
RESEARCH ARTICLE

Robust automated reading of the skin prick

test via 3D imaging and parametric surface

fitting

Jesus Pineda1, Raul Vargas1, Lenny A. Romero2, Javier Marrugo3, Jaime Meneses4,

Andres G. MarrugoID
1*

1 Facultad de Ingenierı́a, Universidad Tecnologica de Bolivar, Cartagena, Colombia, 2 Facultad de Ciencias

Básicas, Universidad Tecnologica de Bolivar, Cartagena, Colombia, 3 Instituto de Investigaciones

Inmunológicas, Universidad De Cartagena, Cartagena, Colombia, 4 Grupo de Óptica y Tratamiento de
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Abstract

The conventional reading of the skin prick test (SPT) for diagnosing allergies is prone to

inter- and intra-observer variations. Drawing the contours of the skin wheals from the SPT

and scanning them for computer processing is cumbersome. However, 3D scanning tech-

nology promises the best results in terms of accuracy, fast acquisition, and processing. In

this work, we present a wide-field 3D imaging system for the 3D reconstruction of the SPT,

and we propose an automated method for the measurement of the skin wheals. The auto-

mated measurement is based on pyramidal decomposition and parametric 3D surface fitting

for estimating the sizes of the wheals directly. We proposed two parametric models for the

diameter estimation. Model 1 is based on an inverted Elliptical Paraboloid function, and

model 2 on a super-Gaussian function. The accuracy of the 3D imaging system was evalu-

ated with validation objects obtaining transversal and depth accuracies within ± 0.1 mm and

± 0.01 mm, respectively. We tested the method on 80 SPTs conducted in volunteer sub-

jects, which resulted in 61 detected wheals. We analyzed the accuracy of the models

against manual reference measurements from a physician and obtained that the parametric

model 2 on average yields diameters closer to the reference measurements (model 1:

-0.398 mm vs. model 2: -0.339 mm) with narrower 95% limits of agreement (model 1: [-1.58,

0.78] mm vs. model 2: [-1.39, 0.71] mm) in a Bland-Altman analysis. In one subject, we

tested the reproducibility of the method by registering the forearm under five different poses

obtaining a maximum coefficient of variation of 5.24% in the estimated wheal diameters.

The proposed method delivers accurate and reproducible measurements of the SPT.

Introduction

The skin prick test (SPT) is the most commonly used method for diagnosing asthma, allergic

rhinitis, and food allergies [1]. It is relatively simple and quick to read, and reproduces allergic

reactions by type I hypersensitivity. These health conditions affect an estimated 30% of the
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world population [2–4] with incidence on the rise. Hence, the need for continuous optimiza-

tion of related diagnostic tools and therapies [5].

In the SPT, several allergens are introduced into the skin of the patient simultaneously. The

SPT is carried out either by placing drops of the allergens on the skin and pricking with a lan-

cet, or with a multi-test device, as the one shown in Fig 1(A). A small swelling of the skin called

wheal or papule appears when there is a reaction. The size of the wheal determines the degree

of sensitization [6]. For routine and most study settings, the wheals are measured directly on

the skin by a physician with a millimeter-graded ruler as shown in Fig 1(B).

The shapes of the wheals vary considerably, which complicates the SPT assessment [7], as

illustrated in Fig 1(C). It is generally accepted that the most accurate way to assess a wheal

response is planimetry from a traced copy, also called the “scanned area” method. However, it

is difficult to perform manually and time consuming [8–10]. To simplify and expedite the SPT

assessment the wheal shape is commonly characterized by an average diameter assuming the

wheal may be described reasonably well by an ellipse with the longest diameter dmax and the

orthogonal midpoint diameter dmin, as shown in Fig 1(D). However, this approximation and

other similar methods have been shown prone to errors [7], and have lead to diminished com-

parability when SPT results are reported [11]. To standardize the SPT assessment, the Global

Allergy and Asthma European Network laid guidelines, which include a standard protocol for

SPT assessment [11]. Among other recommendations, it states that only the largest diameter

of the wheal of each test is measured, a positive being of� 3 mm. The reason is that the longest

diameter is a better estimate of wheal surface area than the mean perpendicular diameters [9].

This assessment is illustrated in Fig 1(D) with the measurement of dmax regardless of trying to

approximate the wheal shape by an ellipse.

Wheals fade quickly, which complicates their assessment and documentation. An alterna-

tive to the scanned area method to overcome this problem is by taking digital photographs of

the test. However, the visual interpretation of these images produces a significant amount of

Fig 1. (A) The physician performs the SPTs with a disposable multi-test on the surface of the forearm. (B) After 15 minutes, the physician

measures the skin reactions or wheals using a ruler. (C) Typical shapes of wheals, from regular to irregular shape with pseudopod. (D) The

wheal size assessment is approximated as an ellipse or by measuring the longest diameter.

https://doi.org/10.1371/journal.pone.0223623.g001
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variation [12]. Even assessing the images through digital image processing programs is not

entirely reliable and has not been sufficiently studied on different skin tones [13, 14].

Furthermore, the fact that wheals are local elevations of the skin suggests that 3D informa-

tion of the skin surface should be used as a means to measure and assess the SPT. In a recent

review paper by Justo et al. [15] on the evolution towards automated reading of the SPT, the

authors state that most of the existing systems for assessing the SPT are not practical for use

in a busy clinical practice mostly due to the time needed to obtain the results and the lack of

sufficient precision. They concluded that 3D scanners may pave the way to a reliable wheal

measurement method. Although, the technology still has to deal with several challenges: simul-

taneous measurement of multiple wheals, fast computer processing of data and the develop-

ment of a simple and low-cost device. In this work, we propose a system that tackles these

challenges.

3D scanning technology is becoming an essential tool in many medical subfields [16]. It has

been applied for the monitoring of skin treatment therapy [17], or the characterization of can-

cer lesions [18]. However, each procedure or application has specific metrological require-

ments, like the field of view or the depth resolution, which typically render a device unsuitable

for multiple applications. We know of three earlier works which make use of 3D technology

for assessing the SPT [19–21]. The work of dos Santos et al. [20] was the first to show the

advantages of 3D imaging technology for measuring wheals. Although, they used a commercial

3D scanning device [22, 23] with a relatively small field of view (FOV) in the order of 40×30

mm, which could only register one wheal at a time. This limitation impedes its use in the typi-

cal clinical setting where many SPTs are typically applied simultaneously. In a feasibility study

by Verdaasdonk et al. [21], the authors used general-purpose 3D scanners for assessing the

SPT. They tested the scanners extensively on phantom objects, like buttons, but provided few

clinical data (17 positive allergic reactions) which were assigned a reaction grade 1, 2, or 3 by a

dermatologist instead of validating with a more quantitative approach. Also, they did not dis-

cuss any automated detection and measurement procedure.

In the recent work by Justo et al. [19], they use a 3D laser scanner system that registers the

whole surface of the forearm, making it more suitable for real clinical situations. It is based on

the laser-line triangulation principle by moving a scanning head along the forearm of the

patient where the SPT was applied. However, their device does not capture the texture image

of the skin, which may be useful for assessing other aspects of the SPT like the erythema. Also,

they report that their method is prone to detect false positives (from 169 detections only 97

where true wheals). The authors test their device extensively against validation objects, but

they do not report measurement results or accuracy assessment from real wheals from SPTs.

Moreover, the fact that it requires a moving scanning head makes the device prone to patient

movement.

Contribution

In this work, we use an in-house developed wide-field 3D imaging system [24], shown in Fig 2,

for the 3D reconstruction of the SPT, which we validate with objects of known shape shown in

Fig 3. We propose a framework for the robust automated measurement of the skin wheals.

Our proposed method, depicted in Fig 4, is based on advanced 3D data processing. We per-

form a pyramidal decomposition of the 3D reconstruction to filter out the noise and the global

surface of the arm, leaving only the 3D reconstruction of the wheals. The automated measure-

ment is based on a robust parametric fitting to the 3D data of the wheals for obtaining the lon-

gest diameter directly. Although it could also be used to estimate the wheal area or volume, for

this work we chose the longest diameter because it is extensively used in the clinical practice,
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and the results are readily interpretable. This approach is a step forward in bringing 3D

parametric models to characterizing skin features. Dimensional metrology of anatomical fea-

tures is difficult; there are no two anatomical features alike. However, that has not prevented

the development of anatomical parametric models which work for the majority of the popula-

tion [25], and with few numbers allow us to describe or match two similar features. In the

same way, our model attempts to generalize the irregular shape of the skin wheal by taking

into account the 3D shape to produce an accurate and reliable measurement. To the best of

our knowledge, this is the first time such a model is proposed for the measurement of the

wheals in the SPT. In the following sections, we describe the 3D imaging system, the wheal

detection and measurement approach, the methods, the experimental results, the discussion,

and finally our concluding remarks.

3D Imaging system

A schematic of the 3D imaging system [24, 26] that we designed is shown in Fig 2A. It is a

wide-field 3D fringe projection system capable of reconstructing large areas (*150 mm × 250

mm), e.g., the whole surface of the forearm, with a height accuracy in the order of 0.01 mm. It

consists of three major parts: an acquisition system, a projection system, and a control unit.

Fig 2. (A) 3D imaging system. (B) Captured fringe images. (C) 3D Reconstructions. The dotted red line denotes the overlapping region

between the observation systems.

https://doi.org/10.1371/journal.pone.0223623.g002

Fig 3. Validation experiments: (A) measuring spherical caps of known diameters and (B) steps with known height.

https://doi.org/10.1371/journal.pone.0223623.g003
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The acquisition system consists of two color cameras Basler Ace 1300-60gc with 16 mm focal

length lenses (Computar M1614-MP2) at F/1.4, with a resolution of 1280 × 1024, and a maxi-

mum frame rate of 60 frames/s. The projection system is comprised by an LED pattern projec-

tor (Optoengineering LTPRHP3W-W) that contains a stripe pattern of 400 lines with line

thickness 0.01 mm with a projection lens of 12 mm focal length (Edmund Optics 58001), and

two laser line projectors (SYD1230) with wavelength 650 nm. The control unit consists mainly

of a computer that controls the acquisition, and the projection devices. The lasers allow precise

positioning of the forearm beneath the 3D imaging device. When the forearm is correctly posi-

tioned, each camera acquires a laser line image, a fringe image, and a texture image, as shown

in Fig 2(B). The acquisition is done in less than 500 ms. Note that there is a small overlapping

region for redundancy and a smoother transition from one 3D reconstruction to the other.

The fringe images are processed independently to obtain two 3D reconstructions via Fourier

Transform Profilometry [27, 28], as shown in Fig 2(C). The 3D reconstructions are automati-

cally merged in a global coordinate system through a previous calibration [29]. Notice that the

wheals are included in the topography, but to measure them accurately the global surface has

to be removed. For further details of the 3D imaging system, see Ref. [24].

3D System resolution and accuracy

To evaluate the resolution and accuracy of the 3D imaging system, we carried out two valida-

tion experiments. The first experiment consisted of reconstructing six spherical caps (s1, . . .,

s6) of different diameters, as shown in Fig 3(A). The diameter of each spherical cap was mea-

sured three times with a caliper to the nearest 0.01 mm to obtain the average reference

Fig 4. Block diagram illustrating the proposed method for the measurement of skin wheals. S and D denote the 3D surface of the patient’s

forearm and the estimated diameters, respectively. The other variables are intermediate outputs of every stage; their meaning is given in the text.

https://doi.org/10.1371/journal.pone.0223623.g004
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measurement reported in Table 1. Then, we measured the diameter of the spherical caps with

the 3D imaging system. We placed them in seven different positions (P1, . . ., P7) throughout

the FOV of each camera, as shown in Fig 3(A1). The 3D reconstruction of the spherical caps

and a height profile across s4 are shown in Fig 3(A2). In Table 1, we report the values of the

average diameter �x and the standard deviation s of the measurements for each spherical cap

obtained for camera 1 and camera 2. The measurements are accurate within ±0.1 mm.

The second validation experiment, shown in Fig 3(B), consisted of measuring an object

with known depth steps. We made a staircase with four steps using adhesive paper cutouts

with a thickness of 0.100 mm. The tested object is shown in Fig 3(B1), where R0, R1, R2, and

R3 correspond to the steps. The height difference between each consecutive step is 0.100 mm.

In Fig 3(B2) we show the depth map of the steps and a height profile across the steps obtained

with the 3D imaging system. The distances measured between each step and the reference step

R0 are reported in Table 2 for each camera. The results show that the 3D system can accurately

measure objects with height in the order of 0.100 mm. The height measurements are accurate

within ±0.01 mm.

Wheal detection and measurement

An overview of the proposed method for the measurement of skin wheals is shown in Fig 4.

The input to the work-flow is the 3D surface of the patient’s forearm S(x, y, z). As the wheals

are spread out over the global curvature of the forearm, a Global Surface Removal stage is car-

ried out to obtain S0 and isolating the wheals. S0 includes bumps due to the wheals but also due

to skin structural changes caused by pores, follicles, wrinkles, and hair. Therefore, we detect

wheals from S0 and extract N surface patches referred to as S0wi
, where i 2 {1, 2, . . ., N}. For each

surface S0wi
, we set the origin at the center of mass to obtain S@wi

by means of Principal Compo-

nent Analysis (PCA) [30]. Finally, we employ a parametric fitting stage for diameter estimation.

D = [d1, d2, . . ., dN] and f denote the estimated diameters and the fitted surfaces, respectively.

Global surface removal

The Global Surface Removal stage in Fig 4 relies on a standard Gaussian-Laplacian pyramid

[31] to obtain S0. The proposed approach for this stage is illustrated in Fig 5. The input to this

Table 1. First validation experiment. Measured diameters for six spherical caps with a caliper (Reference measure-

ment) and the 3D imaging system (using camera 1 and camera 2). All values in millimeters.

Spherical cap Reference Camera 1

�x � s
Camera 2

�x � s
s1 9.08 ± 0.01 9.04 ± 0.05 9.02 ± 0.08

s2 7.42 ± 0.01 7.42 ± 0.03 7.53 ± 0.10

s3 5.65 ± 0.01 5.65 ± 0.11 5.65 ± 0.08

s4 8.88 ± 0.01 8.87 ± 0.07 8.85 ± 0.09

s5 7.42 ± 0.01 7.42 ± 0.09 7.48 ± 0.05

s6 5.50 ± 0.01 5.52 ± 0.09 5.53 ± 0.09

https://doi.org/10.1371/journal.pone.0223623.t001

Table 2. Second validation experiment. Measured height for three steps from a reference step R0, using the camera 1

and the camera 2. All values in millimeters.

Reference Camera 1

�x � s
Camera 2

�x � s
R0-R1 0.100 0.099 ± 0.011 0.106 ± 0.009

R0-R2 0.200 0.204 ± 0.011 0.204 ± 0.008

R0-R3 0.300 0.300 ± 0.012 0.304 ± 0.008

https://doi.org/10.1371/journal.pone.0223623.t002
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stage is the 3D surface of the patient’s arm S. A Gaussian pyramid decomposes S into subsets

of progressively lower resolution image versions Gℓ called levels. The original image G0 = S is

convolved by a Gaussian low pass filter. The resulting convolved image is down-sampled to

half the width and height as G1 = (G0
� g) # 2, where � denotes the convolution operator, g rep-

resents the Gaussian kernel function, and # 2 down-samples the image by a factor of 2. This

process is iterated n times for each level of the Gaussian pyramid until Gn has only a few pixels.

As shown in Fig 5, we use n = 7 for the surface decomposition.

The Laplacian pyramid is obtained by differencing the image at level ℓ and at its approxima-

tion at the following coarser scale of the Gaussian pyramid as Lℓ = Gℓ − (Gℓ+1 " 2) � h, where "

2 up-samples Gℓ+1 by doubling its size, and h is a smoothing kernel. Each level of the Laplacian

pyramid Lℓ represents details that distinguish successive levels of the Gaussian pyramid [32,

33]. Note in Fig 5, the two lower levels of the Laplacian pyramid, i.e., ℓ 2 {0, 1}, are associated

with noise. Similarly, the 3D shape of a wheal is mostly contained in levels ℓ 2 {2, 3, 4, 5}. The

highest level of the Laplacian pyramid is defined as Ln = Gn and represents the global curvature

of the arm. Finally, by zeroing out the levels not related to the 3D information of the wheals,

the Laplacian pyramid is collapsed to obtain S0, i.e., the 3D information after removing the

global surface, as shown in Fig 5. The wheals are now easily identifiable.

Wheal detection

The block diagram in Fig 6 illustrates the Wheal Detection stage. Since the wheals can be

broadly modeled as image blobs, this stage relies on a multi-scale Laplacian of Gaussian (LoG)

blob detector to automatically detect the wheals [34]. The input to the method is the surface S0.
We compute a scale-space representation from S0 through Laplacian of Gaussian filters with

successively increasing standard deviations σ. This scale-space representation may be regarded

Fig 5. The Global Surface Removal stage. S and S0 denote the 3D surface of the patient’s forearm and the surface after removing the global

curvature of the forearm, respectively. The other variables are intermediate outputs of every sub-stage; their meaning is given in the text.

https://doi.org/10.1371/journal.pone.0223623.g005
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as a 3D stack of filtered versions of S0. Then, a non-maxima suppression is carried out to detect

scale-space maxima. This sub-stage returns the coordinates at which the maxima were

detected. Finally, based on this information, we extract S0w.

Robust diameter estimation via parametric fitting

The purpose of this stage is to fit a parametric model that automatically estimates a clinically

relevant parameter that is readily interpretable and comparable to the standard reading of the

SPT. In other words, we are trying to mimic computationally what the physician does with a

ruler, but doing so in a way that produces accurate and consistent results every time the same

wheal is measured.

We define a general parametric fitting framework, and we test two parametric models

inspired by the two conventional wheal measurement procedures described in the introduc-

tion. With the parametric model 1, we attempt to reproduce the shape of the wheal with an

inverted Elliptical Paraboloid function, such that when evaluated at z = 0 yields an ellipse. The

major axis of the ellipse is adopted as the longest wheal diameter. With the parametric model

2, we approximate the longest wheal diameter as the longest dimension of a bounding box.

Bounding boxes of probabilistic nature or confidence score have been massively used for

object detection algorithms [35], and we believe this is a reasonable approach since wheals

often have irregular shapes. Furthermore, since wheals have been reported as having a rela-

tively flat top [19] and decreasing smoothly, we use a generalized version of the Gaussian

function called the super-Gaussian which has more degrees of freedom. The super-Gaussian

distribution has been used to model the intensity distribution of laser beams and determining

Fig 6. The Wheal Detection stage. S0 and S0w denote the surface after removing the global curvature of the forearm and the extracted surface

patches, respectively. We have included the texture image to highlight the correct detection of the wheals. This image has been digitally

sharpened to improve the visualization of the wheals.

https://doi.org/10.1371/journal.pone.0223623.g006

Robust automated reading of the skin prick test via 3D imaging and parametric surface fitting

PLOS ONE | https://doi.org/10.1371/journal.pone.0223623 October 21, 2019 8 / 18

https://doi.org/10.1371/journal.pone.0223623.g006
https://doi.org/10.1371/journal.pone.0223623


its width [36], or for determining the size of micro-aneurysms [37], and other distributions

[38].

The parametric fitting stage consists of three steps:

1. For each surface S0wi
, we set the origin at the center of mass to obtain S@wi

by means of PCA

[30].

2. From S@wi
, we fit either of the two parametric models to the 3D surface data. To incorporate

a rotational degree of freedom, the fitting is carried out in an (x0, y0)-coordinate system

rotated clockwise about an angle θ given by

x0

y0

" #

¼
cos y � sin y

sin y cos y

" # x

y

" #

: ð1Þ

The angle θ now becomes an additional parameter to be estimated as part of each model.

The parametric model optimization is solved with the Trust-region reflective non-linear

least-squares algorithm [39].

3. Once the optimization is complete, the obtained relevant parameter per model yields the

estimation of the wheal longest diameter.

Parametric model 1. The parametric model 1 is based on an inverted Elliptical Parabaloid

function, given by,

f1ðx
0

; y0 Þ ¼ �
1

c
ðx0 � x0

0
Þ

2

w2

x0
þ
ðy0 � y0

0
Þ

2

w2

y0

 !

þ b; ð2Þ

where wx0 and wy0 model the width of the wheal in x0- and y0-dimension, respectively; β is the

surface offset; and c is parameter modeling the wheal height. A mathematical expression for

the diameter of the wheal is obtained by evaluating f1 = 0, as follows,

ðx0 � x0
0
Þ

2

a2
þ
ðy0 � y0

0
Þ

2

b2

� �

¼ 1; ð3Þ

where a ¼
ffiffiffiffiffiffiffiffiffiffiffi
bcw2

x0

q
and b ¼

ffiffiffiffiffiffiffiffiffiffiffi
bcw2

y0

q
are the relevant parameters for this model. Finally, the

diameter di is computed as di = max{2a, 2b}, i.e., the longest diameter, as is customary for the

standard skin prick test reading [9].

Parametric model 2. In the parametric model 2, the skin wheals are modeled as 2D

Super-Gaussian functions, given by,

f2ðx
0; y0Þ ¼ g � exp �

ðx0 � x0
0
Þ

2

2s2
x0

� �bx0

�
ðy0 � y0

0
Þ

2

2s2
y0

 !by0
 !

; ð4Þ

where γ is the parameter modeling the wheal height; βx0 and βy0 model the wheal flatness in x0-
and y0-dimension, respectively; σx0 and σy0 are the relevant parameters modeling the width of

the wheal in x0- and y0-dimension, respectively. By fitting Eq (4) to S@wi
, the measured diameter

di is computed as di ¼ maxf4sx0i
; 4sy0i

g, which exhibits good agreement with the spatial distri-

bution of the wheal.
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Materials and methods

Subjects and tests

Subjects in the age of 18-60 years suspected of having an allergic reaction against inhalant aller-

gens were eligible for enrollment in the study. In total, 7 females and 2 males (mean age: 24.11,

range: 18–48 years) were enrolled. All the subjects had to sign the declaration of consent before

participating in the study. The study protocol was approved by the ethics committee of the

Universidad Tecnológica de Bolı́var, Colombia.

A physician performed the SPT on the subjects by applying an array of 6 allergens, negative

and positive control (Histamine, 10mg/ml) using a sterile disposable Multi-test (Multi-

TestRPC, Lincoln Diagnostics, Inc, Decatur, IL. USA) on the volar surface of the forearm.

Extracts of common allergens (Inmunotek, Madrid, Spain) were applied including: Blomia tro-
picalis, Dermatophagoides pteronyssinus, Dermatophagoides farinae, Cat dander, Periplaneta
americana, and Dog dander. A Positive control solution (Histamine), and a Negative control
solution (Diluent) were also applied to the subjects, for a total of 8 SPTs per subject. One sub-

ject was skin prick tested on the left and right forearms. Summing up, there were 80 SPTs in

the entire study.

After 15 minutes of the application of the SPT on the subjects, the physician measured the

skin reactions using the traditional ruler-based method. He reported the measurements of 50

wheals for all subjects. Next, the SPTs for all subjects were digitally registered using the 3D

imaging system, as shown in Fig 2, from which 61 wheals were detected. The difference

between the wheal measurements reported by the physician (50) and the wheals detected by

the 3D imaging system (61) resulted from small wheals that the physician discarded or failed

to measure due to their size. However, after the wheals where digitized in 3D, the physician

acknowledged them as true wheals because they appeared at points consistent with the prick

locations from the multi-test. We highlight that our system has sufficient depth sensitivity to

detect small wheals, which would otherwise be discarded through visual inspection.

Experiments and performance assessment

We designed two experiments to evaluate the suitability of the wheal measurement method

over a typical usage scenario. In the first experiment, we evaluate the accuracy and precision of

the methods compared to the conventional ruler-based measurement method. In the second

experiment, we assess the performance of the methods in terms of reproducibility, i.e., the

degree of agreement between several measurements produced under slightly different

conditions.

Experiment 1: Accuracy. To assess the accuracy of the proposed methods, we created

manual reference measurements from the 3D reconstruction of the wheals, a similar approach

previously used for the measurement of SPTs [8]. With the help of a custom-built user inter-

face (Fig 7), the physician measured the longest diameter of all SPT reactions. The reference

measurement for each wheal was obtained from the mean of three independent measure-

ments. The physician measured the longest diameter for each wheal with the aid of the viewing

window, a color-bar indicating height distribution, and a draggable and resizable line, as

shown in Fig 7. The wheals were measured sequentially in a loop until each wheal was mea-

sured three times. This procedure was carried out for the 61 SPT reactions.

To determine the agreement between the measured wheal diameters and the estimated

wheal diameters by the proposed methods, we computed the ratio between the two measure-

ments. A good agreement should yield a mean ratio close to 1. Also, we performed Pearson’s

two-sided test to evaluate the correlation. However, since correlation alone does not
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necessarily imply a good agreement between the two methods, we used Bland–Altman plots to

assess the agreement [40, 41]. More specifically, to analyze the mean difference �d between the

two methods and to determine the limits of agreement. The Bland–Altman plot displays the

difference between the two methods with respect to the best estimate of the true value, i.e., the

average of the two measurements. For normally distributed differences, we expect 95% of the

differences to lie between �d þ 1:96 SD and �d � 1:96 SD. Assuming the manual measurements

as the reference method, the limits of agreement can be used as a measure of the total error of

the proposed method [42]. In this case, the expected limits of agreement are in the order of ±1

mm. We carried out the same analysis for assessing the agreement between the reference mea-

sured wheal diameters and the ruler-based measurements made by the physician.

Experiment 2: Reproducibility. For this experiment, we asked one of the subjects to

place his forearm in 5 different positions across the FOV of the 3D imaging system. Each posi-

tion yields an independent measurement acquired under different conditions, mainly because

the skin is not a rigid object. Nevertheless, by moving the arm to a different position and

repeating the measurement provides the best evidence of the reproducibility and robustness of

the wheal measurement method in a real scenario. Depending on the location of the forearm

during acquisition, some wheals were imaged either from both cameras in the overlapping

region or only from camera 1 or camera 2. We computed the coefficient of variation (CV) for

each wheal from the estimated diameter for each forearm position. The CV is defined as the

ratio of the unbiased standard deviation (SD) and the arithmetic mean (CV = SD/mean ×100).

It provides statistical information on the dispersion of the measurements. Low CV values are

associated with high reproducibility of the wheal measurement method.

Results

Experiment 1

Accuracy of the proposed methods. The ratio of the estimated diameters by the two

parametric models was close to 1, exactly 0.99 ± 0.022 or (0.97, 1.01) with 99% confidence.

The CV of the computed ratios was 6.40%, which exhibits high reproducibility between the

Fig 7. Custom user interface for the manual reference measurement of the wheal diameter. Depth colorbar units in mm.

https://doi.org/10.1371/journal.pone.0223623.g007
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estimations from both methods. To illustrate the differences between the two parametric mod-

els, in Fig 8, we show the results on fitting the two models to two different shaped wheals. In

Case 1 of Fig 8, we show the results on fitting a regular-shaped wheal. The parametric model 1

produces an estimated diameter of dmax = 4.94 mm, whereas the parametric model 2 a dmax =

4.95 mm. Both models are in numerical agreement and slightly overestimate the reference

measurement of 4.47 mm. In Case 2 of Fig 8, for an irregular-shaped wheal, the estimated

diameters from both models differ by 0.44 mm. However, the result from parametric model 2

is closer to the reference. On the one hand, the parametric model 1 is forcing an elliptical

shape resulting in parts of the wheal lying outside the ellipse. On the other hand, the paramet-

ric model 2 tries to fit the 3D bounding box to the irregular-shaped wheal, which results in a

more accurate estimation of the longest diameter.

The ratio of the manual reference measurements and the estimated diameters by the

parametric model 1 was 0.93 ± 0.030 or (0.90, 0.96) with 99% confidence. The CV of the com-

puted ratios was 9.62%. Additionally, Pearson’s two-sided test shows that the manual refer-

ences and the estimated diameters were strongly correlated, with Pearson’s correlation

coefficient r = 0.986 [95% confidence interval, CI = 0.977-0.992, P� 0.001]. The regression

equation y = 0.913(95% CI = 0.873-0.953)x + 0.971(95% CI = 0.673-1.269) indicates a good

agreement between the two measurements. The Bland-Altman analysis confirms a good agree-

ment, with arithmetic mean �d ¼ � 0:398 mm and SD = ±0.603 mm. The 95% agreement limits

are [−1.58, 0.78] mm.

The ratio of the manual reference measurements and the estimated diameters by the

parametric model 2 was was 0.94 ± 0.029 or (0.91-0.97) with 99% confidence. The CV of the

computed ratios was 9.02%. The regression equation y = 0.945(95% CI = 0.907-0.984)x + 0.700

(95% CI = 0.414-0.986) and the Pearson’s correlation coefficient r = 0.988 [95% confidence

interval, CI = 0.980-0.993, P� 0.001] indicate a higher correlation than the obtained with the

parametric model 1. Additionally, the Bland-Altman analysis further confirms a good agree-

ment between both measurements with arithmetic mean �d ¼ � 0:339 mm and SD = ±0.537

mm. The mean difference �d is not zero, which implies that on average the proposed method

measures 0.330 mm more than the manual reference. However, this difference is largely due to

Fig 8. The results of fitting a regular-shaped wheal with (A) the parametric model 1 and (B) the parametric model 2. Both models are in

numerical agreement and slightly overestimate the reference measurement of 4.47 mm. For an irregular-shaped wheal the result from (C)

parametric model 1 and (D) parametric model 2 differ by 0.44 mm. However, the result from parametric model 2 results in a more accurate

estimation of the longest diameter.

https://doi.org/10.1371/journal.pone.0223623.g008

Robust automated reading of the skin prick test via 3D imaging and parametric surface fitting

PLOS ONE | https://doi.org/10.1371/journal.pone.0223623 October 21, 2019 12 / 18

https://doi.org/10.1371/journal.pone.0223623.g008
https://doi.org/10.1371/journal.pone.0223623


measurements of small wheals between 4 and 5 mm, where it is more likely that the methods

differ. Nevertheless, the mean difference is sufficiently small for the diagnostic purposes of the

SPT and the 95% agreement limits [−1.39, 0.71] mm are the closest to the desired ±1 mm.

The results from the correlation and Bland-Altman analyses show that both parametric

models produce statistically similar results. However, the parametric model 2 on average yields

diameters closer to the reference measurements (model 1: �d ¼ � 0:398 mm vs. model 2: �d ¼
� 0:339 mm) with narrower 95% limits of agreement (model 1: [−1.58, 0.78] mm vs. model 2:

[−1.39, 0.71] mm). For this reason, we consider the parametric model 2 as our candidate de

facto model for performing the wheal diameter estimation in our system, and the one chosen

for graphical representation. In Fig 9(A) and 9(B), we show the regression line and the Bland-

Altman plot between the manual reference measurements and estimated diameters by the

parametric model 2, respectively.

Accuracy of the ruler-based method. The ratio of the manual reference measurements

and the ruler-based measurements was 1.09 ± 0.132 or (0.96-1.22) with 99% confidence. The

regression line between the manual reference measurements and the ruler-based measure-

ments by the physician is shown in Fig 9(C). The regression equation y = 1.022(95%

Fig 9. (A) Scatter plot, and (B) Bland-Altman plot of measured wheal diameter vs. estimated wheal diameter by the parametric model 2. The

95% agreement limits are [−1.58, 0.78] mm, which are close to the desired ±1 mm. (C) Scatter plot, and (D) Bland-Altman plot of measured

wheal diameter vs. ruler-based measured diameter. Although, the mean difference is close to zero the 95% agreement limits are [−3.03, 2.91]

mm, which are three times larger than the desired ±1 mm.

https://doi.org/10.1371/journal.pone.0223623.g009
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CI = 0.899-1.146)x − 0.099(95% CI = -1.080-0.881) and the Pearson’s correlation coefficient

r = 0.923 [95% confidence interval, CI = 0.868-0.956, P� 0.001] indicate a lower correlation

than the obtained with the Parametric model 2. Additionally, in the Bland-Altman plot in Fig

9(D), we notice a wider distribution of the measurement differences compared to the proposed

method. The mean difference �d ¼ � 0:0604 mm and the SD = ± 1.516 mm. Although, the

mean difference is close to zero the 95% agreement limits are [−3.03, 2.91] mm, which are

three times larger than the desired ±1 mm.

Experiment 2

In Table 3, we show the estimated wheal diameters from the parametric model 2 for each of

the five forearm positions as detected from the two cameras of the 3D imaging system. The last

three columns show the mean, the SD, and the CV for each estimated wheal diameter. The

physician measurement of each wheal with the millimeter ruler is reported. SPT negative reac-

tions are marked with “—”. Missing values, such as those for unobserved wheals for certain

positions, are represented by “�”. Note that the proposed method achieves highly consistent

measurements. This observation is in agreement with the reported CV for each wheal. The

highest CV obtained was 5.24% (D. pteronyssinus), which accounts for an SD of 0.28 mm and

a mean diameter of 5.37 mm. The remaining CVs from the experiment were all below 5%,

thus showing the high reproducibility of the proposed method. These variations are undetect-

able to the human eye, further confirming that the proposed wheal measurement method

works reliably.

Moreover, the estimated wheal diameters are in overall agreement with the measurements

reported by the physician, considering that the resolution of the ruler is 1 mm. Note that for

two wheals (C. dander and N. control) the physician assigned a negative reaction (no wheal)

probably because the wheal was small. However, the 3D imaging system has a high depth-sen-

sitivity, and the wheals are correctly detected. It is not uncommon for false-positive reactions

to appear at the site of the negative control due to the trauma that the pricking device imparts

on the skin [43]. Moreover, we are certain of the detected wheals due to the regularly distrib-

uted prick test sites provided by the multi-test device, as shown in Fig 1(A). The measurement

discrepancies may be due to the ruler resolution and irregular wheal shapes that by visual

inspection could lead to significant variability.

Automated SPT assessment time

The total runtime of the automated reading of the SPT depends on the number of wheal reac-

tions. However, to give the reader an idea of the time the implemented system takes to scan

Table 3. Results of the skin prick test. Measurements are reported in millimeters.

Allergen Physician Measurement Camera 1 Camera 2 Mean SD CV[%]

(1) (2) (3) (4) (5) (1) (2) (3) (4) (5)

P. Americana 4 4.54 � 4.89 4.69 4.81 � 4.59 � � � 4.70 0.1466 3.12

D. farinae 11 10.19 � 10.58 10.14 10.08 10.39 10.59 � 10.20 10.14 10.29 0.2040 1.98

D. pteronyssinus 5 � � 5.44 � 5.86 5.11 5.06 5.47 5.16 5.48 5.37 0.2813 5.24

B. tropicalis 10 � � 6.89 � � 6.83 6.58 6.71 6.42 6.23 6.61 0.2523 3.82

C. dander — 4.36 � 4.69 4.61 4.25 4.39 � � 4.21 4.31 4.40 0.1810 4.11

D. dander — — — — — — — — — — — — — —

P. control 8 � � � � � 7.24 7.10 7.03 7.09 7.22 7.14 0.0902 1.26

N. control — � � � � � 4.51 � 4.50 4.53 4.67 4.55 0.0793 1.74

https://doi.org/10.1371/journal.pone.0223623.t003
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and process the 3D data, we report here the time it took for the example shown in Fig 4. In this

case, the subject’s arm had four wheals. Our system was controlled via a PC with Windows 7

(2.4 GHz i7 intel processor, 8 GB RAM) and MATLAB R2017. The overall processing includes

three stages: acquisition, 3D reconstruction, and robust diameter estimation. The acquisition

of the images takes around 500 ms. This time is the same for all acquisitions regardless of the

number of wheals. This stage is the only one in which the subject has to interact with the

device. The 3D reconstruction stage includes the fringe image processing via Fourier Trans-

form Profilometry and the phase-to-metric coordinate mapping. This stage takes around 1.5 s.

Finally, the robust estimation of the wheal diameters requires about 14 s. This stage includes

the pyramidal decomposition of the 3D reconstruction (* 0.061 s), the wheal detection

(* 4.56 s), and the parametric fitting (* 9.48 s). The total runtime was 16 s. While this time

could be further improved with parallel computing, we believe it is a reasonable processing

time compared to 1.5 minutes on average that the physician takes to assess the SPT manually.

However, further research is needed in a clinical setting to assess this aspect correctly. More-

over, if the physician requires a permanent record of the test, a traced copy of the wheals takes

several minutes to produce. Nevertheless, the primary purpose of our approach is to have a

digital record of the test with accurate and reliable wheal measurements.

Discussion

Characterizing a wheal from the SPT with a millimeter-graded ruler is error prone [8]. To

overcome this limitation the “scanned area” method was proposed [7], but it is too cumber-

some to be carried out in the clinical practice. The 3D reconstruction of the SPT enables an

unprecedented digital record of the test. Although, more importantly, the proposed models

deliver accurate and reproducible measurements, and agree sufficiently well with the manual

reference measurements from the physician. The CV between estimated diameters was 6.40%,

which exhibits high reproducibility between the estimations from both models. However, the

parametric model 2 on average yields diameters closer to the reference measurements (model

1: �d ¼ � 0:398 mm vs. model 2: �d ¼ � 0:339 mm) with narrower 95% limits of agreement

(model 1: [−1.58, 0.78] mm vs. model 2: [−1.39, 0.71] mm), which are close to the desired ±1

mm. The average difference of -0.330 mm is not altogether a problem since it could be reduced

through calibration to ensure an average difference closer to zero with training data. This flexi-

bility and degree of accuracy cannot be achieved with the conventional methods, or even with

the automated scanned area methods. Nevertheless, this recalibration procedure merits further

investigation. The agreement is with respect to manual reference measurements from a physi-

cian, but as we showed at the beginning of this paper, our system has sub-millimeter resolution

and accuracy, which make the automated reading of the SPT much more reliable. Moreover,

our proposed method for automatically and robustly estimating the wheal diameter produces

accurate and reproducible results with CVs of under 5%.

Conclusion

In this work, we showed that the wheals from the skin prick test could be digitized in 3D and

further processed to obtain accurate and reliable measurements. Our proposed method takes

the 3D surface of the forearm as input, removes the global surface to isolate the wheals, auto-

matically detects them, and performs a robust parametric fitting to produce an estimation

of the wheal longest diameter. We proposed two parametric models inspired by the two con-

ventional approaches for the diameter estimation in the assessment of the SPT. Through

experimental results, we showed that the proposed models provide accurate and reliable

measurements, and agree sufficiently well with manual measurements from the physician.
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Moreover, the proposed method delivers reproducible results even by moving the arm of a

subject through different positions.
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