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ABSTRACT
Objective: To update previous systematic review of
predictive models for 28-day or 30-day unplanned
hospital readmissions.
Design: Systematic review.
Setting/data source: CINAHL, Embase, MEDLINE
from 2011 to 2015.
Participants: All studies of 28-day and 30-day
readmission predictive model.
Outcome measures: Characteristics of the included
studies, performance of the identified predictive models
and key predictive variables included in the models.
Results: Of 7310 records, a total of 60 studies with 73
unique predictive models met the inclusion criteria. The
utilisation outcome of the models included all-cause
readmissions, cardiovascular disease including
pneumonia, medical conditions, surgical conditions and
mental health condition-related readmissions. Overall, a
wide-range C-statistic was reported in 56/60 studies
(0.21–0.88). 11 of 13 predictive models for medical
condition-related readmissions were found to have
consistent moderate discrimination ability (C-statistic
≥0.7). Only two models were designed for the
potentially preventable/avoidable readmissions and had
C-statistic >0.8. The variables ‘comorbidities’, ‘length of
stay’ and ‘previous admissions’ were frequently cited
across 73 models. The variables ‘laboratory tests’ and
‘medication’ had more weight in the models for
cardiovascular disease and medical condition-related
readmissions.
Conclusions: The predictive models which focused on
general medical condition-related unplanned hospital
readmissions reported moderate discriminative ability.
Two models for potentially preventable/avoidable
readmissions showed high discriminative ability. This
updated systematic review, however, found inconsistent
performance across the included unique 73 risk
predictive models. It is critical to define clearly the
utilisation outcomes and the type of accessible data
source before the selection of the predictive model.
Rigorous validation of the predictive models with
moderate-to-high discriminative ability is essential,
especially for the two models for the potentially
preventable/avoidable readmissions. Given the limited
available evidence, the development of a predictive

model specifically for paediatric 28-day all-cause,
unplanned hospital readmissions is a high priority.

INTRODUCTION
Unplanned hospital readmissions cause a dis-
ruption to the normality of patients and/or
family/carers’ lives and result in a significant
financial burden on the healthcare system.1 2

In the USA, it has been estimated that 7.8
million (20%) of hospital-discharged patients
were readmitted. This accounted for $17.4
billion of hospital payments by Medicare.3 4

In the UK, the figures suggested ∼35% of
unplanned hospital readmissions, costing 11
billion pounds per annum (5.3 million
admissions in 2010/2011).5

Unplanned hospital readmission rate is
considered as a performance indicator to
measure a hospital’s quality of care.6 7

Unplanned hospital readmission is defined
as the percentage of unplanned or unex-
pected readmission to the same hospital
within 28 days of being discharged.8 9

However, the literature has widely used

Strengths and limitations of this study

▪ This is an updated systematic review (2011–
2015) of the literature relating to risk predictive
models for unplanned hospital readmissions.

▪ This updated systematic review followed rigorous
methodology applying comprehensive electronic
database search, strict inclusion, exclusion and
quality assessment criteria to synthesise current
literature on characteristics and properties of risk
predictive models for 28-day or 30-day
unplanned hospital readmissions.

▪ The outcomes of the predictive models included
in this systematic review were restricted to
28-day or 30-day unplanned hospital
readmission.
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30 days within the context of measurement of hospital
readmissions.1 6 7

One of the strategies to reduce the unplanned hos-
pital readmission rate is the application of predictive
models to identify patients at high risk for readmission.
Preventive approaches can then be developed and
applied to target the identified high-risk patients. A pre-
vious systematic review10 was conducted in 2011 on the
risk predictive models for adult medical patients’ hos-
pital readmissions. A total of 30 studies with 26 predict-
ive models were included, and the overall performance
of reviewed models was poor. It is, however, worth
noting that studies conducted in developing nations and
studies that focused on paediatric patients and adult psy-
chiatric and surgical patients were excluded.
Since 2011, there has been increased interest in either

developing new predictive models or validating existing
models due to high inpatient demand on the healthcare
system.11–15 However, the performance of risk predictive
models has varied significantly. The purpose of this sys-
tematic review is to update previous systematic review on
predictive models for 28-day or 30-day unplanned hos-
pital readmissions and to investigate and assess the
characteristics of these models.

METHODS
Search strategy and data sources
An electronic database search was carried out using the
CINAHL, Embase and MEDLINE to identify studies
published between 2011 and 2015. The key search terms
included ‘unplanned readmission* or rehospitali*’ AND
(‘predict*’ AND ‘model*’) OR ‘ROC or C-statistic*’ OR
‘sensitivity or specificity’ (see online supplementary
appendix 1 for full search strategy).

Inclusion/exclusion criteria
Articles eligible for inclusion were those published in
English with full-text access from 2011 to 2015. Only
peer-reviewed studies were included in this review. The
study design of included studies needed to be clearly
stated together with details of the performance of the
risk predictive model reported. Abstract-only references
were excluded. Studies included in the previous system-
atic review10 were excluded due to overlapping of the
search period (1985–August 2011). Studies that included
patients discharged from hospital but still receiving treat-
ment, that is, intravenous antibiotics, via ambulatory
care or hospital in the home programmes were also
excluded.

Study selection and data extraction
Initial literature searches were conducted by HZ and
PD. Two authors (HZ and LG) independently screened
titles, abstracts and appraised full papers against the
inclusion and exclusion criteria. The process of exclu-
sion was relatively straightforward and only a handful of
studies warranted discussion between the authors (HZ,

LG, SD, PD and PR) and to reach consensus as to
whether they met the inclusion criteria.
Data were extracted from the final included studies by

three authors (HZ, LG and SD). The data extraction
included study characteristics, model performance and
key variables of the predictive model. Study character-
istics included study setting, population, data source, the
timing of data collection, sample size, study design,
model name if applicable, model utilisation outcome
and readmission rate (table 1). Measures assessing pre-
dictive model performance, including discrimination,
calibration, cut-off values used to identify patients at
high risk of being readmitted to the hospital, sensitivity,
specificity, positive predictive value (PPV) or negative
predictive value (NPV), were extracted (table 2). Model
discrimination is commonly assessed using C-statistic or
the area under the receiver operating characteristic
curve. Values of the C-statistic measurement range from
0.5 to 1.0. A value of 0.5 indicates that the model is no
better than chance at making a prediction of member-
ship in a group, and a value of 1.0 indicates that the
model perfectly identifies those within and not within a
group. Models are typically considered reasonable when
the C-statistic is higher than 0.7 and strong when the
C-statistic exceeds 0.8.71 Variables of the readmission risk
predictive model were also extracted and presented in
table 3. The studies were grouped based on the model
utilisation outcome in the three tables. Disagreements
between two reviewers about the extracted data were
resolved through group discussion.

Quality appraisal
Six domains of potential bias72 were used to appraise
the quality of included studies critically. The assessment
of risk for bias was completed by two independent
reviewers (HZ and SD). The ratings of ‘yes’, ‘partly’, ‘no’
or ‘unsure’ were given to each domain and then an
overall risk of ‘low’ or ‘high’ was assigned to each study.
The six domains are:
1. Study participation: ‘Was source population clearly

defined?’ and ‘Was the study population described?’
or ‘Did the study population represent source popu-
lation or population of interest?’

2. Study attrition: ‘Was completeness of follow-up
described and adequate?’

3. Prognostic factor measurement: ‘Did prognostic
factors measure appropriately?’

4. Outcome measurement: ‘Was outcome defined and
measured appropriately?’

5. Confounding measurement and account: ‘Were con-
founders defined and measured?’

6. Analysis: ‘Was analysis described and appropriate?’
and ‘Did analysis provide sufficient presentation of
data?’

Data synthesis
Pooling of quantitative data was not possible as the
included studies were not homogeneous. Therefore, the
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Table 1 Characteristics of 49 included studies on 28-day or 30-day unplanned hospital readmission (UHR) predictive models

Reference Model name Model outcome

Study design/data

source Sample size Age group (years)

Duration of

retrieved data

source

Readmission

rate

All-cause UHRs (14)

Escobar et al16

USA

ED 30

Discharge 30 LACE

(validation)

30-day all-cause

readmissions

Retrospective cohort

21 hospitals

Electronic medical

records

A total of 360 036

patients

179 978 derivation set

180 058 validation set

Mean=64.1 1 June 2010–

31 December

2013

Derivation:

12.5%; Validation:

12.4%

Yu et al17

USA

Institution-specific prediction

model

LACE (validation)

30-day all-cause

readmission

Retrospective cohort

3 hospitals

Hospital 1=2441

Hospital 2=26 520

Hospital 3=45 785

≥65 Not reported H1=23%

H2=20%

H3=18%

Baillie et al18

USA

Prediction model 30-day all-cause

readmissions

Retrospective and

prospective cohort

3 hospitals

Retrospective: 120 396

discharges

prospective validation

Not reported—adult August 2009–

September

2012

Retrospective:

14.4%;

Prospective:

15.1%

Choudhry et al12

USA

ACC Admission and

Discharge model

30-day all-cause

readmissions

Retrospective cohort

8 hospitals

A total of 126 479

patients

94 859 derivation set

31 619 internal and

6357 external

validation

Mean=66.01

(readmission)

57.65 (no

readmission)

1 March 2010–

31 July 2012

7.25%

Gildersleeve and

Cooper19

USA

Risk of readmission score

(RRS)

30-day all-cause

readmission

Retrospective cohort

1 community

hospital

Derivation: 8700

patients

Mean=60.6 2010 14.1%

Validation: 8189

patients

Mean=65 2011 14.8%

Kruse et al20

USA

Unnamed 30-day all-cause

readmission

Retrospective cohort

91 hospitals—

Health Facts

Database

463, 351 Index

admissions

≥18 1 October

2008–31

August 2010

9.7%

Richmond21

USA

Unnamed 30-day all-cause

readmission for

patients≥65 years

Retrospective cohort

state-level database

4717 patients split into

a derivation (80%) and

validation sample

(20%)

Mean=77.27 January 2010–

December

2012

14.4%

Shulan et al22

USA

Unnamed 30-day all-cause

readmission

Retrospective cohort

centralised database

8718 patients

Derivation (50%)

Validation (50%)

Mean=67.04

(UHRs); 66.43 (no

UHRs)

2011 16.2%

van Walraven et al23

Canada

LACE+ (extension of a

validated index)

30-day all-cause

readmission

Retrospective cohort

centralised database

499 996 patients/

858 410 index

hospitalisations

>18 2004–2009 11.8%

Cotter et al13

UK

LACE index (validation) 30-day all-cause

readmission

Retrospective cohort

centralised database

507 patients Mean=85 2010 17.8%
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Zhou
H,etal.BM

J
Open

2016;6:e011060.doi:10.1136/bm
jopen-2016-011060

3

O
p
e
n
A
c
c
e
s
s



Table 1 Continued

Reference Model name Model outcome

Study design/data

source Sample size Age group (years)

Duration of

retrieved data

source

Readmission

rate

Regression model Retrospective cohort

centralised database

502 patients (validation

cohort)

14.8%

Khan et al24

USA

Rehospitalisation Risk Score 30-day all-cause

readmission

Retrospective cohort

10 hospitals/EMRs

227 patients Average=79 Single day on

26 January

2011

15%

Lee25

Korea

Unnamed 28-day all-cause

readmission

Retrospective cohort

1 tertiary hospital

11 951 patients

Derivation (70%);

Validation (30%)

Ranged from 0 to 70

+

2009 28.9%

van Walraven et al26

Canada

CMG score (case-mix groups) 30-day all-cause

readmission

Retrospective cohort

4 health databases

Random 200 000

patients of 3 277 033

Derivation: 100 000

Validation: 100 000

Mean age of

Derivation: 58

Validation: 57.9

1 April 2003–

31 March 2009

6.8%

LACE index (validation)

Combined CMG score and

LACE index

van Walraven et al27

Canada

LACE+

LACE+ with CMG score

30-day all-cause

readmission

Retrospective cohort

4 health databases

Random 500 000 of

3 277 033 patients then

1/2 derivation and ½

validation

Mean=57.9

(derivation); 57.9

(validation)

1 April 2003–

31 March 2009

14%

Cardiovascular disease-related UHRs including pneumonia (11)

Hebert et al15

USA

CHF model

PNA model

AMI model

Combined model

30-day readmission on

Congestive heart failure/

pneumonia/acute

myocardial infarction

Retrospective cohort

A tertiary medical

centre

A total of 3968 patients

Derivation: 3572

Mean=61 1 August

2009–31 July

2011

16.2%

Historical validation:

1756

1 August

2008–31 July

2009

17.7%

Random sample: 396 16.2%

Iannuzzi et al28

USA

Vascular surgery readmission

risk score

30-day readmission on

patients after vascular

surgery

Retrospective cohort

National Surgical

Database

24 929 patients Mean=69.5 (UHRs);

69.7 (no UHRs)

2011 10.1%

Keyhani et al29

USA

CMS-based model 30-day readmission on

patients with stroke

Retrospective cohort

114 hospitals

3436 patients Mean=69.5 (UHRs);

66.9 (no UHRs)

2007 12.8%

CMS-based model plus social

Risk factors

CMS-based model plus social

risk and clinical factors

Rana et al30

Australia

Electronic medical record

(EMR) model

30-day readmission on

ischaemic heart disease

of patients after AMI

Retrospective cohort

A regional health

service—tertiary

hospital

1660 AMI admissions

Derivation cohort: 1107

Validation cohort: 553

Mean=67.8

(derivation cohort);

validation cohort:

68.4

January 2009–

December

2011

6.3%

HOSPITAL score (validation)

Comorbidities (validation)

Continued
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Table 1 Continued

Reference Model name Model outcome

Study design/data

source Sample size Age group (years)

Duration of

retrieved data

source

Readmission

rate

Shahian et al31

USA

Unnamed 30-day readmission post

coronary artery bypass

grafting

Retrospective cohort

National Database

(846 hospitals)

162 572 admissions ≥65 2008–2010 12.6–23.6%

Shams et al32

USA

Potentially avoidable

readmission (PAR)

30-day avoidable

readmission on

pneumonia/HF/AMI/

COPD

Retrospective cohort

Veterans Health

Administration data

5600 admissions HF: mean=71.3

(PAR); vs 68.6 (no

UHRs)

AMI: mean=73.3

(PAR) vs 69.3 (no

UHRs)

2011–2012 13.09%

Internal validation

External validation 478 patients August and

September

2012

CMS endorsed model

(validation)

30-day readmission

Sharif et al33

USA

Unnamed 30-day readmission on

patients aged 40–

64 years with COPD

Retrospective cohort

A large national

commercial

insurance database

8263 patients Mean=57 (UHRs);

no UHRs—age not

reported

January 2009–

November

2011

8.9%

Lucas et al34

USA

Complex all-variable model;

parsimonious readmission

score

30-day readmissions on

patients post general,

vascular, and thoracic

surgery

Retrospective cohort

National Surgery

Database

A total of 230 864

patients

Derivation: 162 159

(70%): Validation:

68 705 (30%)

Median=56 2011 5–16% across

surgical

specialties

Wallmann et al35

Spain

Unnamed 30-day readmission on

cardiac-related disease

Retrospective cohort

1 tertiary centre

35 531 admissions

Derivation cohort:

24 881

Validation cohort:

10 650

Mean=67.9 2003–2009 Derivation: 4.4%;

Validation: 4.7%

Wasfy et al36

USA

Risk score for 30-day

readmission after PCI

(parsimonious)

30-day readmission after

percutaneous coronary

intervention

Retrospective cohort

centralised database

36 060 surviving to

discharge

Mean=68.1 (UHRs);

64.3 (no UHRs)

1 October

2005–30

September 30

2008

10.4%

Krumholz et al37

USA

Claims model 30-day readmission on

acute myocardial

infarction (AMI)

Retrospective cohort

Medicare Claims

Database

Derivation cohort:

100 465

Validation cohort:

321 088

Mean=78.7 Half of 2006 18.9%

Medical record model Derivation cohort:

130 944

Validation cohort:

130 944

2005 and half

of 2006

19.96%

Cardiovascular disease-related UHRs including pneumonia—heart failure only (11)

Betihavas et al38

Australia

Unnamed 28-day readmission on

patients with chronic

heart failure

Retrospective cohort

Multicentre

280 patients

94 (no UHRs); 37

(28-D UHRs)

Mean=69 (no

UHRs); 79 (UHRs)

Not reported 13%
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Table 1 Continued

Reference Model name Model outcome

Study design/data

source Sample size Age group (years)

Duration of

retrieved data

source

Readmission

rate

Di Tano et al39

Italy

Unnamed 30-day readmission on

acute HF

Prospective cohort

National Registry

Database

1520 patients Mean=72 Not reported 6.25%

Huynh et al40

Australia

The non-clinical model

The clinical model

The combined model

30-day readmission on

HF

Retrospective cohort

state-wide data

linkage

Non-clinical—1537

patients

Clinical—977 patients

available

Mean=80 2009–2012 25.4%

Raposeiras-Roubin

et al41

Spain

GRACE risk score 30-day readmission on

HF after acute coronary

syndrome

Retrospective cohort

A single centre

4429 patients Mean=77 (UHRs);

68 (no UHRs)

2004–2010 1.3%

Sudhakar et al42

USA

Readmission Risk score 30-day readmission on

patients with CHF

Retrospective cohort

A tertiary hospital/

chart review

1046 admissions from

712 patients

Mean=65.2 September

2011–August

2013

35.28%

Fleming et al43

USA

Unnamed 30-day readmission on

patients with HF

Retrospective cohort

1 tertiary medical

centre

3413 admissions

Derivation:

Validation=3:1

(2566:847)

Mean=74 (derivation

cohort); validation

cohort: 74.6

1 October

2007–30

August 2011

24.2%

(derivation)

Wang et al44

USA

LACE index (validation) 30-day readmission on

patients with CHF

Retrospective cohort

An urban public

hospital

253 patients Mean: 57.67 (no

UHRs); 56.17

(UHRs)

June 2012–

June 2013

24.5%

Eapen et al45

USA

Unnamed 30-day readmission on

heart failure

Retrospective cohort

Centers for

Medicare database

33 349 patient

70% in derivation

cohort

30% in validation

cohort

Median=80 1 January

2005–31

December

2009

22.8%

Zai et al46

USA

The telemonitoring-based

readmission model; the

psychosocial readmission

model (validation)

30-day readmission on

heart failure

Retrospective cohort

Patients enrolled in

the telemonitoring

program

100 patients Average age of 66.8 July 2008–

November

2011

38%

Au et al47

Canada

Five administrative

data-based models: Charlson;

CMS Krumholz

Keenan; LACE; LACE+

30-day readmission on

HF

Retrospective cohort

4 health databases

59 652 patients Mean=76 April 1999 and

2009

19%

Watson et al48

USA

The psychosocial readmission

model

30-day readmission on

HF

Retrospective cohort

1 tertiary hospital

729 Mean=71.4 1 October

2007–30

September

2008

13.3% (all

female)

Cardiovascular disease-related UHRs including pneumonia—pneumonia only (2)

Mather et al49

USA

Hartford Hospital model

CMS Model (validation)

30-day readmission on

pneumonia

Retrospective cohort

A tertiary hospital

956 index admissions ≥65 January 2009–

March 2012

15.5%
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Table 1 Continued

Reference Model name Model outcome

Study design/data

source Sample size Age group (years)

Duration of

retrieved data

source

Readmission

rate

Lindenauer et al50

USA

Administrative claims model 30-day readmission on

pneumonia

Retrospective cohort

Medicare enrolment

database

Derivation cohort:

226 545

Validation cohort:

762 721

Mean=80 Half of 2006 17.4%

Medical record model 47 429 cases Half of 2006

and 2005

17.0%

General medical condition-related UHRs (10)

Shadmi et al51

Israel

Preadmission Readmission

Detection Model

30-day readmission on

medical patients

Retrospective cohort

Clalit Health

Services/EMR

Total: 33 639

admissions

Derivation: 22 406

Validation: 11 233

Mean=68.2; 67.5

(no UHRs); 72.5

(UHRs)

1 January

2010–31 March

2010

16.8%

Tsui et al52

Hong Kong

Unnamed 28-day readmission on

elderly medical patients

Retrospective cohort

41 hospitals/EMS

Total: 327 529

episodes

Derivation: 165 216

Validation: 162 313

≥65 Derivation:

2005

Validation:

2006

7.8%

7.6%

Donzé et al53

USA

Unnamed 30-day readmission on

medical patients due to

end-of-life care

Retrospective cohort

1 tertiary medical

centre including 3

hospitals

10 275 admissions Mean=61.5 (no

UHRs); 60.8

(potentially

avoidable

readmissions

(PARs)

1 July 2009–30

June 2010

Total:22.3%; 8%

—PARs

He et al54

USA

Unnamed 30-day readmission on

medical patients and

chronic pancreatitis (CP)

Retrospective cohort

JHH (tertiary centre)

BMC (community

hospital)

Medical patients:

26 091 ( JHH)+16 194

(BMC)

Mean=50.3 ( JHH)

51.5 (BMC)

Medical

patients:

January 2012–

April 2013;

11.5% ( JHH)

8.7% (BMC)

Patients with CP: 3218

( JHH)+706 (BMC)

Mean age: 51.4

( JHH)

51.4 (BMC)

CP discharged

from January

2007–April

2013

15.6% ( JHH)

7.8% (BMC)

Taha et al55

USA

Readmission Risk Score

(RRS)

30-day readmission on

general internal

medicine services

Retrospective cohort

4 teaching and 2

non-teaching

general internal

medicine services

858 index

hospitalisations

Derivation cohort: 613

Validation cohort: 245

Mean=54

(derivation);

validation cohort: 54

1 April 2010–

30 June 2010

16%

Donzé et al14

USA

HOSPITAL score 30-day readmissions on

general medical patients

Retrospective cohort

Multicentre health

services

10 731 discharges Mean=61.3 1 July 2009–30

June 2010

8.5%

Tan et al56

Singapore

LACE index (validation) 30-day readmission on

general medical patients

Retrospective

The largest tertiary

general hospital

127 550 patients ≥21 1 January

2006–31

December

2010

4.87–18.43%
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Table 1 Continued

Reference Model name Model outcome

Study design/data

source Sample size Age group (years)

Duration of

retrieved data

source

Readmission

rate

Billings et al11

USA

PARR-30 30 days readmission on

general medical patients

Retrospective cohort

centralised database

576 868 admissions Adult 1 April 2008

and 31 March

2009

12.2%

Zapatero et al57

Spain

SEMI INDEX 30-day readmission on

general medical patients

Retrospective cohort

National Health

Database

Derivation cohort:

999 089 patients;

Validation cohort:

510 588 patients

(internal)

Median=70 for two

cohorts

January 2006–

December

2007

12.4%

2008 12.5%

Gruneir et al58

Canada

LACE index (validation) 30-day readmission on

general medical patients

Retrospective cohort

6 hospitals

26 045 patients 18–105 2007 12.6%

Medical condition UHRs—cirrhosis only (2)

Singal et al59

USA

Unnamed 30-day readmissions on

patients with cirrhosis

Retrospective cohort

1 large safety-net

hospital

A total of 838 patients

with 1291 admissions

Derivation: 968

Validation: 323

Mean=52.5 January 2008–

December

2009

27%

Volk et al60

USA

Cirrhosis readmission

prediction model

30-day readmission on

cirrhosis

Retrospective cohort

1 tertiary hospital

402 patients ≥18 1 July 2006–1

July 2009

41%, 22% of

which are PARs

Medical condition UHRs—chronic kidney disease only (1)

Perkins et al61

USA

Unnamed 30-day readmission on

patients with CKD

second to HF

Retrospective cohort

2 inpatient facilities

607 patients with

chronic kidney disease

Mean=72.3 (UHRs);

74.1 (no UHRs)

1 July 2004–28

February 2010

19.1%

Medical condition UHRs—HIV only (1)

Nijhawan et al62

USA

Unnamed 30-day readmission on

HIV-infected patients

Retrospective cohort

1 tertiary hospital

2402 index admissions

randomly split (1/2)

into derivation vs

validation

Mean=43 March 2006–

November

2008

24.4%

Medical condition UHRs—acute pancreatitis (1)

Whitlock et al63

USA

Unnamed 30-day readmission on

acute pancreatitis

Retrospective cohort

2 hospitals

Derivation cohort: 248

Validation cohort: 198

Mean=51.6

derivation

Validation: 52.3

1 June 2005–

31 December

2007

1 January

2008–31

October 2009

19%

23%

Surgical condition-related UHRs (6)

Taber et al64

USA

30DRA with fixed variable vs

30DRA with fixed variables

and dynamic clinical data

30-day readmission on

patients following kidney

transplantation

Retrospective cohort

An institution

1147 patients

Derivation; internal

validation using

random iteration of

50% sampling

Mean=51 (no

UHRs); 52 (UHRs)

2005–2012 11%

Lawson et al65

USA

Unnamed

(demographic, preoperative

and postoperative risk factors)

30-day readmission on

patients following

colectomy

Retrospective cohort

NSQIP

12 981 patients ≥65 2005–2008 13.5%
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Table 1 Continued

Reference Model name Model outcome

Study design/data

source Sample size Age group (years)

Duration of

retrieved data

source

Readmission

rate

Iannuzzi et al66

USA

Endocrine surgery

Readmission Risk Score

30-day readmission on

patients following

cervical endocrine

operations

Retrospective cohort

NSQIP—a large

national clinical

database

34 046 cases

Derivation and

validation cohort

(numbers were not

specified)

Mean=54 (no

UHRs); 55 (UHRs)

2011–2012 2.8%

Mesko et al67

USA

Unnamed 30-day readmission on

total hip and knee

arthroplasty

Retrospective cohort

A readmission

database

1291 admissions/1236

patients

Mean=65.6 (UHRs);

68.3 (no UHRs)

1 May 2010–30

April 2011

3.6%

Moore et al68

Canada

Unnamed (quality indicator

based)

30-day readmission on

trauma

Retrospective cohort

57 trauma centres

57 524 patients ≥16 1 April 2005–

28 February

2010

6.6%

Graboyes et al69

USA

Unnamed 30-day readmission on

otolaryngology patients

Retrospective cohort

A tertiary hospital

1058 patients—1271

hospital admissions

Mean=52 (no

UHRs); 56 (UHRs)

1 January

2011–31

December

2011

7.3%

Mental health condition-related UHRs (1)

Vigod et al70

Canada

READMIT (41 points) 30-day readmission after

discharge from acute

psychiatric units

Retrospective cohort

National health data

Derivation: 32 749

patients

Validation: 32 750

patients

Median=41 (UHRs);

44 (no UHRs)

1 April 2008–

31 March 2011

8.42–10%

ACS, acute coronary syndrome; AMI, acute myocardial infarction; AP, acute pancreatitis, CHF, congestive heart failure; CKD, chronic kidney disease; COPD, common obstructive pulmonary
disease; EMRs, electronic medical records; GRACE, global registry of acute coronary events; HF, heart failure; PCI, percutaneous coronary intervention; PREADM, preadmission readmission
detection model; PNA, peptide nucleic acid.
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Table 2 Performance of predictive models for 28-day or 30-day unplanned hospital readmissions (UHRs)

Reference Model name Discrimination (ROC)

Calibration

(H&L)

Threshold

(%)

Sensitivity

(%)

Specificity

(%)

PPV

(%)

NPV

(%)

All-cause UHRs (14)

Escobar et al16 ED 30 Validation: 0.739 0.40 ≥20
≥30
≥60

Discharge 30 Validation: 0.756 0.60

LACE (validation) Validation: 0.729 0.40

Yu et al17 Institution-specific prediction

model

0.74 (hospital 2)

0.64 (at admission)

0.72 (after discharge)

LACE (validation) 0.55 (hospital 2)

Baillie et al18 Prediction model Retrospective: 0.62 40 85 31 89

Prospective: 0.61 39 84 30 89

Choudhry et al12 ACC Admission Model Derivation data set: 0.76

Internal validation: 0.75

Average (500 simulations in

derivation data set): 0.76

External validation data set with

recalibration: 0.76

Derivation data set:

36.0 (p<0.001)

Internal validation

data set: 23.5

(p=0.0027)

External validation

with recalibration: 6.1

(p=0.641)

11 70 71

ACC Discharge Model Derivation data set: 0.78

Internal validation: 0.77

Average: 0.78

External validation data set with

recalibration: 0.78

Derivation: 31.1

(p<0.001)

Internal validation:

19.9 (p=0.01)

External validation

with recalibration:

14.3 (p=0.074)

11 70 71

Gildersleeve and

Cooper19
Risk of readmission score

(RRS)

Derivation cohort: 0.74 21.6 (p=0.006) 14 74.9 54.4 22.2 92.6

Validation cohort: 0.70 79.2 55.4 22.6 94.2

Kruse et al20 Unnamed Derivation set: 0.668

Validation set: 0.657

Richmond21 Unnamed 0.60 47 78

Shulan et al22 Unnamed Derivation cohort: 0.80

Validation cohort: 0.70

van Walraven et al23 LACE+ (extension of a

validated index)

0.768 (1 hospitalisation per patient)

0.730 (all hospitalisations)

H–L χ2 50.3
H–L χ2 10 972

Cotter et al13 LACE index (validation) 0.55

Regression model 0.57 47 54 47

Continued

10
Zhou

H,etal.BM
J
Open

2016;6:e011060.doi:10.1136/bm
jopen-2016-011060

O
p
e
n
A
c
c
e
s
s



Table 2 Continued

Reference Model name Discrimination (ROC)

Calibration

(H&L)

Threshold

(%)

Sensitivity

(%)

Specificity

(%)

PPV

(%)

NPV

(%)

All-cause UHRs (14)

Khan et al24 Rehospitalisation risk score 19 97 28 19 98

21 58 63 21 90

27 42 81 27 89

Lee25 Unnamed ROC was graphically illustrated, but

no actual number was reported

van Walraven et al26 CMG Score 0.637 p=0.0079

LACE index (validation) 0.72 P<0.0001

Combined CMG Score and

LACE

0.743 p<0.0001

van Walraven et al27 LACE+ (validation) 0.743

LACE+ with CMG score 0.753

Cardiovascular disease-related UHRs including pneumonia (11)

Hebert et al15 CHF model

PNA model

AMI model

Combined model

Derivation cohort: 0.64–0.73;

Historical validation: 0.61–0.68;

Random sample combined:

0.63–0.76

p>0.05

Iannuzzi et al28 Vascular surgery readmission

risk score

Derivation dataset: 0.67

Validation dataset: 0.64

0.09

0.66

Keyhani et al29 CMS-based model 0.636 0.866

CMS-based model plus

social risk factors

0.646 0.462

CMS-based model plus

social risk and clinical factors

0.661 0.856

Rana et al30 EMR model 0.78 5 65 78 21 83.6

HOSPITAL score (validation) 0.60 62 50 13 78.9

Comorbidities (validation) 0.53 65 45

Shahian et al31 Unnamed 0.648

Shams et al32 Potentially avoidable

readmission (PAR)

Retrospective cohort: 0.836

Validation internal: 0.818/external:

0.809

91.95 97.65 86.61 98.65

CMS endorsed model

(validation)

0.63
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Table 2 Continued

Reference Model name Discrimination (ROC)

Calibration

(H&L)

Threshold

(%)

Sensitivity

(%)

Specificity

(%)

PPV

(%)

NPV

(%)

Cardiovascular disease-related UHRs including pneumonia (11)

Sharif et al33 Unnamed (basic model vs

final model)

Basic model (patient characteristics

only): 0.677; final model (additional

provider-level and system-level

factors)

Derivation set: 0.717

Validation set: 0.73

Wallmann et al35 Unnamed 0.75 4 66 70 10 98

Wasfy et al36 Risk score for 30-day

readmission after PCI

(parsimonious)

Validation data set: 0.67 >24

Lucas et al34 Complex all-variable model Derivation data set: 0.721

Validation data set: 0.724

Parsimonious readmission

score

Derivation data set: 0.696

Validation data set: 0.702

1.2 100 0 8 /

2.4 99 6 8 99

4.7 92 28 10 98

8 77 52 12 97

11.8 55 73 15 95

14.6 37 85 17 94

17.2 21 92 19 93

20.3 9 97 21 93

22.2 2 100 22 92

40 0 100 40 92

Krumholz et al37 Claims model Derivation cohort: 0.63

Validation cohort: 0.62–0.63

Medical record model Derivation cohort: 0.58

Validation cohort: 0.59

Cardiovascular disease-related UHRs including pneumonia—heart failure only (11)

Betihavas et al38 Unnamed 0.8

Di Tano et al39 Unnamed 0.695

Huynh et al40 The non-clinical model

The clinical model

The combined model

0.66

0.72

0.76

Raposeiras-Roubin

et al41
The GRACE risk score 0.79 p=0.83 37.9 82.5 62.8 5.6 99.1
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Table 2 Continued

Reference Model name Discrimination (ROC)

Calibration

(H&L)

Threshold

(%)

Sensitivity

(%)

Specificity

(%)

PPV

(%)

NPV

(%)

Sudhakar et al42

USA

Readmission Risk (RR)

Score

All age group—0.61

≥65 years—0.59

Random selection—0.58

≥29 33 80 47 69

≥24 61 52 41 71

≥21 83 27 38 75

Fleming et al43 Unnamed Derivation cohort: 0.69

Validation cohort: 0.66

Wang et al44 LACE index (validation) ≥10
Eapen et al45 Derivation cohort: 0.59

Validation cohort: 0.59

Zai et al46 The telemonitoring-based

readmission model

0.21 50 81 61 72

The psychosocial model

(validation)

0.67 87 32 44 80

Au et al47 Five administrative

data-based models

0.57–0.61

Watson et al48 The psychosocial

readmission model

0.67

Cardiovascular disease-related UHRs including pneumonia—pneumonia only (2)

Mather et al49 Hartford Hospital model Derivation data set: 0.71

Validation data set: 0.67

p=0.96

Lindenauer et al50 Administrative claims model 0.63

CMS medical record model 0.59

General medical condition-related UHRs (10)

Shadmi et al51 PREADM Derivation data set: 0.70

Validation data set: 0.69

Tsui et al52 Unnamed Derivation data set: 0.819

Validation data set: 0.824

p<0.05

Donzé et al53 Unnamed 0.85
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Table 2 Continued

Reference Model name Discrimination (ROC)

Calibration

(H&L)

Threshold

(%)

Sensitivity

(%)

Specificity

(%)

PPV

(%)

NPV

(%)

General medical condition-related UHRs (10)

He et al54 Unnamed Medical

patient

Validation

Within

site

CV on

JHH

0.75 21 50 84 29 93

CV on

BMC

0.79 30 50 88 28 95

Across

site

Test on

BMC

0.81 9 47 88 27 95%

Test on

JHH

0.78 30 58 76 24 93

CP Within

site

CV on

JHH

0.71 21 50 68 34 84

CV on

BMC

0.65 30 56 79 20 955

Across

site

Test on

BMC

0.65 9 85 41 11 97

Test on

JHH

0.73 30 60 71 27 91

Taha et al55 Readmission Risk

Score

12 18 95

16 18 90

20 20 89

24 21 86

28 28 85

32 38 84

Donzé et al

(2013)14
HOSPITAL score Derivation data set: 0.69

Validation data set: 0.71

Derivation data set: p=0.28

Validation data set: p=0.15

5.2–18.4

Tan et al56 LACE index (validation) 0.70 13.1 (p=0.107) 16

Billings et al11 PARR-30 0.70 50 5.4 99.5 59.2

Zapatero et al57 SEMI INDEX 0.876 Derivation cohort

p=0.247 (≤50 years group)

p=0.1 (51–70 years group)

p=0.182 (71–90 years group)

p=0.227 (>90 years group)

Validation cohort

p=0.350 (≤50 years group)

p=0.1 (51–70 years group)

p=0.246 (71–90 years group)

p=0.617 (>90 years group)

7.4–22

Gruneir et al58 LACE index (validation) 16
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Table 2 Continued

Reference Model name Discrimination (ROC)

Calibration

(H&L)

Threshold

(%)

Sensitivity

(%)

Specificity

(%)

PPV

(%)

NPV

(%)

Medical condition UHRs—cirrhosis only (2)

Singal et al59 Unnamed Derivation cohort: 0.68

Validation cohort: 0.66

Volk et al60 Cirrhosis readmission prediction model 0.65

Medical condition UHRs—chronic kidney disease only (1)

Perkins et al61 Unnamed 0.792 20 69 73.4 38.3 90.9

50 28.5 97.1 70.2 85

80 1.7 99.8 66.7 19.1

Medical condition UHRs—HIV only (1)

Nijhawan

et al62
Unnamed Derivation: 0.72

Validation: 0.70

Medical condition UHRs—acute pancreatitis (1)

Whitlock

et al63
Unnamed Derivation cohort: 0.88

Validation cohort: 0.83

Surgical condition-related UHRs (6)

Taber et al64

USA

30DRA with fixed variable 0.63 p=0.061 10 57.7 63.8

30DRA with fixed variable and dynamic

clinical data

0.731 p=0.603 10 62.8 73.3

Lawson et al65 Unnamed 0.728

Iannuzzi

et al66
Endocrine surgery Readmission risk

score

Derivation cohort:

0.676

p=0.083

Validation cohort:

0.646

p=0.592

Mesko et al67 Unnamed Derivation data set:

0.59

Validation data set:

0.59

Moore et al68 Unnamed 0.651 Intercept,

slope 0.000370;

1.0001

Graboyes

et al69
Unnamed 0.85

Mental health condition-related UHRs (1)

Vigod et al70 READMIT Derivation data set:

0.631

Validation data set:

0.63

p=0.868

NPV, negative predictive value; PPV, positive predictive value; ROC, receiver operating characteristic.
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Table 3 Summary of significant variables included in the predictive models for unplanned hospital readmissions (UHRs)

Reference Model name A
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d
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g
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o
s
is

A
d
m
it
ti
n
g
w
a
rd
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n
s
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d
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e

D
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g
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d
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r
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G
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s
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H
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n
c
e
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s
k
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1
e
x
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e
x
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e
o
f
a
d
m
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s
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s
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v
e
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s
c
o
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L
a
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s
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L
e
n
g
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o
f
s
ta
y

P
h
y
s
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a
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e
x
a
m
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a
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o
n
s

P
o
s
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e
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v
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c
o
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p
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o
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M
e
d
ic
a
ti
o
n
s

N
u
m
b
e
r
o
f
p
re
v
io
u
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N
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o
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E
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o
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O
v
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p
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P
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s
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c
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n
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V
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a
l
s
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n
s

All-cause UHRs (14)

Escobar et al16 ED 30 and Discharge 30 ✓ ✓ ✓ ✓ ✓
LACE index (validation) ✓ ✓ ✓ ✓

Yu et al17 Institution-specific prediction model ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
LACE index (validation) ✓ ✓ ✓ ✓

Baillie et al18 Prediction model ✓
Choudhry et al12 ACC Admission and Discharge Model ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Gildersleeve and Cooper19 Risk of Readmission Score (RRS) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Kruse et al20 Unnamed ✓ ✓ ✓ ✓ ✓
Richmond21 Unnamed ✓ ✓ ✓ ✓ ✓ ✓
Shulan et al22 Unnamed ✓ ✓ ✓
van Walraven et al23 LACE+ (validation) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Cotter et al13 LACE index (validation) ✓ ✓ ✓ ✓

Regression model ✓
Khan et al24 Rehospitalisation Risk Score ✓ ✓ ✓ ✓ ✓ ✓
Lee25 Unnamed ✓ ✓ ✓ ✓
All-cause UHRs (14)

van Walraven et al26 CMG score ✓
LACE (validation)

Combined CMG and LACE ✓ ✓ ✓ ✓ ✓
van Walraven et al27 LACE+ (validation)

Combined CMG and LACE+ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Cardiovascular disease-related UHRs including pneumonia (11)

Hebert et al15 CHF model ✓ ✓ ✓ ✓ ✓ ✓
PNA model ✓ ✓ ✓ ✓ ✓
AMI model ✓ ✓ ✓ ✓ ✓
Combined model ✓ ✓ ✓ ✓ ✓ ✓ ✓

Iannuzzi et al28 Vascular surgery readmission risk score ✓ ✓ ✓ ✓ ✓ ✓
Keyhani et al29 CMS-based Model ✓ ✓

CMS-based Model plus social risk factors ✓ ✓ ✓
CMS-based model plus social risk and clinical factors ✓ ✓ ✓ ✓ ✓

Rana et al30 EMR Model ✓ ✓ ✓ ✓
Shahian et al31 Unnamed ✓ ✓
Shams et al32 PARs ✓ ✓ ✓ ✓ ✓

CMS endorsed model (validation)

Sharif et al33 Unnamed ✓ ✓ ✓ ✓ ✓
Lucas et al34 Complex all-variable model ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Parsimonious readmission score ✓ ✓

Wallmann et al35 Unnamed ✓ ✓ ✓ ✓
Wasfy et al36 Risk score after PCI (parsimonious) ✓ ✓ ✓ ✓ ✓ ✓
Krumholz et al37 Claims model (administrative) ✓ ✓

Medical record model ✓ ✓ ✓ ✓ ✓ ✓
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Table 3 Continued

Reference Model name A
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Cardiovascular disease-related UHRs including pneumonia—heart failure only (11)

Betihavas et al38 Unnamed ✓ ✓
Di Tano et al39 Unnamed ✓ ✓ ✓
Huynh et al40 Non-clinical model ✓ ✓ ✓ ✓

Clinical model ✓ ✓ ✓ ✓
Combined model ✓ ✓ ✓ ✓ ✓ ✓

Raposeiras-Roubin et al41 The GRACE Risk Score ✓ ✓ ✓ ✓ ✓
Sudhakar et al42

USA

Readmission Risk Score ✓ ✓ ✓ ✓ ✓ ✓

Fleming et al43 Unnamed ✓ ✓ ✓ ✓
Wang et al44 LACE index (validation)

Eapen et al45 Unnamed ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Zai et al46 The telemonitoring based readmission model ✓ ✓

The psychosocial readmission model (validation)

Au et al47 Charlson (validation) ✓ ✓
CMS Krumholz (validation)

Keenan (validation) ✓ ✓ ✓
LACE (validation)

LACE+ (validation)

Watson et al48 The psychosocial readmission model ✓ ✓
Cardiovascular disease-related UHRs including pneumonia—pneumonia only (2)

Mather et al49 Hartford Hospital Model ✓ ✓ ✓ ✓ ✓
CMS Model (validation)

Lindenauer et al50 Claims model (administrative) ✓ ✓ ✓
Medical record model ✓ ✓ ✓ ✓ ✓ ✓

General medical condition UHRs (10)

Shadmi et al51 PREADM ✓ ✓ ✓ ✓ ✓ ✓
Tsui et al52 Unnamed ✓ ✓ ✓ ✓ ✓
Donzé et al (2014)53 Unnamed ✓ ✓ ✓ ✓
He et al54 Unnamed ✓ ✓ ✓
Taha et al55 Readmission Risk Score (RRS) ✓ ✓ ✓ ✓ ✓
Donzé et al (2013)14 HOSPITAL score ✓ ✓ ✓ ✓ ✓
Tan et al56 LACE index (validation)

Billings et al11 PARR-30 ✓ ✓ ✓ ✓

Zapatero et al57 SEMI INDEX ✓ ✓ ✓
Gruneir et al58 LACE index (validation)

Medical condition UHRs—cirrhosis only (2)

Singal et al59 Unnamed ✓ ✓ ✓ ✓ ✓
Volk et al60 Cirrhosis readmission prediction model ✓ ✓ ✓
Medical condition UHRs—chronic kidney disease (1)

Perkins et al61 Unnamed ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
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included studies were qualitatively synthesised and pre-
sented in narrative form.

RESULTS
Literature search result
The initial electronic database search produced 7310
records. After removal of 1798 duplicates, a total of 5512
references of potential relevance to this systematic
review remained. Titles and abstracts were then
appraised and excluded 5333 records due to irrelevance.
Of the remaining 179 relevant references, 98 were
excluded as they were conference abstracts. A total of 81
references were reviewed as full text and a further 21
were excluded against selection criteria. A total of 18 of
the 21 excluded studies developed and/or validated risk
predictive models for the 48-hour73 or 72-hour74 inten-
sive care unit readmissions or the 3-month to 1-year
unplanned hospital readmissions.75–90 One study
focused on participants who were discharged to a hos-
pital in the home–hospital programme receiving intra-
venous antibiotics.91 The other study,92 which had been
included in the previous systematic review,10 was also
excluded. It was also found that the same result was pub-
lished in two articles;32 therefore, the later year article32

was excluded. A hand search of reference list of the
remaining 60 articles was also conducted and no add-
itional studies were identified. Finally, a total of 60
studies were included in this systematic review. Figure 1
is a flow chart as per the Preferred Reporting Items for
Systematic Reviews and Meta-Analyses of the screening
process of the database search results. The overall risk of
bias of the 60 studies was low when evaluated against the
six domains of potential bias. All studies described the
population of interest adequately for key characteristics,
the response rate information was clearly stated,
adequate proportion of the study population had com-
plete data on all independent variables, the outcome
variable readmission was measured with sufficient accur-
acy and the method of statistical analysis was appropriate
for the design of the study.72

Study characteristics
Table 1 summarises the characteristics of the final
included studies of this systematic review. The 60 studies
were conducted in several countries: USA (n=41),
Canada (n=7), Australia (n=3), Spain (n=3), and one
from Hong Kong, Korea, Israel, Italy, Singapore and the
UK. Of the included studies, the majority employed
retrospective data except two. One study18 used retro-
spective and prospective data and the other39 collected
prospective data. Fifty-seven included studies accessed
healthcare data of either tertiary hospital, centralised or
national health information databases. The remaining
three studies used community hospital data.19 44 54 The
duration of retrieved data source ranged from 1 single
day across 10 hospitals24 to 10 years47 of four healthcare
databases. All included studies were based on adult
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patients’ (aged ≥18 years) healthcare data and the
mean age, if reported, ranged from 43 to 85 years.
The 60 included studies reported unique 73 predictive

models for 28-day or 30-day unplanned hospital readmis-
sions. A total of 68 of the unique 73 predictive models
were developed between 2011and 2015 and 5 were exist-
ing models, which were further validated or applied to
compare with other developed/existing models. The
model utilisation outcome included all-cause admissions
(14 studies),12 13 16–27 cardiovascular-related disease
including pneumonia (24 studies,15 28–50 of which 11
studies focused on heart failure only), medical/internal
medicine conditions (15 studies),11 14 51–63 surgical con-
ditions (6 studies)64–69 and mental health conditions.70

A total of 17 models were based on administrative data
and the remaining models were derived or validated
using administrative and/or clinical/medical records
data. The sample size varied from 100 patients46 to
nearly a million57 patients. The unplanned hospital
readmission rate ranged from 2.8%66 (n=34 046) to
38%46 (n=100).

Performance of predictive models for 28-day or 30-day
unplanned hospital readmissions
Table 2 displays the measures of all included predictive
models. Multivariable logistic regression model was used
in all included studies. In logistic regression, the
outcome variable is the log of the odds of the event
(probability of readmission/(1−probability of readmis-
sion)). Once the final model is determined, the multi-
variable logistic regression allows for the calculation of
probability of readmission for cohort studies. The pre-
dicted probabilities of the final multivariable logistic
model are also used for computing the receiver operat-
ing characteristic (ROC) curve and the calculation of
the ROC, a measure of model discrimination.
Overall, 56 of the 60 included studies reported model

discriminative ability (C-statistic), ranging from 0.2146 to
0.88.63 The area under curve for validation studies
ranged from 0.5330 to 0.83,63 being slightly lower than
those for the derivation study, 0.2146 to 0.88.63 For all-
cause unplanned hospital readmission models, the
C-statistic was reported by 14 studies ranging from 0.5513

Figure 1 Flow chart for the search and study selection process (PRISMA). PRISMA, preferred reporting items for systematic

reviews and meta-analyses.

Zhou H, et al. BMJ Open 2016;6:e011060. doi:10.1136/bmjopen-2016-011060 19

Open Access



to 0.80.22 Among 16 developed models and 2 existing
models, 8 new models and 2 existing models had a
C-statistic value >0.70.12 16 17 19 22 23 26 27

Regarding cardiovascular disease-related readmissions
(24 studies), the C-statistic ranged from 0.2146 to 0.83632

across 32 developed models and 5 existing models. Of
those, only nine developed models had a C-statistic value
>0.70.30 32 34 35 38 40 41 49 50 In particular, 13 of the 17
models (12 developed and 5 existing) from 11 studies
with the special focus on heart failure-related readmis-
sions were presented with C-statistic <0.70.39 40 42–48 For
surgical-related readmissions (6 studies), the C-statistic
ranged from 0.5967 to 0.8569 among 7 developed
models. Three of the seven models showed
moderate-to-high discrimination ability.64 65 69 Patients
with heart failure in the telemonitoring program were
less likely to be admitted, with the reported C-statistic
being 0.21.46 This indicates that the telemonitoring
program was effective in identifying and intervening in
patients who were reporting symptoms and thus reduced
the likelihood of readmission.
However, 10 of 13 developed models and 1 existing

model for medical condition-related readmissions (15
studies) were found to have consistent moderate discrim-
ination ability. Four developed models also demon-
strated high discrimination ability with C-statistic
exceeding 0.80.53 52 57 63

This updated systematic review also identified one
study on mental health condition-related unplanned
hospital readmission. A predictive model, READMIT
<(R) Repeat admissions; (E) Emergent admissions; (D)
Diagnoses, and unplanned Discharge; (M) Medical
comorbidity; (I) prior service use Intensity; and (T)
Time in hospital>, was derived and validated using a
3-year Canadian National Health Database with a
C-statistic of 0.63.
One existing predictive model, the LACE index,

although validated by eight studies, demonstrated incon-
sistent model performance. The LACE index was first
developed by van Walraven et al93 in 2010 to predict the
risk of unplanned readmission or death within 30 days
after hospital discharge in medical and surgical patients.
The model was derived and validated based on adminis-
trative data with a C-statistic of 0.684. The model
includes the length of hospitalisation stay (L), acuity of
the admission (A), comorbidities of patients (C) and
number of emergency department visits in the 6 months
before admission (E). Five studies validated the LACE
index model using healthcare data of Canada,
Singapore, the UK and the USA to predict all-cause
readmission (4),13 16 17 26 heart failure readmission
(1)44 and general medical condition-related readmission
(2).58 56 The discriminative ability of the model
(C-statistic), reported by six studies, varied from 0.51 to
0.72.13 16 17 26 56 58

An extension of the LACE index to predict early
death or all-cause 30-day urgent hospital readmission
was further derived using administrative healthcare data

and named as LACE+ index by van Walraven et al27 in
2012. The LACE+ index, in addition to four predictive
variables, included patient age and sex, teaching status
of the discharging hospital, acute diagnoses and proce-
dures performed during the index admission, number
of days on alternative level of care during the index
admission and number of elective and urgent admis-
sions to hospital in the year before the index admission.
The LACE+ index had a C-statistic of 0.771, which
exceeded the performance of LACE index. The LACE+
index was further validated by two large Canadian retro-
spective studies. The performance of the model was
0.6147 for patients with heart failure and 0.7323 for
patients with all-cause hospital readmissions.
A Canadian study compared the performance of dif-

ferent models within the same population for 30-day
readmission or death due to heart failure. A total of
59 652 patients’ admission information was retrieved
from four health databases over a 10-year period. Five
models were examined in the study,47 namely
Charlson, CMS Krumholz, Keenan, LACE index and
LACE+. The five models had the C-statistic of 0.57–
0.61. In terms of types of data sources used to develop
or validate the 73 unique predictive models, adminis-
trative healthcare data were used for 17 models but
were found/identified with inconsistent discriminative
ability. A total of 13 of the 17 models reported
C-statistic between 0.55 and 0.7, and the remaining
four models reported C-statistic between 0.7 and 0.876.
Similarly, the performance of the remaining 56
models using clinical/medical data varied between
0.21 and 0.88 (C-statistic).
Only two models32 53 were developed targeting the

potentially avoidable/preventable unplanned hospital
readmissions. The outcome measure of the models
focused on the end-of-life patients53 and pneumonia,
heart failure, acute myocardial infarction and chronic
obstructive pulmonary disease.32 Both models had
C-statistic >0.8 (0.85 and 0.83, respectively).
Sensitivity and specificity were calculated by 16 of the

60 included studies. The sensitivity of the predictive
model ranged from 5.4% (PARR-30 model, Patients at
Risk of Re-admission within 30 days)11 to 91.95%
(potentially avoidable readmission (PAR) model),32

while specificity values were between 22%
(Rehospitalisation Risk Score)24 and 99.5% (PARR-30
model).11

A total of 14 of the 60 included studies reported the
PPV (5.641–86.61%32) and NPV (19.161–99.1%41) of the
readmission risk predictive model. Similarly, only 17
studies calibrated the developed predictive models and
mostly presented as p value, except one study68 that
reported the model calibration as the value of intercept
and slope.
Predictive risk of readmission was assessed in all

included studies, but only 14 of the included 60 studies
specified thresholds for risk categories. Thresholds
ranged from 4%35 to 80%.61
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Key variables included in the readmission risk predictive
model
A total of 28 types of significant variables were extracted
from the 73 unique predictive models for unplanned
hospital readmissions as shown in table 3. Overall, the
top 10 significant variables included in the 73 risk pre-
dictive models are comorbidities (n=54), demographic/
social (n=45), length of stay (n=29), number of previous
admissions (n=29), laboratory tests (n=25), medications
(n=21), index type of admission (n=17), procedures at
index admission (n=16), admitting diagnosis (n=14) and
number of previous emergency department presenta-
tions (n=14) (refer to figure 2). The key demographic/
social variables consisted of age (n=26), gender (n=25),
living arrangement (n=12), race (n=8) and marital
status (n=6).
The variables ‘comorbidities’, ‘length of stay’ and

‘number of previous admissions’ remained as the most
frequently cited predictive risk variables against all util-
isation outcomes. However, the variables ‘laboratory
tests’ and ‘medication’ were more commonly included
in the predictive models for cardiovascular
disease-related and medical condition-related unplanned
hospital readmissions compared with all-cause, mental
health and surgical condition-related unplanned hos-
pital readmissions.

DISCUSSION
A total of 60 studies with 73 unique risk predictive
models for 28-day or 30-day unplanned hospital

readmissions were included in this systematic review. The
discrimination ability (C-statistic) of the 73 models varied
largely from 0.21 to 0.88. Inconsistent performances were
found among models for all-cause readmission, cardiovas-
cular disease-related readmission and surgical-related
readmission. However, most of the predictive models for
the general medical condition-related readmission
exceeded C-statistic of 0.7. In comparison, Kansagara
et al10 included 26 models with the focus of adult medical
patients only. A total of 13 predictive models measured
30-day readmissions; of these, 10 models performed
poorly and only 3 models reported C-statistic >0.70. The
outcome measures of the other 13 models ranged from
41-day to 4-year unplanned hospital readmission; as a
result of the vast difference in the time frame, the
C-statistic also varied from 0.53 to 0.75.
This updated systematic review has certain limitations.

The studies included in this systematic review were
limited compared with studies that were published in
English with full-text access. The outcomes of the pre-
dictive models included in this systematic review were
also restricted to 28-day or 30-day unplanned hospital
readmission. A meta-analysis is not permitted in this sys-
tematic review as the included studies were heteroge-
neous due to diversity of cohort of population, duration
of retrieved data source, sample sizes and geographical
locations. It was noted that the sample size was reported
in different units, that is, (index) admission/hospitalisa-
tion, cases, patients or discharges, as shown in table 1.
The lack of standardised calculation could also

Figure 2 Pareto chart of significant variables included in the predictive models. BMI, body mass index; ED, emergency

department.
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contribute to the broad range of readmission rates (2.8–
38%); thus, the results were not comparable. This sys-
tematic review also found the sample size is not asso-
ciated with the model predictive ability. Of the included
73 unique models, Zai et al46 derived a model based on
the selected 100 readmitted patients with heart failure
and scored the lowest C-statistic of 0.21. In contrast,
Whitlock et al63 retrieved around 200 readmitted patients
with acute pancreatitis and developed a model with the
highest discrimination ability (C-statistic=0.88).
There has been increased recognition that some

unplanned hospital readmissions are associated with the
diagnosis of the initial hospitalisation and could be
potentially prevented or avoided through systematic dis-
charge process. In 2006, a Swiss study94 compared three
models (non-clinical model, Charlson-based model and
SQLape model, A patient classification system, also
designed to adjust for costs and other outcomes) to iden-
tify potentially preventable readmission risk on over
60 000 medical patients. The C-statistics of the three
models were 0.67, 0.69 and 0.72, respectively, which
indicated poor-to-reasonable discrimination ability. In
contrast, this systematic review identified two high-
performance models32 53 for potentially avoidable/pre-
ventable readmissions with C-statistic >0.8. The PAR
model32 was also high in other predictive model perform-
ance indicators, such as sensitivity (91.95%), specificity
(97.65%), PPV (86.61%) and NPV (98.65%). However,
the two models were developed based on comparatively
smaller sample size of 560032 and 10 27553 using
American healthcare data collected over a 12-month
period. Overall, the number of potentially preventable
readmissions remains unclear due to lack of standardised
identification process.95–98

Compared with the previous systematic review,10 there
were more studies in this review using clinical medical
record data to develop disease-specific predictive models.
However, the debate whether a predictive model should
be developed using administrative data or clinical/
medical records data remains inconclusive. Three key vari-
ables extracted from the 73 unique models, ‘comorbidity’,
‘length of stay’ and ‘previous admissions’, were based on
administrative data and were consistent with the findings
of a previous systematic review.10 The latest evidence has
shown that variables based on clinical medical data, that is,
‘laboratory tests’ and ‘medications’, were also valued in
models for predicting cardiovascular-related and medical
condition-related readmissions. Of note, ineffective com-
munication in transitions of care is reported as a major
contributing factor to adverse events that directly risk
patient safety.99 100 Poor communication at discharge also
leads to preventable unplanned readmissions and fre-
quent problems with the continuity of medication man-
agement.101–103 None of the examined 73 models cited
the comprehensiveness of discharge information as a pre-
dictor to unplanned hospital readmissions.
All included studies in this systematic review were

based on adult population. To date, only two paediatric

predictive models were identified and both were based
on American paediatric populations. One retrospective
multicentre study104 retrieved 12-month administrative
data from 38 children’s hospitals. A model was devel-
oped and internally validated with a high discrimination
ability (C-statistic=0.81). However, the model outcome
measure was 12-month all-cause readmissions. In com-
parison, a 30-day hospital readmission model105 was
developed based on 5376 paediatric patients following
plastic surgery procedures. The study accessed prospect-
ive medical records, and the model had moderate dis-
crimination ability of C-statistic 0.784.
The performance of the 73 unique predictive models

in this review was assessed using a variety of statistical
measures. Inconsistency of reported statistical measures
was noted in the included 60 studies, of which 2
studies44 58 reported threshold as the only model per-
formance measurement. A US framework for assessing
the performance of predictive models106 argued the
importance of reporting discrimination and calibration
for a risk predictive model. In all included 60 studies, the
most reported measure of the risk predictive model is the
ROC (C-statistic). The interpretation of the risk predictive
model discriminative ability (C-statistic) was inconsistent.
For instance, a study47 examined five predictive models
and concluded that the models had moderate discrimin-
ation ability based on the C-statistic of 0.57–0.6; whereas
models are typically considered reasonable when the
C-statistic is higher than 0.7 by Hosmer and Lemeshow.71

CONCLUSION
The risk predictive models which focused on general
medical conditions in relation to unplanned hospital
readmissions reported moderate discriminative ability.
Two models32 53 for potentially preventable/avoidable
readmissions showed high discriminative ability. This sys-
tematic review, however, found inconsistent performance
across the included unique 73 risk predictive models for
unplanned hospital readmissions.
The variables ‘comorbidities’, ‘length of stay’ and ‘pre-

vious admissions’ were frequently cited across the exam-
ined unique 73 models, and ‘laboratory tests’ and
‘medication’ variables had more weight in the models
for cardiovascular disease and medical conditions in
relation to readmissions. However, comprehensiveness of
discharge information was not included in any of the
examined models.
This review highlighted the need for rigorous valid-

ation of the risk predictive models with moderate-to-high
discriminative ability be undertaken, especially the two
models32 53 for the potentially avoidable hospital read-
missions. There is a need to review and update predict-
ive models. Specifically this is essential for paediatric
28-day all-cause unplanned hospital readmissions as
limited evidence was found.
Findings from this updated systematic review revealed

an increasing number of developed risk predictive
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models for specific disease-related unplanned hospital
readmission using clinical/medical records data.
Findings from this systematic review also confirm the
limited applicability of hospital readmission risk predict-
ive models. The performance of the applied existing
models was inconsistent. It is, therefore, essential to
clearly define utilisation outcomes and the type of
accessible data sources prior to determining which risk
predictive model to use. For example, most of the
models were developed based on healthcare data from
the USA, which might not be applicable to patients
from other settings.
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