo
et al., 2012; Stalder et al., 2010; Steudte et al., 2011).

Similarly, Warnock et al. (2010) first demonstrated
the utility of fingernails for insights into cumulative corti-
sol production over time (see also Fischer et al., 2020;
Izawa et al., 2015). Among Iranian students, increased
nail cortisol was found to correlate with experiences of
greater stress (Nejad et al., 2016) and among Chinese
medical students, perceived stress predicted nail cortisol
(Wu et al., 2018). Fingernails grow more slowly than hair,
at a rate of approximately 0.1 mm per day or 3 mm per
month (de Berker et al., 2007). As a result, 1 mm of distal
nail likely represents a 10-day period approximately 3–
5 months prior to collection (Fischer et al., 2020), requir-
ing that any measures of hypothesized correlates of the
stress response are collected well in advance of fingernail
samples or retrospectively. As this method is relatively
novel, the full range and impact of potential confounds
(e.g., UV exposure, age, sex, hand washing practices,
occupation, nail varnish, and smoking) remain poorly
characterized, although this remains an area of vigorous
investigation (Fischer et al., 2020; Ortiz et al., 2022).

2.1 | Methods for cortisol analysis in
hair and fingernails

2.1.1 | Hair analysis for cortisol

There is not yet a gold standard for hair cortisol extrac-
tion and analysis, although the following methodology
using ELISAs and derived from Davenport et al. (2006) is
fairly well established (see also Fourie & Bernstein, 2011;
Helfrecht et al., 2018). In short, following hair collection
from the posterior vertex of the participant's head, the
area with the least intra-sample variation (Sauvé
et al., 2007), the procedure requires processing the hair
before assay. Any foreign matter should be removed from
the sample to avoid external effects, through a wash in
isopropanol. For example, sweat (Noppe et al., 2014;
Russell et al., 2014) and relative humidity (Boesch
et al., 2015) may increase measured cortisol concentra-
tions, as can topical medications. Isopropanol is a pre-
ferred wash medium because it efficiently removes any
remaining debris but does not extract cortisol from the
interior of the hair shaft (Davenport et al., 2006). After
hair is dried, it should be minced or ground for

4 of 16 DECARO AND HELFRECHT



extraction; more hormone can be recovered from ground
hair than minced (Davenport et al., 2006). To extract the
hormone, a predetermined quantity of powdered hair
(usually 10–30 mg) is weighed into a plastic tube and
extracted in methanol. Following extraction and evapora-
tion, the dry extracts are reconstituted in assay buffer,
and resultant samples are assayed using commercially
available ELISA kits. Formulas accounting for the quan-
tity of buffer used to reconstitute the sample, the propor-
tion of the original extraction dried down, and the initial
weight of powdered hair are then used to calculate HCC
expressed as pg/mg (Helfrecht et al., 2018; Horan
et al., 2022).

2.1.2 | Fingernail analysis for cortisol

A recent review by Fischer et al. (2020) provides an
overview of the procedure for extracting hormone from
fingernails. It is comparable to that for hair, but consen-
sus is still being established due to its relative novelty.
After first cutting their nails prior to the start of the
study, participants provide either a predefined length or
all the newly grown distal portion of the fingernail from
every finger of both hands after a defined amount of
time has passed. Due to variation in fingernail growth
rates across the fingers and consequent variation in nail
cortisol concentrations, clippings from all fingers are
generally included in the collection. Prior to analysis,
nails are washed to remove potential contaminants.
Wash solution, methods, length, and frequency vary
across studies, but isopropanol is most often used. After
the wash, nails are allowed to dry and then homoge-
nized. Although they can be cut, use of a ball mill to
pulverize likely allows for more complete extraction of
cortisol.

To extract the hormone, samples are incubated in a
solvent, usually methanol, under a variety of conditions
of movement (e.g., ultrasonic bath, platform shaker),
temperature (room temp, 45–60�C), and time (1–24 h).
After centrifuging, the supernatant is transferred to
another vial and dried down, either through evaporation
or under nitrogen. Samples are usually then reconstituted
in assay buffer if using a commercially available ELISA,
although liquid chromatography/mass spectrometry mea-
surement approaches also have been employed. Finger-
nail cortisol concentrations may be expressed as nmol/g
(Warnock et al., 2010).

Both with respect to hair and fingernail cortisol ana-
lyses, care should be taken to confirm that the assay kit,
typically developed for saliva, has been validated with
respect to its reliability in measuring cortisol extracted
and reconstituted from these other matrices.

2.2 | Placing cortisol into socio-
ecological context

Cortisol plays numerous roles in the body other than
responding to psychosocial stressors and, as a result, cor-
tisol may be chronically elevated in response to other
challenges tied to maintenance of homeostasis. Thus,
broad consideration of socio-ecological effects is impor-
tant to our understanding of what cortisol concentrations
mean. Acknowledging the voluminous literature in this
area, a few illustrative examples will be used to highlight
key features of human ecology that should be considered
in interpreting cortisol responses measured over time-
scales relevant to chronic stress.

Undernutrition is associated with persistently ele-
vated cortisol, which in turn contributes to the etiology of
stunting, to metabolic programming that increases long-
term disease risk, and ultimately to impairments in
quality of life (Martins et al., 2011). This cascade of devel-
opmental events, in turn, can increase vulnerability to
subsequent episodes of chronic stress (McEwen &
Wingfield, 2003; Worthman & Kohrt, 2005). Another
intriguing case study comes from Nyberg (2012), who
found exceptionally low mean cortisol and diurnal slopes
among Tsimane’ foragers in the Amazon, especially
when compared to industrialized populations. As the
authors point out, however, Tsimane’ do not live “stress-
free” lives, given adversity stemming from logging
encroachment, debt burden, and other structural inequal-
ities. Instead, low cortisol levels may reflect the action of
developmental factors such as pathogen exposure history
and infant care practices. Infectious disease alone may at
once elevate cortisol over short periods of time, while
cumulatively leading to decreased HPA activity over the
lifespan (Nyberg, 2012). Hence, nutritional status and
pathogen load are more than simply confounds; they are
interacting, developmentally salient ecological factors
that challenge an over-simplistic understanding of corti-
sol as a marker of chronic stress.

Hence, it may not always be possible to separate out a
singular dimension of this comprehensive ecology in rela-
tion to cortisol. Research on family environments further
illustrates this point. Several studies have identified asso-
ciations among child cortisol and family characteristics
(e.g., family structure and routines; DeCaro &
Worthman, 2011; Flinn, 1999). Yet despite considerable
differences in parenting norms and beliefs that generate
distinct contexts for child development (Hewlett, 1991;
Hewlett et al., 2000), Helfrecht et al. (2018) did not find a
difference in hair cortisol among Aka hunter-gatherer
and Ngandu horticulturalist children. This suggested that
shared ecological pressures, such as high infant and
childhood mortality rates, disease burden, parasite load,
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and resource restriction have led to elevated cortisol in
both of these neighboring populations.

3 | LATENT HERPESVIRUS
ANTIBODY TITERS AS MARKERS OF
CHRONIC STRESS

Herpesvirus antibody titers as a marker of chronic psy-
chosocial stress—especially, the Epstein-Barr virus
(EBV)—have roots in US-based psychoneuroimmunology
research with medical students during major examina-
tions (Glaser et al., 1991), family caretakers of adults with
Alzheimer's Disease (Kiecolt-Glaser et al., 1987), and
others experiencing chronic psychosocial stress. These
and other studies validated a model based on the near
ubiquity of latent EBV infection in adults, wherein sur-
veillance by the cell-mediated arm of the immune system
minimizes opportunities for viral reactivation. However,
suppression of surveillance during periods of sustained
psychosocial stress is sufficient for EBV to reactivate par-
tially, releasing antigens that prompt an antibody
response. Hence, among those who are EBV seropositive,
higher antibody titers are theorized to reflect diminished
cellular surveillance secondary to elevated psychosocial
stress over the several preceding weeks (Glaser
et al., 1991; McDade, Stallings, Angold, et al., 2000). This
model has the key advantage that single samples may
serve as an effective chronic stress marker.

McDade and colleagues adapted this procedure for use
with minimally invasive dried capillary blood spots (DBS)
collected from finger prick (McDade, Stallings, Angold,
et al., 2000; McDade, Stallings, & Worthman, 2000). Since
then, higher EBV titers have been found in association
with status incongruity among Samoan adolescents
(McDade, 2002), social stress among female university stu-
dents in Afghanistan (Panter-Brick et al., 2008), lifestyle
incongruity among indigenous Yakut herders in Siberia
(Sorensen et al., 2009), lower perceived quality of life in
rural Hainan Island, China (Inoue et al., 2014), and house-
hold marital disputes among children from a fisher-farmer
community in the Republic of the Congo (Boyette
et al., 2018). On the other hand, the expected relationships
between EBV and various measures of stress or vulnerabil-
ity were not found among Awajún communities in the
Peruvian Amazon (Tallman, 2016), type 2 diabetic women
in New Delhi (Weaver et al., 2015), new mothers in São
Paulo, Brazil (Rudzik et al., 2014), Maya or non-Maya
women undergoing menopausal transition in Campeche,
Mexico (Sievert et al., 2018), and children and adolescents
experiencing culture change among the Hagahai of Papua
New Guinea (DeCaro et al., 2010). These conflicting find-
ings likely are due to a combination of very different

settings and operationalizations of stress, and the complex
regulation of immune activity (see also Blackwell &
Garcia, 2022, this issue).

3.1 | Methods for latent herpesvirus
antibody titer analysis

Because methods for collecting DBS and measuring anti-
bodies against EBV and other latent herpesviruses, such
as cytomegalovirus (CMV), are well-established and have
been described in detail within the literature (Dowd
et al., 2011; Eick et al., 2016; McDade et al., 2007;
McDade, Stallings, Angold, et al., 2000), we discuss them
only briefly. Also, we focus on EBV, since it has been the
most widely used.

Blood spots from finger prick are collected on filter
paper and dried (McDade et al., 2007). This enhances sta-
bility of the sample compared to serum or plasma, allow-
ing short-term storage at room temperature and
nonrefrigerated shipping to a lab. These are major advan-
tages in field settings where cold storage and local labora-
tory facilities are limited. Once in the lab, dried blood is
eluted into a buffer from small discs of filter paper of uni-
form size. The eluate is assayed using an ELISA optimized
for quantitative determination of antibodies against an
EBV viral capsid antigen (most commonly, protein p18).
Only those samples that show evidence of seropositivity
(i.e., high enough antibody titers to suggest prior infection)
are usable in analysis (Eick et al., 2016; McDade, Stallings,
Angold, et al., 2000). This yields variable rates of missing
data depending on age- and population-specific variation
in seroprevalence (Dowd et al., 2013).

Available methods rely on optimization of existing com-
mercially available ELISA kits for quantitative analysis of
EBV antibodies in DBS. It is not appropriate to substitute
another kit designed for use with plasma/serum without
extensive revalidation. When the commercial kit originally
validated by McDade, Stallings, Angold, et al. (2000) became
unavailable, Eick et al. (2016) validated a new assay proce-
dure merging components from two kits that as of this writ-
ing remain on the market. Should the commercial
availability of kits change again, it is important to work
closely with laboratory scientists skilled in assay development
to confirm the feasibility of a new EBV antibody titer assay.

3.2 | Ecological considerations in the use
of EBV antibody titers

A central challenge with any immunological marker of
chronic stress is that the immune system is exceptionally
complex in its regulation and, given its high energetic
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cost, also is implicated in life history allocation trade-offs
that shape immune system development from an early age
(McDade et al., 2016). Nutritional status, hygiene, co-infec-
tion, and microbiome differences are among the factors
that may influence adaptive immunity, including cell-
mediated immune responses (Kau et al., 2011; McDade
et al., 2016). Moreover, Wander et al. (2013), working with
children in Kilimanjaro, Tanzania, not only found that
EBV titers were largely unassociated with a variety of
markers of adversity in this setting (primarily related to
undernutrition and infectious disease), but also that EBV
titers were unrelated to their more direct marker of cell-
mediated immunity, delayed-type hypersensitivity to Can-
dida albicans. In short, the underpinnings of the stress
marker—that is, that EBV antibodies serve as an indirect
measure of cell-mediated immune function—are at mini-
mum greatly complicated outside the relatively hygienic
settings and well-nourished populations where the model
was developed and initially validated.

Hence, it is perhaps not surprising that EBV titers have
proven inconsistent in their reliability as a marker of
chronic stress across diverse field contexts, particularly set-
tings characterized by high nutritional stress and infectious
disease burden. As noted above, expected associations
between chronic stress and EBV titers have not been found
in roughly as many cases as they have. There are also at
least two cases where the EBV-stress relationship is appar-
ently reversed. Comparing adolescent Syrian refugees and
Jordanian nonrefugees, the refugees unexpectedly displayed
lower EBV titers (Panter-Brick et al., 2020). This echoes an
earlier finding that, when constructing an allostatic load
index (ALI) to assess the burden of childhood adversity in
Nepal, it was necessary to treat higher EBV antibodies as a
marker of well-being rather than adversity-related immuno-
compromise – effectively, turning the model on its head
(Worthman & Panter-Brick, 2008).

Here, the concept of local biology is again useful, rec-
ognizing that different ecologies may not simply produce
confounders, but also population-specific patterns of bio-
logical regulation in the underlying stress-responsive sys-
tem being measured (in this instance, adaptive immunity).
In many instances of null or contrary findings described
earlier, the psychosocial dimension of stress arguably was
indivisible from economic and political forces that also
produce poor nutrition, negative energy balance, infec-
tious disease risk, and other physical insults.

4 | ALLOSTATIC LOAD INDICES
AS MARKERS OF CHRONIC STRESS

Allostatic load is founded in the concept of allostasis,
sometimes glossed as “stability through change,” wherein

regulatory systems undergo marked changes in state to
mitigate the cost of stressors, maintain homeostasis, and
optimize physiological functioning (hence, to maximize
fitness). “Primary mediators” of allostasis include regula-
tory molecules such as cortisol, epinephrine, thyroid
stimulating hormone, and cytokines. These typically are
released rapidly and unleash responses across multiple
systems, such as increased inflammation and blood pres-
sure, altered glucose metabolism, and so forth. In this lit-
erature, such intermediate-level responses are often
referred to as “secondary mediators” of allostasis. Hence,
in response to acute stressors, primary mediators work in
conjunction and adaptively, through secondary media-
tors, to optimize energy allocation, regulate attention and
arousal, and otherwise prepare to meet an anticipated or
realized threat. Yet repeated or continuous activation of
the stress response has multisystem, cumulative effects
that are harmful to health, especially if the response is
unsuccessful in mitigating the stress. Allostatic load,
sometimes differentiated as “overload” when allostatic
regulation breaks down in the face of extreme or persis-
tent stress, is thus the cumulative burden of allostasis.
Typically, it is operationalized by measuring stress
markers across multiple systems, including markers of
the primary and secondary response, and combining
them into an index (Edes & Crews, 2017; McEwen &
Wingfield, 2003).

Yet rarely do two studies operationalize allostatic load
in precisely the same way, nor is there a recognized gold
standard. For instance, Edes and Crews (2017), in their
comprehensive review of allostatic load and its measure-
ment provide a table with 35 commonly used markers,
reflecting functioning of the neuroendocrine, metabolic,
cardiovascular, immune, pulmonary, and excretory sys-
tems, only a small subset of which are likely to be
included in any single study. While lack of standardiza-
tion limits direct comparison across studies, it does pro-
vide an opportunity to build a study-specific index
incorporating minimally invasive markers that are feasi-
ble in the relevant field context, sensitive to the stressors
of greatest interest, and age-appropriate.

The minimum requirements for a useful ALI remain
a matter of debate, although typical practices include
incorporating both primary markers (e.g., of HPA activ-
ity) and secondary markers (e.g., of inflammation),
reflecting multiple systems with known cumulative
effects on health (Edes & Crews, 2017; Guidi et al., 2021).
Edes and Crews (2017), drawing from their literature
review, suggest that an optimal index will include
markers at least of the neuroendocrine, cardiovascular,
metabolic, and immune systems. A few examples of
well-established correlates of higher allostatic load
include economic and racial/ethnic marginalization,
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work-related stress, and long-term caregiving (Guidi
et al., 2021). Allostatic load is sensitive to early life adver-
sity, which is unsurprising since its common components
such as neuroendocrine, immune, and metabolic regula-
tion each have developmental origins (Edes &
Crews, 2017). Human biologists have shown growing
interest in allostasis and allostatic load (e.g., Crews
et al., 2019; James, 2020; Worthman & Costello, 2009),
yet deploying ALIs as markers of chronic stress remains
uncommon in human biology, especially outside the
United States. Several interesting recent applications
have involved children or adolescents. Burris and Wiley
(2021) found no association between food security and
allostatic load in United States adolescents. However,
Worthman and Panter-Brick (2008) used an ALI among
Nepali children to highlight the burden of rural poverty
and, among late adolescents and young adults in the
United States, Cullin (2021) found that allostatic load
was associated with perceived fat stigma independent of
adiposity.

4.1 | Methodological considerations in
constructing an allostatic load index

Minimally invasive measurement of allostatic load
requires finding an appropriate multisystem combination
of biomarkers that can be collected without relying on
venipuncture and determining the best way to combine
them into a single index. A simple index using readily
available markers for adults, for instance, might include
hair cortisol (neuroendocrine, primary), HbA1c using a
point-of-care device (metabolic, secondary), DBS C-
reactive protein (immune, secondary), and the average of
several measurements of resting systolic blood pressure
(cardiovascular, secondary). Working with children,
Worthman and Panter-Brick (2008) combined height-
and weight-for-age (metabolic, secondary), cortisol from
serial saliva collection (neuroendocrine, primary), EBV
antibody titers and the inflammatory marker
alpha1-antichymotrypsin from DBS (immune, second-
ary), and two heart rate variability measures related to
cardiovascular fitness: sitting versus lying pressor
response and rest versus active flex heart rate. Notably,
given the young age of the study participants, they
avoided markers that tend to emerge later in life, such as
those associated with hyperglycemia, hyperlipidemia,
and hypertension. In each case, the key criterion is met
that multisystem measures allow a window into overall
“wear and tear” across allostatic systems that are respon-
sible for maintaining homeostasis and protecting against
long-term health risk. High allostatic load implies that
allostatic systems are overtaxed, although not necessarily

(yet) to the extent of producing disease. Hence, age-
appropriate markers are selected for an ALI that have
sufficient variation to illustrate the accumulation of risk
through chronic stress, often prior to actual pathology.

Integrating diverse markers into an ALI is a complex
methodological problem, given different scales and non-
linear associations of continuous markers with health
risk. There are a few general approaches. Many
researchers have established cut-points based on the sam-
ple distribution of markers and add an increment to the
index for each marker that is in the highest risk category
(e.g., top quartile) relative to the sample (McEwen &
Seeman, 1999). Others employ cut-points derived from
clinical risk thresholds (Bird et al., 2010). The sample
distribution-based approach better allows for population
and age-specific variation in associations between
markers and risk, as well as scenarios where no meaning-
ful clinical cut-point exists. The clinical approach may be
more strongly associated with health outcomes. Another
alternative, designed to capture the full range of varia-
tion, is converting each marker into a z-score and averag-
ing them (Hawkley et al., 2011). This works best if it is
reasonable to assume a linear association with adversity
and normal distributions across the full range of each
marker. None of the preceding methods requires that
allostatic load components covary, and the choice among
them may not matter very much to study results
(McLoughlin et al., 2020). On the other hand, some
authors argue for the use of factor analysis to combine
markers and test the underlying structure of an ALI
(McCaffery et al., 2012; Wiley et al., 2016). This likely
does make a meaningful difference and is as much a the-
oretical stance as a methodological one: if allostatic load
is a generalized, multisystem phenomenon, then it will
be captured best through the examination of shared
variance.

Finally, there are trade-offs between collapsing multi-
system information into a single index versus examining
them individually in the interest of understanding
chronic stress. Weighing in favor of an index, allostatic
load helps resolve a problem inherent in the stress con-
cept itself. Stress, in a generalized sense, is difficult to pin
down because it is not directly observable. Instead, if a
collection of markers reflecting multiple systems captures
different dimensions of stress, combining them may
unmask broad patterns of response to adversity that indi-
vidual markers would miss. The purest expression of this
is when allostatic load is treated as a latent variable in
the factor analytic approach (McCaffery et al., 2012;
Wiley et al., 2016). Weighing against, creating any index
involves loss of information, and elides specific biological
pathways toward disease. These are not mutually exclu-
sive, of course—an index may be unpacked into its
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component parts and analyzed both ways—but allostatic
load can prove useful in picking out the chronic stress
“signal” from the “noise” of its constituent parts.

4.2 | Ecological considerations in the use
of allostatic load indices

As with other markers, it is often challenging to isolate
the specific, proximate stressors that yield elevated allo-
static load, given that it reflects cumulative adversity
across the lifespan. This includes prenatal life and cross-
generational effects, given that dysregulation in many
systems incorporated into ALIs have early developmental
origins and are subject to biosocial inheritance
(cf. Hoke & McDade, 2014; Kuzawa & Fried, 2017).
Hence, an ALI is most useful if chronic stress can be con-
ceived broadly, by comprehensively considering socio-
ecological interactions and multiple forms of adversity
experienced across time. Nevertheless, chronic psychoso-
cial stress is both directly and indirectly implicated,
whether through stress-associated behaviors with adverse
consequences for health risk (Suvarna et al., 2020), or
physiological mechanisms mediated by neuroendocrine
pathways (McEwen & Wingfield, 2003).

Age is a major consideration and limitation in the
measurement of allostatic load. There have been success-
ful attempts to develop analogous indices that capture mul-
tisystem wear and tear in childhood (e.g., Worthman &
Panter-Brick, 2008). However, depending on the markers
and the population, it may be much later in life before
individual or group differences in the cumulative load
placed on developing allostatic systems become easily
measurable. Hence, in practice, most studies have
focused on adults (Guidi et al., 2021). Further, ecological
effects on the functioning of individual systems being
measured are no less important when markers are sub-
sumed within an index. The paradoxical operation of
EBV antibody titers in Worthman and Panter-Brick's
(2008) ALI, discussed earlier, is one example. For
another, consider inflammation, a routine component of
ALIs. In high income countries with low infectious dis-
ease loads and limited energetic stress, low-grade inflam-
mation is a common, independent cardiovascular risk
factor (Lagrand et al., 1999), and also is correlated with
obesity (Park et al., 2005). Yet, in longitudinal research
among Shuar communities in the Ecuadorian Amazon
characterized by high infectious disease load, chronic
low-grade inflammation was absent. Instead, acute eleva-
tions of CRP associated with infectious symptoms quickly
reverted to a low baseline, likely due to developmental
trade-offs that down-regulate the inflammatory response
(McDade et al., 2012). In short, if no one marker is

immune from the operation of local biology, then cer-
tainly neither is an index combining them.

5 | LONGITUDINAL AND
AMBULATORY ASSESSMENT OF
MOMENTARY MARKERS

In an idealized study design, it would not be necessary to
rely on any measurement at a single timepoint to study
chronic stress. Instead, we would examine chronic stress
as a dynamic process, produced and reproduced through
repeated, often highly correlated acutely stressful experi-
ences that we can examine as they unfold. Most of the
biomarker approaches discussed in this article aim to
capture the outcome of such a process that has unfolded
over the course of weeks (e.g., EBV), months (e.g., hair/
fingernail cortisol), or years (e.g., allostatic load). In that
sense, they provide a retrospective sum or average, which
is useful for many research designs, especially large-scale
population health surveys. Yet where measures are suffi-
ciently low burden, repeated or even continuous sam-
pling may be an option, in which case physiological
stress markers can be examined as they respond to
changing social contexts in real time. Hence, daily pro-
cesses underlying chronic stress may be uncovered. This
is particularly of interest when investigating stress in
relation to developmental trajectories.

In the section on cortisol, we noted the utility of
repeated saliva sampling to capture the emergence of
chronic stress over time; similar approaches may also be
used to assess alpha-amylase, a marker of autonomic
arousal (DeCaro, 2008). One can reasonably ask moti-
vated research participants to self-collect saliva several
times per day over 5+ days (DeCaro & Worthman, 2008;
2011), and Flinn et al. (2012) have demonstrated the fea-
sibility of following children for multiple episodes of
serial saliva collection stretching across years. Catechol-
amines, while similar to cortisol in their very limited util-
ity in single measurements, can be collected repeatedly in
urine and linked to daily experience (Pearson
et al., 1993). Ambulatory blood pressure monitoring dem-
onstrates systematic patterns of fluctuation over the day
associated with context (e.g., work vs. home), job strain,
familial stress, and emotional states, with effects that are
gender-differentiated and sensitive to stress appraisal
(James, 2013). Increasingly, ambulatory versions have
become available of even more sensitive noninvasive psy-
chophysiology equipment that can differentiate between
sympathetic and parasympathetic responses to social con-
text. For instance, mobile impedance cardiography can
be used to generate indices such as respiratory sinus
arrhythmia (a parasympathetic marker derived from
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high-frequency heart period variation) and pre-ejection
period (a sympathetic marker based on the delay between
electrical systole and the initiation of ventricular ejection)
(DeCaro, 2016). While the most advanced psychophysiol-
ogy solutions have not yet crossed the threshold where
they are easy to apply in the full range of field settings
where human biologists work, ongoing miniaturization
of sensors and their incorporation even into consumer-
grade electronics offers near-term hope.

Like any form of longitudinal research, the length
and frequency of follow-up that is merited depends
entirely on the research question, and a high level of
commitment from research participants may be required.
Also, cost and investigator burden are typically high com-
pared to single timepoint measurements. These are not
insignificant barriers. Thus, while one could simply take
an average of measurements collected over days, weeks,
or months and use this as a marker of chronic stress, that
arguably is a waste of the power of such designs and the
additional effort involved in collecting the data. Instead,
human biologists considering such an approach should
partner with statisticians fluent in multilevel analysis
that can properly handle both intra- and inter-individual
variability (Hruschka et al., 2005). Researchers also are
presented with the question, variability in relation to
what? A range of methods including participant observa-
tion (Flinn et al., 2012), paired video recording (Pritzker
et al., 2019), diaries (DeCaro & Worthman, 2008;
James, 2013), and experience sampling (Weisner
et al., 2001) can help provide critical information regard-
ing corresponding variation in psychosocial context.

6 | FUTURE DIRECTIONS AND
CONCLUSIONS

It would be impossible to adequately capture all the
cutting-edge work in stress biology currently being inte-
grated into the human biologist's toolkit. Three key
examples related to how chromosomal structure, epige-
netic marking, and gene regulation are being employed
in studies of psychosocial stress may suffice to provide a
taste of what is to come, however.

Some researchers have described evidence of stress-
related acceleration in processes associated with aging at
the chromosomal and epigenetic level. For example,
methods are now available for reliable extraction from
DBS of DNA suitable for measuring telomere length (Rej
et al., 2021). Telomeres shorten with age, leading to ele-
vated risk of poor health, but there also is evidence that
they shorten more rapidly in light of chronic stress; for
example, among African American adults in Florida
experiencing greater racial discrimination (Rej et al., 2020).

Another emerging measure is epigenetic aging, which
reflects methylation patterns associated with advancing age
that may accelerate in the presence of persistently elevated
stress (Palma-Gudiel et al., 2020). For instance, employing
DBS, Gettler et al. (2020) found associations between intrin-
sic epigenetic age acceleration and parental conflict among
children in a fisher-farmer society in the Republic of
Congo. This association was evident only after adjusting for
anthropometric measures that aimed to capture allocation
trade-offs in this high pathogen load, high energetic stress
population, however. Another innovation has been the
application in biocultural research of the conserved tran-
scriptional response to adversity (CTRA), which involves
quantifying RNA transcripts of genes that are dispropor-
tionately up- or down-regulated in immune cells during
stress (Cole, 2019). Snodgrass et al. (2018) found that CTRA
from DBS was correlated among young adults in the
United States with patterns of problematic versus positive
experiences in internet gaming. Much remains to be
learned about how each of these markers translate across
populations and relate to various forms of chronic stress in
a wider variety of field settings, but they already show con-
siderable promise.

Since the past several decades have yielded so many
ways to approach chronic stress through minimally invasive
biological sampling, we return to the concept of a condi-
tional toolkit, and summarize a subset of the contingencies
that this overview suggests should be considered.

1. To what extent is it essential to the research question
that a psychosocial dimension of chronic stress be iso-
lated? Allostatic load may be especially poorly suited
if that distinction is necessary. However, regardless of
the marker, psychosocial stressors rarely act in isola-
tion. Statistical control may not always be sufficient,
as when systematic disempowerment blurs the lines
between social stress and physical deprivation.
Indeed, in some cases, it may be helpful to reframe a
question in terms of chronic adversity, and jettison
some of the baggage that “psychosocial stress” carries
into the conversation.

2. What are the most relevant characteristics of local
ecologies to the performance of markers, and what are
the implications for the specific study setting? For
instance, while EBV has shown positive results in a
variety of populations, it appears to work most reliably
as a chronic stress marker when energetic and patho-
gen stress are low. Inflammation markers, which are
nearly universally included in allostatic load indices,
are sensitive to obesity rates and pathogen load.

3. How feasible is repeat sample collection? There are
advantages, especially in work on human develop-
ment, to research designs that observe the stress
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response as it unfolds in relation to changing experi-
ence over time, such as through serial saliva collection
or ambulatory methods. However, especially in large-
scale survey research or in other studies where follow-
up will be difficult, single-time measurement of hair/
fingernail cortisol, EBV, and allostatic load indices
enhance feasibility.

4. How might the functioning of the biological systems
that underlie a marker shift depending on age, devel-
opmental histories, and local biologies? Having a suf-
ficient appreciation of the broader regulatory role and
developmental trajectory of each marker gives a
researcher the best opportunity to anticipate how it
may behave in a new ecological context.

5. What “chronic” measurement timeframe is most
appropriate to the research question? Although they
may be representative of experience over longer
periods, salivary cortisol directly measures only as
many days as it is being collected; EBV a few weeks;
hair and fingernail cortisol up to a few months; allo-
static load (likely also epigenetic age acceleration and
telomere shortening) the lifespan to date.

6. Has the examination of ecological context accounted
not just for structural factors and interactions with the
natural/physical environment but also culture, and
has culture been theorized and operationalized in a
suitable manner? For example, groupwise compari-
sons based on culture change may require different
designs and measures than assessments of stress
linked to individual positioning with respect to cultural
models, expectations, roles, and other affordances at a
household or community level (cf. Dressler, 2005;
McDade, Stallings, & Worthman, 2000; Worthman &
Costello, 2009). Brewis et al. (2021) discuss additional
considerations in the measurement of stress within bio-
cultural research designs that extend beyond the scope
of this paper.

Finally, methods may be combined to overcome their
individual limitations, and to avoid becoming boxed into
a less suitable method because it is familiar or most read-
ily available. The continual emergence of new and prom-
ising methods for examining the impact of adversity
highlights the value of broad collaborative networks
including anthropologists, molecular biologists, immu-
nologists, statisticians, psychophysiologists, and others.
Human biologists offer to interdisciplinary teams, among
other things, grounding in evolutionary theory, global
perspective, and in many cases expertise in deep engage-
ment with bioecocultural context. These competencies
greatly expand the range of questions that can be
addressed with respect to chronic stress and human
health. Moreover, chronic psychosocial stress—for all its

caveats and complexity—remains a construct that's “good
to think with.” Minimally invasive biomarkers, in turn,
are a critical tool for researchers concerned with how and
why experience gets under the skin in a wide range of
field settings, as people go about their daily lives outside
of the lab.
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