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Summary

 

1.

 

Spatio-temporal fire regimes are likely to shift with changes in land use and climate. Such a shift
in the disturbance regime has been proposed from recent reconstructions of the regional fire history
in the Mediterranean-type woodlands and shrublands of Western Australia which suggest that fire
was much more frequent before 1930 (local fire intervals of 3–5 years) than it is today (local fire
intervals of 8–15 years).

 

2.

 

To investigate the potential biodiversity consequences of such changes in fire regime for fire-killed
woody species, we developed a spatial model for the serotinous shrub 

 

Banksia hookeriana

 

 that
grows on sand dunes of the Eneabba Plain, Western Australia. We sought to identify the envelope
of fire regimes under which the spatially separated populations in this species are able to persist, and
whether this encompasses the fire regimes proposed by recent fire-history reconstructions.

 

3.

 

We tested two fire frequency-size distribution scenarios: (1) a scenario where fire size depends on
the spatial patch configuration; and (2) a scenario depending also on available fuel (time since last
fire), which reduces fire size at short inter-fire intervals.

 

4.

 

In scenario 1, metapopulation persistence was only likely for mean ignition intervals at the lands-
cape scale of > 6 years. In scenario 2, persistence was likely for the whole range of fire interval dis-
tributions at the landscape scale suggested by the empirical data. However, persistence was almost
impossible if  the mean return fire interval at the local scale (i.e. for individual dunes) is < 8 years.

 

5.

 

Synthesis and applications

 

. We have demonstrated that this plant metapopulation can
potentially persist over a wide range of temporal fire regimes at the landscape scale, so long as there
are buffering mechanisms at work (e.g. feedback between fire spread and vegetation age) which
reduces the probability of large fires at short intervals. Our findings demonstrate that at least some
parts of the landscape must burn substantially less frequently on average than suggested by the
empirical fire reconstructions for the early and pre-European period if  populations of fire-killed
woody species such as 

 

B. hookeriana

 

 are to be conserved.
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Introduction

 

Fire-prone Mediterranean-type ecosystems are plant species
biodiversity hotspots and show a high level of endemism
(Myers 

 

et al.

 

 2000). Temporal and spatial variability of the

fire regime and associated heterogeneity in regeneration
conditions after fire have been identified as crucial for species
coexistence (Chesson & Warner 1981; Jeltsch 

 

et al.

 

 1998;
Groeneveld 

 

et al.

 

 2002). However, natural disturbance
regimes change through time due to shifts in climate and land
use, threatening the local persistence of some plant species
(Hobbs & Huenneke 1992; Perry & Enright 2002; Pausas
2006). Thus, it is important to understand whether species are
resilient to shifts in the disturbance regime, and what
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mechanisms might buffer them against the consequences of
changes in environmental conditions (Grimm 

 

et al.

 

 2005).
In the Mediterranean-type climate region of  Western

Australia, the fire regime is strongly influenced by humans
and may have changed considerably during the last century as
a consequence of the displacement of Aboriginal peoples and
their traditional use of fire with new fire regimes following
European settlement (Ward, Lamont & Burrows 2001;
Abbott 2003). Previous modelling studies have investigated
the conditions under which selected species can coexist in
relation to fire (Bradstock 

 

et al.

 

 1998; Groeneveld 

 

et al.

 

2002). However, most studies ignore the regional scale spatial
dynamics of these fire-prone systems. Local populations may
go extinct if  fire frequency is too high, or if  fire does not recur
within the lifespan of the individuals (Enright 

 

et al.

 

 1998), but
the species can persist in the landscape if  recolonization of
empty (or lost) patches is possible from surviving populations
elsewhere. If  such spatially separated populations are linked
by immigration (or recolonization), then the local populations
can behave potentially as one metapopulation (Levins 1969).

The majority of reported metapopulation studies are for
animal populations (Hanski 1999), since it is often difficult to
determine if  the assumptions of a metapopulation apply for
spatially separated plant populations (Freckleton & Watkinson
2002). Freckleton & Watkinson (2002) define the following
conditions for a plant metapopulation: 

 

1.

 

Suitable habitat occurs in discrete patches:

 

 Banksia hook-
eriana

 

 exists in at least part of its range as local populations on
sand dunes that are geographically separated by uninhabitable
intervening lowlands (swales) of several hundreds of metres or
more in width (Calviño-Cancela, He & Lamont 2008). 

 

2.

 

All local populations must have a measurable risk of
extinction: for fire-prone systems with fire-killed species short
fire intervals can cause local extinction (Zedler, Gautier &
McMaster 1983). 

 

B. hookeriana

 

 does not set seeds reliably
until at least 5 years old, and fires at < 7-year intervals may
lead to its local extinction (Enright, Lamont & Marsula 1996;
Enright 

 

et al.

 

 1998; Lamont 

 

et al.

 

 2001). The lack of a soil
seed bank in serotinous species such as 

 

B. hookeriana

 

 also
facilitates the identification of local extinction. 

 

3.

 

Recolonization must be possible: genetic marker studies in

 

B. hookeriana

 

 show establishment from seeds dispersed
between patches (He 

 

et al.

 

 2004). 

 

4.

 

Local populations do not have completely synchronous
local dynamics: in fire-prone systems, fires generally do not
burn all patches and therefore the age of the cohorts and
number of stored seeds differs between patches. 

 

Banksia hookeriana

 

 therefore provides a rare opportunity
to examine the metapopulation dynamics of a perennial plant
species in a natural landscape context where fire is the major
form of landscape-level disturbance.

Metapopulation studies generally assume only two possible
states for a local patch: occupied or empty (Hanski 1999). How-
ever, the demographic state of occupied patches can be out of
phase (i.e. may vary in age, population density or other attributes)
and these phase differences can influence the dynamic behaviour
of the metapopulation (Frank & Wissel 1998; Higgins & Cain

2002). Extinction may result either from the slow decline of
numbers without rescue from adjacent patches, or as a result of
episodic catastrophes that affect one or more patches. The
likelihood that more than one patch will be affected by a
catastrophe generally includes some level of spatial correla-
tion since neighbouring patches are more likely to suffer from
any synchronous event, such as disease, storm or fire, than
are widely separated patches (Pickett & White 1985).

Fire-prone environments such as Mediterranean-climate
sclerophyll shrublands are characterized by frequent fire, and
the species that inhabit them by attributes that facilitate either
survival of extant individuals through fire, or recruitment of
new individuals after fire (Gill 1981). The spatial correlation
of fire among habitat patches is vital for population dynamics
since fire not only causes local plant death (and possibly local
extinction) but also triggers seed release (in serotinous – canopy
seed stored – species) and germination (in soil seedbank
species) and therefore recolonization (Lamont 

 

et al.

 

 1991).
Thus, consideration of spatial correlation of local extinction
events alone, as in most metapopulation models (Grimm

 

et al.

 

 2004), is not sufficient to explore fire-prone plant
metapopulation dynamics.

Recent fire-history reconstructions based on stem analysis
of grasstrees 

 

Xanthorrhoea

 

 spp. suggest that high fire frequencies
(fire return interval at individual grass tree locations of 3–
5 years) historically were a feature of this landscape (Ward,
Lamont & Burrows 2001; Colangelo 

 

et al.

 

 2002; Lamont

 

et al.

 

 2003), so that local extinctions of 

 

B. hookeriana

 

 and
other fire-killed shrubs may have been common. Genetic
analyses of 

 

B. hookeriana

 

 seedlings have revealed evidence of
long-distance post-fire dispersal of seeds between dunes up to
2·5 km apart, with rates of successful colonization of up to 7%
(He 

 

et al.

 

 2004). Demographic and genetic data available for
this fire-sensitive perennial species provides an ideal opportunity
to investigate the conservation consequences of fire regime
change on metapopulation dynamics, and to further evaluate
the likely validity of the ‘frequent-fire’ history proposed for
plant communities of SW Australia in the pre-European
period by Ward, Lamont & Burrows (2001) and others based
on the grasstree record.

We constructed and analysed a patch model that simulated
fire size, local population dynamics and colonization to
address the following questions:

 

1.

 

Under what spatial and temporal fire regimes can 

 

B. hooke-
riana

 

 persist?

 

2.

 

How does the feedback between biomass accumulation
(patch age) and ignition probability affect persistence?

 

3.

 

What are the implications of the model results for biodiver-
sity conservation of fire-killed woody species, and for the
validity of the recently proposed ‘frequent-fire’ history?

 

Methods

 

STUDY

 

 

 

S ITE

 

 

 

AND

 

 

 

STUDY

 

 

 

SPECIES

 

Banksia hookeriana

 

 Meissner (Proteaceae) is a local endemic shrub
up to 2·5 m tall confined to the upper slopes and crests of  deep
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sand dunes of the Eneabba Plain, Western Australia, 250–330 km north
of Perth (Taylor & Hopper 1988). Almost exclusively outcrossed
seeds (Barrett 

 

et al.

 

 2005) are stored in closed woody fruits in the
plant crown for up to 12 years in a state of enforced dormancy
(serotiny) and their general release is stimulated by fire (Lamont

 

et al.

 

 1991). Seeds must germinate during the subsequent wet season
or perish (Enright & Lamont 1989).

 

MODEL

 

 

 

DESCRIPTION

 

The model description follows the ODD (Overview, Design concepts,
and Details) protocol suggested by Grimm 

 

et al.

 

 (2006).

 

Overview

 

Purpose.

 

To investigate the persistence of a plant metapopulation of a
fire-killed, serotinous shrub species, 

 

B. hookeriana

 

, for a wide range
of spatial and temporal fire regimes. For some scenarios, not all
assumptions of a true metapopulation were fulfilled (e.g. where large
fires synchronize patch states or interchange of seeds is very frequent).
However, given the empirical evidence of  substantial genetic
differentiation between local populations (He 

 

et al.

 

 2004), we use
metapopulation terminology throughout.

 

State variables and scales.

 

The simulated system consists of a net-
work of 39 patches in an area of 4 

 

×

 

 4 km. Information about the
number of occupied patches and the temporal and spatial fire regime
describe the network state. Patches are characterized by their
coordinates, patch size 

 

A

 

i

 

, and by two state variables: number of
individuals 

 

N

 

i

 

, and (local) time since last fire 

 

t

 

j

 

.

 

Process overview and scheduling.

 

The model proceeds in time steps
of  fire intervals measured in years. Within each time step (fire
interval), four modules are processed in the following order: determi-
nation of the time between two ignitions, fire size, local population
dynamics, and long-distance seed dispersal.

 

Design concepts

 

Emergence.

 

Local populations are coupled by seed dispersal and
disturbance. The interplay of local extinctions and colonizations of
different local populations results in emergent dynamics of the meta-
population.

 

Stochasticity.

 

Stochasticity is considered in the processes: fire return
interval, fire size, inter-fire survival, seed dispersal (for details see
section Submodels).

 

Observations.

 

Persistence probability 

 

p

 

n

 

 is the main output measure
and identifies the probability that the metapopulation will persist
through a specified number 

 

n

 

 of  fire events.

 

Details

 

Initialization.

 

All simulations are initialized with all patches occu-
pied. Every patch has recently burnt and there is no seed dispersal
outside the local patch. The size of the pre-fire populations is drawn
from a uniform distribution with range 1–5816 (see General model
structure). Each individual disperses 235 seeds, representing the
mean seed bank size for a 12 year old plant (Enright, Lamont &
Marsula 1996).

 

Input.

 

All patches are assumed to have the same habitat conditions
for 

 

B. hookeriana

 

.

 

General model structure.

 

The study site is modelled as a network of
39 patches of equal size (~7·06 ha) with spatial configuration of
patches described by a distance matrix (measured from centre to
centre). The nature of the intervening (unsuitable) habitat and the
shape of the patches are not explicitly considered. We assume that all
patches have the same carrying capacity based on a maximum adult
density of ~823 ha

 

−

 

1

 

 (He 

 

et al.

 

 2004).
Patches can differ in the time since last fire and therefore in age of

the 

 

B. hookeriana

 

 cohort, and interact via seed dispersal and the
spread of fire (see section Submodels for details). The time step in
the model is the time between two fires, so that time steps differ in
the number of years that they represent.

 

Submodels

 

Determination of fire interval at the landscape level.

 

The time
between two fires (fire interval) in the landscape (independent of
their size) is determined by a two-parameter Weibull distribution (

 

r

 

Development Core Team 2006), where 

 

a

 

 is the shape parameter and

 

b

 

 is the scale parameter.

Weibull distributions were fitted to grasstree fire-history data
(Enright, Lamont & Miller 2005) for a site on the Eneabba sandplain
for two time-periods using the maximum likelihood 

 

r

 

 function
(fitdistr, R Development Core Team 2006): one before 1930 (rep-
resenting the frequent fire period) and one containing all fire events
thereafter (representing the European impact period). Fire interval
drawn from the Weibull distribution was increased by one to avoid
fire intervals < 1, which would mean two fires in 1 year [therefore,
the mean of the Weibull distribution changes to 

 

μ

 

 = 

 

a

 

 · 

 

Γ

 

(1 + 1/

 

b

 

) + 1].

 

Determination of fire size.

 

We incorporated simple aggregated
rules of fire spread to introduce variation of fire size and spatial cor-
relation of fire into the modelled patch network (Fig. 1). At the time
of each fire, one of the 39 patches is ignited at random. The fire then
either self-extinguishes or spreads with a certain probability to the
next four nearest patches, continuing to spread in this way until it
self-extinguishes or has burned all patches in the network (Fig. 1).
Using the four nearest neighbouring patches for the fire size deter-
mination results in some unidirectional links between patches,
producing spatial variability of  the fire impact, which might be
crucial for allowing persistence under high frequency fire regimes.
We investigated two scenarios of fire size distribution: 

 

1.

 

Fire size based on distance-dependent fire spread (i.e. whether fire
will spread from patch 

 

i

 

 to patch 

 

j

 

 is determined in a Bernoulli trial
using fire spread probability 

 

ρ

 

), which decreases with inter-patch dis-
tance 

 

d

 

i

 

,

 

j

 

 (centre to centre)

where 

 

λ

 

L

 

 (landscape connectivity) parameterizes the decline of the
exponential function. 

 

2.

 

 A fuel load dependent fire spread with fire spread probability 

 

ρ

 

adjusted as follows:

f x
a
b

x
b

x
b

a a

( )   exp=
⎛
⎝⎜

⎞
⎠⎟

−
⎛
⎝⎜

⎞
⎠⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

−1

ρ( )  exp ,,
,d

d
i j

i j

L

= −
⎛

⎝⎜
⎞
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where 

 

t

 

j

 

 is the time since last fire in target patch 

 

j

 

 and 

 

t

 

min

 

 is the stand
age up to which fire spread probability increases (

 

t

 

min

 

 = 12 years) as
fuel load increases (i.e. ignition is impossible until time since last fire
in the target patch 

 

t

 

j

 

 exceeds 3 years) and reaches the distance-
dependent fire spread probability 

 

ρ

 

 once time since last fire is 12 years.
These two fire spread scenarios are based on different assumptions

concerning the major factors governing fire propagation in Mediter-
ranean-type shrublands, each of which has some empirical support.

The first assumes that severe fires are possible within a few years of
previous fires under extreme weather conditions, with no clear link
to fuel age (Keeley 2002; Moritz 

 

et al.

 

 2004). The second assumes a
relationship between fuel load and fire hazard such that the probability
of a large, severe fire increases (initially at least) with increasing time
since last fire as live and dead fuel loads accumulate (Minnich 1983;
Loehle 2004; Piñol, Castellnou & Beven 2007).

 

Local population dynamics.

 

If  a patch burns, all individuals die and
release their stored seeds (

 

n

 

t

 

) depending on the time since last fire at
the patch level 

 

t

 

 (Enright 

 

et al

 

. 1996, 1998; Groeneveld 

 

et al.

 

 2002;
see Table 1). The number of individuals that survives until the next
fire is based on the initial number of viable seeds dispersed to the
patch after the last fire using a cumulative recruitment and survival
probability 

 

ρ

 

S

 

 based on the geometric average of  rainfall-specific
survival rates from previous studies (Enright 

 

et al

 

. 1996, 1998). Annual
survival s increases up to a maximum annual survival probability
once plants are 9 years old (Table 1). After 25 years, survival probability
decreases by 0·01 per year reflecting a slow increase in senescence-
related mortality (senescence and fire recurrence rarely allowing
survivorship beyond 40 years). If  more than 5000 seeds are present
in a patch after a fire, we calculate the mean number of survivors as:

NSur(t) = min(K, N0 · ρS),

where K is the capacity of the patch. The number of surviving plants
at age t is the product of the initial number of seeds N0 and the cumula-
tive survival probability ρS to reach age t (rounding of Nsur is done
stochastically). If  the initial seed number N0 is below 5000, we draw
the number of surviving plants NSur from a binomial distribution
with a probability of ρs and N0 tries.

Long-distance seed dispersal and colonization. If  occupied patches
burn, then their seeds can potentially colonize empty patches by
long-distance dispersal (LDD). Most released seeds remain in the
patch itself  (90%) and only a fraction (10%) will be dispersed outside
the patch. The probability of dispersing a seed into a ring (annulus)
at distance d is assumed to decrease exponentially, and we approxi-
mate the probability ρij to disperse a seed from patch i to patch j by
LDD as:

p t

t

t

t
t ti j j

j

j
j,

min
min( , )  

,   

  
  

  
,     ,

,

ρ ρ

ρ

=

<

⋅
−
−

⎛

⎝⎜
⎞

⎠⎟
≤ ≤

⎧

⎨
⎪
⎪

⎩
⎪
⎪

0 3

3

3
3

 if 

 if 

 else

Fig. 1. The distribution of habitat patches for B. hookeriana, and the
fire spread network. If  one patch (circle) is ignited, fire can spread to
successive sets of (four) nearest neighbours (connected by lines), fire
spread probability declining exponentially with distance, and
depending on the scenario, fire spread probability increases with fuel
age (see text for details).

Table 1. Details of the 12 ‘Model’ scenarios tested: ‘Short’ notation for each model is determined by parameter values used to describe the
‘Dispersal mode’: local (L), long distance (LD) and directed (D), whether fire spread is a function of distance (NFB) or of distance plus ‘Biomass’
accumulation over time (FB), and the ‘Landscape connectivity’ (λL = 1·125 km or λL = 4·5 km). All models have been simulated over 500 fires
and 500 replicates. ‘Persistence fraction’ is the fraction of fire regimes (out of 500) where the persistence probability p500 ≥ 0·5

Model Short
Dispersal 
mode Biomass

Landscape 
connectivity (km)

Average fraction 
of patches burnt

Persistence 
fraction

1 LFB45 L FB 4·5 0·73 0·72
2 LFB1125 L FB 1·125 0·41 0·15
3 LNFB45 L NFB 4·5 0·95 0·39
4 LNFB1125 L NFB 1·125 0·52 0·05
5 LDFB45 LD FB 4·5 0·73 0·95
6 LDFB1125 LD FB 1·125 0·41 0·63
7 LDNFB45 LD NFB 4·5 0·95 0·45
8 LDNFB1125 LD NFB 1·125 0·52 0·31
9 DFB45 D FB 4·5 0·73 0·95
10 DFB1125 D FB 1·125 0·41 0·69
11 DNFB45 D NFB 4·5 0·95 0·46
12 DNFB1125 D NFB 1·125 0·52 0·48
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where d is the distance between patch i and j (centre to centre), r0 is
the patch radius (assuming that all patches are circles of the same
size), and λ parameterizes the exponential decay. For the simulation
experiments, we used three dispersal modes: local dispersal (all seeds
remain in the patch where they were produced), LDD (mean dispersal
distance λ = 1·1 km), and directed dispersal (the fraction of long-
distance dispersed seeds are dispersed equally between all other
burnt patches). We assume that only burnt patches can be colonized,
since unburnt patches are occupied by extant individuals and
competition among established plants makes successful recruitment
from seeds unlikely (Enright et al. 1998). Finally, we approximated
the number of seeds that arrive at patch i dispersed from patch j by
a binomial distribution if  the number of dispersed seeds is below
5000; otherwise, we use the average (see process Local population
dynamics for details).

SIMULATION EXPERIMENTS

We conducted 12 simulation experiments (Table 1) representing two
fire size scenarios (FB: feedback between fire spread and fuel load;

NFB: no feedback), two connectivities of  the landscape for fire
spread, λL [λL = (4·5, 1·125) km] – which results in an average fraction
of  burnt patches AF [AF = (95, 52)%] assuming NFB, and three
dispersal modes (local, LDD and directed). We varied the scale
(1–25 years) and shape parameters (1–10·5) of the landscape fire
interval Weibull distribution systematically in all simulation
experiments. Each simulation experiment is named after its con-
figuration (Table 1).

For all simulation experiments and parameterizations, the model
ran for 500 time steps (i.e. 500 fires and a minimum of 500 years) for
each of 500 replicate runs. Results are presented for each scenario as
the persistence probability p500 that populations could persist
through 500 fire events.

Results

Weibull distribution scale and shape parameters differed
markedly for the fire interval distributions before and
after 1930 based on the grasstree fire-history record (Fig. 2).
The mean of the estimated fire interval distribution before
1930 was shorter (μ = 4·6 years) and less variable (SD =
2·3 years) than for the period after 1930 (μ = 11·4 years,
SD = 5·2 years).

ρij d
r
d

d r r
( )   exp exp   exp ,= −

⎛
⎝⎜

⎞
⎠⎟

− −
⎛
⎝⎜

⎞
⎠⎟

+ −
⎛
⎝⎜

⎞
⎠⎟

⎛

⎝⎜
⎞

⎠⎟
0 0 0

4 λ λ λ

Table 2. Model parameters

Parameter Description (unit) Value(s)

nt No. of stored seeds t years nt=1–5 = 0
after fire (seeds/individual) nt=6–25 = (10, 29, 57, 92, 134, 182, 235, 293, 354, 

418, 474, 522, 562, 594, 620, 640, 654, 664, 670, 674)
nt=26–100 = 676

st Annual survival probability in year t st=1–8 = (0·031, 0·61, 0·817, 0·886, 0·919, 0·938, 0·95, 0·959)
(−) st=9–25 = 0·977

ts age of increased mortality (years) ts = 25
m annual decrease in survival probability m = 0·01

due to senescence (−)
a maximum longevity (years) a = 100
K Capacity (individuals) K = 5816
λ Mean dispersal distance (LDD) (km) λ = 1·1
r0 Patch radius (km) r0 = 0·15
tmin Vegetation age of maximum fire spread (years) tmin = 12
b Fraction of LDD seeds (−) b = 0·1

Fig. 2. Maximum-likelihood estimates for
fire interval distributions (a) before 1930,
scale = 4 and shape = 1·6, and (b) after
1930, scale = 11·7 and shape = 2·1 based on
grasstree fire-history data for shrublands
near Eneabba, Western Australia. Bars
indicate measured fire intervals from black
bands on stems of grasstrees (Enright et al.
2005) and lines are the estimated fire interval
Weibull distributions.
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Mean fire size differed among simulations based on the
value for landscape connectivity λL: for NFB (distance-
dependent fire-spread) with λL = 4·5 km, 95% of all patches
burn on average, so that fires tend to be uniformly large,
whereas with λL = 1·125 km, only 52% of the landscape burns
on average resulting in a multimodal fire size distribution, so
that fires are smaller and more patchy (Fig. 3a). The relation-
ship between mean fire interval at the landscape and local
(patch) levels is linear (Fig. 3), and the steepness of the trend
between mean fire intervals of the different spatial scales
depends on the average fraction of burnt patches (Fig. 3). For
FB simulations (feedback between fuel load and ignition
probability), the linear relationship between fire interval at

the landscape scale and fire size disappears (Fig. 3a), as does
that between fire interval at the landscape and the local
(patch) scale (Fig. 3b).

For NFB and landscape connectivity λL = 4·5 km, patch
states were highly synchronized due to large fire size (AF =
95%), and dispersal mode has little effect on metapopulation
persistence, with local populations persisting for landscape
level mean fire intervals > 8·6 years (see Table 1; scenarios 3,
7, 11). Under low connectivity (λL = 1·125 km) and local dis-
persal, p500 ≥ 0·5 was only possible for mean fire intervals at
the landscape level between 8·6 years and 11·5 years (scenario
4, Fig. 4). LDD increased considerably the range of fire
regimes for p500 ≥ 0·5 (7·5–17·2 years, scenario 8), and with

Fig. 3. Relationship between mean
landscape (global) fire interval, generated by
Weibull distributions of different mean and
variance, and average fire size (a) and (b)
mean patch (local level) fire interval. When
fire risk declines exponentially with distance
between patches the relationship is linear
(light grey and black dots). If  fire risk also
depends on vegetation age (fuel load), the
relationship is more complex (dark grey dots).

Fig. 4. Persistence of B. hookeriana in relation to the mean fire interval and the standard deviation of the fire interval distribution at the
landscape scale. Dark dots indicate scenarios where B. hookeriana persisted in at least 50% of all (500) runs. For reference, local mean fire
intervals are estimated as 4·6 years for the pre-European fire regime (before 1930) and as 11·4 years after 1930.
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directed dispersal, persistence was possible for fire intervals
between 6·3 years and 19 years (scenario 12). Average local
fire intervals similar to the pre-1930 empirical fire reconstruc-
tion (~5 years) required a mean landscape fire interval of
approximately 2 years (scenarios 4, 8, 12), and under this fire
regime, long-term persistence is hardly possible (p500 < 1%,
Fig. 4).

For FB with local dispersal, the metapopulation can persist
over a wide range of fire intervals (≥ 6·7 years) at the landscape
level (Fig. 4; scenario 1). When LDD is included, the persistence
range expands over the whole spectrum of simulated mean
fire intervals (i.e. ≥ 1·9 years) at the landscape level (Fig. 4,
scenario 5). However, if  fire intervals are short, then fires tend
to be small and patchy and (local) fire return intervals never
drop below a mean of 10 years (Figs 3 and 5).

Overall, the range of fire regimes for which B. hookeriana
can persist is smallest (p500 > 0·5 for 5% of all fire regimes,
Table 1) where dispersal mode is local, ignition probability
does not depend on fuel age and fires are patchy (scenario 4),
and greatest (p500 > 0·5 for 95% of  all fire regimes, Table 1)
where fire spread probability depends on fuel age, there is
LDD and landscape connectivity for fire is high (scenarios 5
and 9).

Discussion

Previous simulation studies have predicted that mean fire
intervals must exceed 8 years if  B. hookeriana is to persist
(Enright et al. 1998; Lamont et al. 2001; Groeneveld et al. 2002),
which contradicts recent grasstree fire-history evidence that
suggests fire was much more frequent in the (pre-European)
past (Ward, Lamont & Burrows 2001; Lamont, Wittkuhn &
Korczynskyi 2004). Our simulations have expanded the analysis
of this question to incorporate multiple local populations in

the context of  a metapopulation that more fully explores
how spatial and temporal patterns might interact to facilitate
persistence of fire-killed species in a frequent-fire environment.
We show that, at the landscape scale, colonization events
and feedback between spatial fire spread and the amount of
combustible biomass can compensate for local extinctions
due to short fire or extremely long fire intervals and therefore
allow persistence even if fires occur every 2–3 years in the system
– so long as individual fires burn only a small fraction of
patches. However, at the local (single patch) scale our results
agree with the previous findings, with persistence only
expected if  the local mean fire interval at the patch level is
> 8–10 years.

Feedback between spatial fire spread and the amount of
combustible biomass buffers changes of the fire regime at the
landscape level (i.e. if  the whole system has burnt recently),
the subsequent fires will be small, and vice versa, as also
shown by Piñol, Castellnou & Beven (2007). This feedback,
together with LDD, allows B. hookeriana to persist over a
wide range of  possible fire regimes at the landscape level.
Successful LDD events may buffer small populations against
potentially deleterious effects associated with genetic drift,
inbreeding and pollen limitation, and Bossuyt (2007) has
illustrated recently how genetic rescue from introduced pollen
can increase viable seed set. This might be important for many
species, since we are only now beginning to quantify rates of
successful recruitment from long-distance dispersal events
due to recent advances in molecular ecology and new modelling
approaches (Nathan & Muller-Landau 2000; Cain, Milligan
& Strand 2000; Tackenberg 2003; Schurr et al. 2005). Given
the high rate of LDD measured for B. hookeriana in our study
area (He et al. 2004), the genetic risks associated with small
population size in this species (and those with similar life-history
attributes) may be quite low so long as fragments are no more
than a few kilometres apart. Indeed, He et al. (2004) found
genetic diversity to be high, with no relationship between
genetic diversity and population size.

Long-range dispersal is not only important in compensating
for local extinction due to short fire events, but also for long
fire intervals. For example, Menges & Hawkes (1998) found
that population size for a number of herbaceous species in
Florida pine scrub was dependent upon the spatial distribution
and extent of open sites, and the time for which they were
available, following fire. Species behaved as metapopulations,
with population size and number likely to decrease if  fire
interval increased due to the loss of open sites and increased
distance between remaining open-habitat fragments. In the
present context, this is important for conservation management
planning since longer mean inter-fire intervals at the patch
level may result from fragmentation and reduced connectivity
of the landscape due to ongoing human impacts associated
with land clearing for roads, agriculture, urbanization and
other infrastructure.

In relation to more frequent fire, our findings do not
support recent reconstructions of fire histories for SW Australia
using grasstrees (Ward, Lamont & Burrows 2001; Lamont
et al. 2003, 2004), which reveal an apparent mean fire interval

Fig. 5. Persistence (black dots: population persisted in more than
50% of all 500 runs) in relation to mean fire intervals at the landscape
and local patch levels, if  fire risk is a function of fuel load and inter
patch distance (LDD, λL = 1·1 km, model scenario LDFB45).
Regardless of the mean fire interval at the landscape level, local fire
interval cannot fall below 10 years on average at the patch level. For
reference, local mean fire intervals are estimated as 4·6 years for the
pre-European fire regime (before 1930) and as 11·4 years after 1930.
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of only 3–5 years in the period 1750–1930. These authors
argue that this represents the ‘Aboriginal’ fire regime for the
region and may have been in place for thousands of years
prior to European settlement of Australia. Historical accounts
of Aboriginal use of fire suggest that they burned vegetation
frequently, but in small patches (Abbott 2003). While at first
glance our findings seem to lend support to the ‘Aboriginal’
fire regime hypothesis, they do not. The Aboriginal fire
regime scenario implies that all of the landscape is burned
within a period of 3–5 years by fires of unknown (but suggested
small) size. Since individual grasstree stems show regular
(apparently fire-induced) dark bands at these intervals prior
1930, this means that fire has burned the same patches of
vegetation (or at least the same grasstrees) repeatedly at this
frequency. This contradicts our findings that average local
scale (patch) fire interval must exceed 8–10 years for per-
sistence to be reasonably likely.

The frequent fire scenario tested here can only be rationalized
with our results if fires consistently spare parts of the landscape,
which therefore have a longer local fire return interval. Fire
could occur somewhere in the landscape (here modelled on an
area of 4 × 4 km) every year, but can only affect a small
number of patches per fire if  persistence is to be possible. Since
our previous studies have shown that interspecific competition
and annual variability in growing conditions (factors not
considered here) further reduce overall rates of survivorship
and seed production (Lamont et al. 2001; Groeneveld et al.
2002), the minimum mean fire interval compatible with
persistence of B. hookeriana is most likely rather higher than
10 years, making the results reported here a conservative
underestimate.

Conclusions

A patch model describing the dynamics of the SW Australian
fire-killed perennial shrub, B. hookeriana, in relation to fire
regime is presented. Assuming that fire spread is a function of
inter-patch distance and the amount of available biomass
(fuel load), spatially separated populations of B. hookeriana
can persist for a wide range of  possible fire regimes at the
landscape level. The feedback between fire spread probability
and fuel load (stand age) buffers the effects of  variable
temporal fire regimes at the landscape level. Long-distance
seed dispersal is crucial to population persistence for short
mean fire intervals at the landscape level, as suggested by
recent empirical data. Our study indicates that B. hookeriana
is highly robust in terms of changes to the overall fire regime.
However, our findings do not support the recently reported
‘frequent-fire history’ for sclerophyll shrublands in SW
Australia. Without refuges where fire occurs less frequently,
the frequent-fire history would lead in the long term to the
local extinction of this fire-killed perennial species. The same
fate would be true for many other fire-sensitive species in the
region, suggesting that such a pre-European fire regime is not
compatible with the persistence of many fire-killed perennial
plant species in the SW Australian flora. These results cast
further doubt over whether the grasstree fire-history record

can be used to reconstruct the fire regime (Miller et al. 2007)
and suggest that caution is needed in any attempt to frame
future fire management policies around such reconstructed
fire regimes.
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