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Abstract: The potential increased risk of immune-related adverse events (irAEs) post-influenza
vaccine is a concern in patients receiving immune checkpoint inhibitors (ICI). We conducted a
systematic review with meta-analysis of studies reporting the effects of influenza vaccination in
patients with cancer during ICI treatment. We searched five electronic databases until 01/2022. Two
authors independently selected studies, appraised their quality, and collected data. The primary
outcome was the determination of pooled irAE rates. Secondary outcomes included determination
of immunogenicity and influenza infection rates and cancer-related outcomes. Nineteen studies
(26 publications, n = 4705) were included; 89.5% were observational. Vaccinated patients reported
slighter lower rates of irAEs compared to unvaccinated patients (32% versus 41%, respectively).
Seroprotection for influenza type A was 78%–79%, and for type B was 75%. Influenza and irAE-
related death rates were similar between groups. The pooled proportion of participants reporting
a laboratory-confirmed infection was 2% (95% CI 0% to 6%), and influenza-like illness was 14%
(95% CI 2% to 32%). No differences were reported on the rates of laboratory-confirmed infection
between vaccinated and unvaccinated patients. Longer progression-free and overall survival was
also observed in vaccinated compared with unvaccinated patients. Current evidence suggests that
influenza vaccination is safe in patients receiving ICIs, does not increase the risk of irAEs, and may
improve survival.

Keywords: influenza vaccine; systematic review; meta-analysis; immune checkpoint inhibitors; cancer

1. Introduction

Immune checkpoint inhibitors (ICIs) are novel immunotherapy drugs that have rev-
olutionized cancer therapy by significantly improving the survival of people living with
certain malignancies [1–5]. These monoclonal antibodies block proteins that down-regulate
immune responses (e.g., cytotoxic T-lymphocyte antigen 4 [CTLA-4] and programmed cell
death 1 [PD-1]) or their ligands (e.g., programmed cell death ligand 1 [PD-L1]), resulting
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in activation of the immune system and enhancing recognition of tumor cells [6]. Despite
the remarkable benefits of ICIs, the overactivity of the immune system can precipitate
organ-specific or systemic immune-related adverse events (irAEs), which, if severe, may
lead to treatment delay or discontinuation [6].

Influenza is a vaccine-preventable respiratory illness associated globally with signifi-
cant morbidity and mortality [7]. During 2019–2020, influenza accounted for 18 million
health care provider visits, 400,000 hospitalizations, and 22,000 deaths in the US [8]. Im-
munocompromised patients, either due to their underlying disease or immunosuppressive
treatment, have an increased risk of influenza and its complications [9]. Specifically, in-
fluenza infection in cancer patients increases hospitalization and death rates four and ten
times, respectively, compared to the general population [10]. Vaccination against influenza
is safe, reduces mortality and improves infection-related outcomes among adults with
cancer [11,12]. Consequently, annual influenza vaccination is recommended in this at-risk
group [11].

The risk–benefit ratio of influenza vaccination in ICI-treated cancer patients is contro-
versial [13]. Some studies suggest that influenza immunization may not protect against
influenza and may overstimulate the immune system, increasing the risk of irAEs [14],
whereas other studies report that it is safe and effective [15]. However, despite this con-
troversy, influenza vaccination during ICI treatment is generally considered safe by most
providers. Until now, no pooled analyses have been performed that could firmly confirm
the safety of influenza vaccination in this population. Previous systematic reviews did not
include all relevant studies and only presented results narratively [13–15].

This systematic review with meta-analysis aims to evaluate both the safety and efficacy
of influenza vaccination in patients with cancer during treatment with ICIs.

2. Methods
2.1. Protocol and Registration

The systematic review was conducted following the methodological standards of
Cochrane, as described in the Cochrane Handbook [16]. Results are reported according
to the updated Preferred Reporting Items for Systematic Reviews and Meta-Analysis
(PRISMA) statement [17]. The protocol for this review was registered in the International
Prospective Register of Systematic Reviews (PROSPERO ID: CRD42020211946).

2.2. Eligibility Criteria

We included studies (randomized or not) evaluating the effects of the influenza vaccine
in patients receiving ICIs. Studies were excluded if they reported data only on labora-
tory/basic science parameters, were case reports or reviews, did not include original
research, were protocols or ongoing studies without results, had overlapping populations
(i.e., two studies reporting on the same registry with overlapping periods), or presented
data on patients who received pneumococcal and influenza vaccination, without sepa-
rate data on influenza vaccination. We considered studies published as full-text or in
abstract format.

2.3. Information Sources

A research librarian searched MEDLINE (through Ovid), EMBASE (through Ovid),
Web of Science, and Cochrane Library from inception through to 21 January 2022. Un-
published records were searched through ClinicalTrials.gov (accessed on 22 April 2022).
Additionally, reference lists from reviews on the topic and identified clinical trials were
searched for possible references not otherwise found.

2.4. Search

The search strategy for MEDLINE is provided in Table S1. We used a broad search
to capture all available evidence, including terms related to the influenza vaccine and
vaccination, cancer, and ICIs (i.e., ipilimumab, pembrolizumab, nivolumab, atezolizumab,
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durvalumab, avelumab, and cemiplimab). No restrictions (i.e., language, date, or other)
were imposed on the search strategy. Results were compiled using EndNoteX9 (Clarivate,
London, UK).

2.5. Study Selection

Two pairs of authors (VV and MG, AM and MAL-O) screened all citations by titles
and abstracts using the web app DistillerSR Version 2.35 (Evidence Partners, Ottawa, ON,
Canada). Relevant citations were subjected to full-text assessment. Reasons for exclusion
of the ineligible studies were independently recorded and disagreements were resolved
through discussion, or when needed, a third author was consulted (MLO).

2.6. Data Collection Process

Three authors independently collected the data (VV, MK, MAL-O) and a fourth author
cross-checked the data (AM). We used a Microsoft Excel spreadsheet to collect study
characteristics and outcome data from the included studies. If more than one publication
reported on the same study, the most recent results were used.

2.7. Data Items

Data collected included: (i) study characteristics (author, year of publication, country,
design, number of centres, follow up period, and funding), (ii) participants’ characteristics
(age, sex, and inclusion and exclusion criteria), (iii) intervention characteristics (description
of the intervention, description of the control group, and concomitant medications), and
(iv) outcome data (number of events and number of participants per treatment group for
dichotomous outcomes, mean and standard deviation, and the number of participants per
treatment group for continuous outcomes). Our primary outcome was the determination
of irAE rates. Additional outcomes collected included immunogenicity (i.e., seroprotection
and seroconversion rates), cases of influenza (i.e., influenza-like illness and laboratory-
confirmed infection) and cancer-related outcomes (e.g., overall survival, progression-free
survival, ICI treatment discontinuation, and death rates).

2.8. Risk of Bias in Individual Studies

Two authors (VV and MK) independently assessed the risk of bias for each study
using the Newcastle Ottawa Scale (NOS) for observational studies. Discrepancies were
resolved by consensus. The NOS is a validated tool that uses a scoring system to judge the
selection process of the study groups (up to 4 points), the comparability of the groups (up
to 2 points), and the ascertainment of exposure and outcome in the studies (up to 3 points).
A maximum score of 9 points can be obtained; higher score indicates lower level of bias.

2.9. Summary Measures

We calculated proportions with their corresponding 95% confidence intervals (CI) for
studies providing data on vaccinated patients. For controlled studies, dichotomous data
were analyzed as risk ratios (RR) with their corresponding 95% CI.

2.10. Synthesis of Results

Eligibility for synthesis. We summarised data in a meta-analysis if two or more studies
reported on the same outcome.

Preparing for synthesis. A random-effects model was used to pool studies. To pool
proportion rates, we used the Freeman–Tukey arcsine transformation to stabilize variances
and conduct a meta-analysis using inverse variance weights. The resulting estimates and
CI boundaries were back-transformed into proportions. For relative risks, we used the
Mantel–Haenszel approach. Data were analyzed as provided by authors; no attempts were
made to contact the study authors. When a study had more than one follow-up time point,
we used data from the longest follow-up available.
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Statistical and synthesis methods. All statistical tests performed were 2-sided and consid-
ered a p-value of less than 0.05 as statistically significant. Data analyses were conducted
using Review Manager software (version 5.4, Cochrane Collaboration, London, UK).

Methods to explore heterogeneity. We tested for heterogeneity with the chi-squared test
and quantified it using the I2 statistic, with a value of 50% or greater considered to represent
substantial heterogeneity. Subgroup analyses were performed to investigate whether study
design or characteristics of the study participants could explain the heterogeneity observed.

2.11. Risk of Bias across Studies

Publication bias was assessed and quantified using funnel plots and Egger’s test if
more than 10 studies reported on the primary outcome.

2.12. Certainty Assessment

A summary of findings table was created following the GRADE approach to rate the
quality of the evidence for the primary outcome [18].

3. Results
3.1. Study Selection

Flow of studies. Our research strategy identified 339 citations (Figure 1), and after
de-duplication, we screened the titles and abstracts of 141 unique citations. Of these,
38 publications were considered relevant to our study and their full text was retrieved.
After full-text review, 26 publications, 19 studies were found to be eligible and were
included for analysis [9,19–43].
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Excluded studies. Five studies were ongoing and were excluded (ClinicalTrials.gov (ac-
cessed on 22 April 2022) identifier: NCT04355806, NCT03061955, NCT03590808, NCT04697576,
NCT05116917). In addition, we excluded a case report describing Guillain–Barre syn-
drome post-influenza vaccination [44]. Gatti et al., 2021 [45], Weber et al., 2012 [5], and
Wuff-Burchfield et al., 2020 [46] were excluded due to more than 15% of patients receiving
influenza vaccinations simultaneously with other vaccinations (pneumococcal and/or

CT.gov
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tetanus). Shenk et al., 2017 [47] were excluded due to possible overlapping population
with Failing et al., 2020 [30]. Two reports, Bersanelli et al., 2020 and Buti et al., 2020 were
excluded due to only reporting COVID-19 outcomes [48,49].

3.2. Study Characteristics

Table 1 provides the characteristics of the included studies. All studies were observa-
tional (11 retrospective cohorts, 1 prospective cohort, 1 case-control, 4 case series) except for
two uncontrolled trials [32,35]. Ten studies were conducted in US centers, eight in European
institutions, and one in South Korea. Two publications [19,20] using the same registry re-
ported different outcomes: one provided vaccination rates in all patients reporting any type
of irAEs, and the other focused only on patients reporting immune-mediated myositis. Due
to the possibility of overlapping population, we considered both publications as one study.

3.3. Participants’ Characteristics

Table 2 shows the characteristics of the participants and the interventions reported
in the included studies. A total of 4705 participants were analyzed; of these, 2108 were
vaccinated. Mean age reported ranged from 54 to 67 years, and the percent of males
ranged from 42% to 83%. There were different ICIs considered for inclusion, which, in all
studies, were used for treating solid tumors. Vaccine administration timing also varied;
six studies did not report details [22,31,33,39,42,50]. In two uncontrolled trials, the vaccine
was administered on their first ICI dose on day 1 [32,35], while in the remaining studies,
vaccination occurred during ICI therapy, or 7 days to 6 months before starting ICI therapy.
Half of the studies reported the use of trivalent (two type A viruses, H1N1 and H3N2,
and one type B virus, B/Brisbane) or a quadrivalent inactivated virus vaccine (two type A
viruses, H1N1 and H3N2, and two type B viruses, B/Brisbane, and B/Phuker). One study
reported 10% of the participants in the vaccination group (45/429) receiving pneumococcal
or tetanus vaccination during the study [24].

3.4. Risk of Bias within Studies

Table S2 shows the assessment for each risk-of-bias item. In general, scores were
low, given that most studies were observational and eight were published only as ab-
stracts [28,29,31,33,38,39,42,50] (scores ranged from 3 to 9 out of a total of 9 possible).
Fourteen studies were judged to have a high risk of selection bias, given that the patients
were selected with specific cancer types and/or ICI, but did not include all types of ICIs
or cancers [26,28–33,35,37–39,42,43,50]. Only two studies included all ICIs and did not
exclude based on the cancer type or Eastern Cooperative Oncology Group (ECOG) per-
formance status [20,22]. Six studies did not include a comparison group and were not
evaluated for the comparability domain [9,26,28,32,33,35]. Eleven studies were judged
to have a high risk of outcome bias, because it was unclear what length of time was
used for the follow-up, or because follow-up time was not long enough for outcomes to
occur [9,28,29,32,33,35,37–39,42,50].

3.5. Proportion of irAEs

Seventeen studies evaluated this outcome [9,20,26,28–33,35,37–39,41–43,50] (Figure 2).
Thirty percent of the vaccinated people reported an irAE after vaccination (95% CI 22% to
40%, n = 1334, I2 = 90.6%). The irAEs reported in 12 of the 17 studies are shown in Table S3.
The most common irAEs in the vaccinated participants were gastric (e.g., hepatitis, colitis,
gastritis, transaminitis, and pancreatitis; 17 studies, range 0% to 22.2%), endocrine (e.g.,
hypophysitis, thyroiditis, adrenal insufficiency, hypo and hyperglycemia, diabetes, and
hypothyroidism; 13 studies, range 0% to 38.9%), pulmonary (e.g., pneumonitis; 10 studies,
range 2% to 25%), cutaneous (e.g., skin toxicity, dermatitis, psoriasis, or rash; 8 studies,
range 0% to 68%) and rheumatic (e.g., arthritis and myalgia; 7 studies, range 2% to 13%).
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Table 1. Characteristics of the included studies.

Author, Year Publication
Type Country # of Centres Design Sample

Size e Recruitment Period Follow-Up Primary
Outcome

Secondary
Outcomes Funding

Awadalla 2019 [19,20] a Full-text USA, MA 16 for cases,
1 for controls Case-control 641 a

02/2011–06/2017
and

11/2013–10/2018

290 days
for controls,

175 for cases b
Vaccine rates MACE rates None

Bayle 2020 [9] Full-text France 1 Case series 30 2018–2019 6 months
Seroprotection

rate,
seroconversion

irAEs rates None

Bersanelli 2018 [21,22] Full-text Italy 21 Retrospective
cohort 300 11/2016–05/2017 31 months b Influenza

syndrome rates
Lethality rates,

cancer outcomes c NR d

Bersanelli 2021 [23–25] Full-text Italy 82 Prospective
cohort 1188 10/2019–01/2020 16 months

Influenza
syndrome rates,
COVID-19 rates

Lethality rates,
cancer outcomes c FICOG

Chong 2019 [26,27] Full-text USA, NY 1 Case series 370 09/2014–03/2018 512 days b irAEs rates Infection rates NIH

De Toma 2019 [28] Abstract Italy 1 Case series 75 10/2018–01/2019 NR irAEs rates,
lethality rates

Influenza
syndrome rates NR

Erickson 2021 [29] Abstract USA, UT 1 Retrospective
cohort 176 2013–2018 NR irAEs rates, PFS,

overall survival
ICI treatment

discontinuation

Failing 2019 [30] a Full-text USA, MN 1 Retrospective
cohort 162 09/2014–08/2017 17.1 months b irAEs rates

Influenza
syndrome, ICI

treatment
discontinuation

NR d

Gopalakrishnan 2018 [31] Abstract USA, TN 1 Retrospective
cohort 534 2010–2017 NR Cancer

outcomes c

Influenza
syndrome rates,
lethality rates

NR

Gwynn 2019 [32] Full-text USA, GA 1 Uncontrolled
trial 24 10/2017–12/2017 60 days

Influenza
syndrome rates,

irAEs rates
Cytokine levels None

Kanaloupitis 2017 [33] Abstract USA, IL NR Case series 28 NR 90 days or more Immunoglobulin
levels, infection

Hospitalizations,
irAEs rates NR

Keam 2019 [34,35] Full-text South Korea 2 Uncontrolled
trial 136 09/2018–11/2018 6 months

Seroprotection
rates,

seroconversion
irAEs rates

GC Pharma, Seoul
National University
Hospital Research

Fund

Laubli 2018 [36,37,40] Full-text Switzerland 2 Retrospective
cohort 34 10/2015–11/2015

60 days
(37.5 months for
overall survival)

Cytokine levels
Seroprotection

rate,
seroconversion

irAEs rates,
radiographic
and clinical

response

Schoenmakers
Foundation,

Goldschmidt-
Jacobson Foundation,

Swiss National
Foundation

Munoz Burgos 2018 [50] Abstract Spain NR Retrospective
cohort 42 10/2017–01/2018 NR irAEs rates ICI treatment

discontinuation NR

Reddy 2019 [38] Abstract USA, MI NR Retrospective
cohort 117 2014–2019 NR irAEs rates ICI treatment

discontinuation NR

Roberts 2019 [39] Abstract USA, MA 1 Retrospective
cohort 285 01/2014–05/2018 NR irAEs rates NA NR
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Table 1. Cont.

Author, Year Publication
Type Country # of Centres Design Sample

Size e Recruitment Period Follow-Up Primary
Outcome

Secondary
Outcomes Funding

Valachis 2021 [41] Full-text Sweden 3 Retrospective
cohort 303 01/2016–05/2019 15 months b PFS, overall

survival irAEs rates None

Vutukuri 2021 [42] Abstract USA, LA 1 Retrospective
cohort 133 08/2015–08/2019 NR irAEs rates NA NR

Wijn 2018 [43] Full-text Netherlands 1 Retrospective
cohort 127

09/2015–01/2016
and

09/2016–01/2017

107 days for
cases, 118 days

for controls
irAEs rates

ICI treatment
discontinuation
Tumor response,

deaths

NR

ICI, immune checkpoint inhibitors; irAEs, immune-related adverse events; FICOG, Federation of Italian Cooperative Oncology Groups; MACE, major adverse cardiovascular events
(death, cardiac arrest, cardiogenic shock, hemodynamically significant complete heart block); NA, not applicable; NIH, National Institutes of Health; NR, not reported; PFS, progression
free survival; VAERS, Vaccine Adverse Event Reporting System (co-managed by the Centers for Disease Control and Prevention and the US Food and Drug Administration); VigiBase,
World Health Organization’s global Individual Case Safety Report database. a Potential overlap of study population (Massachusetts General Hospital). Allen et al. (2019) [19] reports on
patients with any irAEs and Awadalla et al. (2019) [19] reports on patients with myocarditis only. Allen et al. (2019) [19] has 540 patients with ICI; Awadalla et al. (2019) [19] has 101
cases with myocarditis and 201 ‘controls’ without myocarditis receiving ICI. We assumed that the 201 controls could include subjects in the abstract of Allen et al. (2019) [19]. b Median
follow-up time. c Lethality rates included influenza-related deaths, influenza-relapse rates, hospitalization due to influenza illness, bacterial superinfections, and influenza syndrome
duration. Cancer outcomes included objective response rate, disease control rate, time to treatment failure, and median overall survival. d Multiple conflicts of interest disclosed. e Total
number of patients reported in the publication regardless of the treatment received.

Table 2. Characteristics of the participants in the included studies.

Study Age, Mean
Years (SD) a Males ICIs Considered Cancer Type Vaccine

Timing
Cases Controls

Sample Description Sample Description

Case-Control

Awadalla 2019 [19,20] 65 (15.6) b 72.0%
Ipilimumab, pembrolizumab,

nivolumab, atezolizumab,
durvalumab, avelumab,

or combination

Advanced solid tumors
including melanoma,

NSCLC, SCCHN

Anytime from 6 months
prior to ICI to receiving

the vaccine during
ICI therapy

151 irAEs [19] 389 No irAEs [19]
101 Myocarditis [20] 201 No Myocarditis [20]

Case series and uncontrolled trials (prospective studies with 1 group)

Intervention group

Sample Description

Bayle 2020 [9] 63 (7.6) 83.0% Nivolumab, pem-
brolizumab, atezolizumab NSCLC, urothelial 7 (±2) days after the last

administration of ICI 30 1 standard dose of the French National Health
authorities-approved subcutaneous vaccine

Chong 2019 [26,27] 63 (13.8) 54.0% Ipilimumab, pembrolizumab,
nivolumab or combination

Lung, melanoma,
others (NS)

2 months before or after
ICI administration c 370 Trivalent or quadrivalent vaccines d at high or

standard doses

De Toma 2019 [28] NR NR
Pembrolizumab,
atelozolizumab,

nivolumab, durvalumab
NSCLC Before or within 30 days

after ICI start 21 NS inactivate influenza vaccine

Gwynn 2019 [32] 61 (11.8) 42.0%
Nivolumab, pembrolizumab,

atezolizumab, avelumab,
durvalumab

NSCLC, melanoma,
urothelial, RCC, colon,

hepatocellular,
head/neck

Vaccine administered in
patients with at least

1 cycle of ICI
24 0.5 mL intramuscular IIV Fluarix®

or Fluzone® quadrivalent
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Table 2. Cont.

Study Age, Mean
Years (SD) a Males ICIs Considered Cancer Type Vaccine

Timing
Cases Controls

Sample Description Sample Description

Intervention group

Sample Description
Kanaloupitis 2017 [33] NR NR Anti-PD-1 (NS) NR NR 28 Afluria (Seqirus)

Keam 2019 [34,35] 63 (9.0) 79.0% Nivolumab, pem-
brolizumab, atezolizumab

Lung, kidney,
melanoma, others e

Concomitantly on
day 1 of ICI 46

0.5 mL GCFLU quadrivalent pre-filled syringe injection;
GC Pharma f

Prospective and retrospective cohorts (studies with 2 groups)

Intervention group Control group

Sample Description Sample Description

Bersanelli 2018 [21,22] 64.3 (8.5) 69.0%

Ipilimumab, pembrolizumab,
nivolumab, atezolizumab,

avelumab, combinations, or
chemo-immunotherapy

NSCLC, RCC, melanoma,
head/neck, urothelial,

gastric, colon
NR 79 Trivalent or

quadrivalent vaccines d 221 No vaccine

Bersanelli 2020 [23–25] 65.6 (11.1) 69.9% NS
NSCLC, RCC,

melanoma, urothelial,
head & neck, other (NS)

During ICI therapy 429 g Trivalent or
quadrivalent vaccines 402 No vaccine

Erickson 2021 [29] 64.6 (NR) NR NR Metastatic melanoma
Anytime during the

observation (51% before
starting ICI)

90 NS 86 No vaccine

Failing 2019 [30] 63.5 (NR) 56.2% Pembrolizumab or combined
with chemo or radiation

NSCLC, melanoma,
other (NS)

Within 30 days before
initiation or during

ICI therapy
70

High dose trivalent,
quadrivalent, or NS

type vaccines
92 No vaccine

Gopalakrishnan 2018 [31] 54 (NR) 76.0% NS Lung, melanoma, GU,
breast, lymphoma NR 385 NS 149 No vaccine

Laubli 2018 [36,37,40] 62 (10.0) 69.6% Nivolumab, pembrolizumab NSCLC, RCC, melanoma
Median time from ICI

initiation to vaccination
was 74 days (range 4 to

457 days)

23

Trivalent
intramuscular

(Agrippal,
Novartis) vaccine h

11 Healthy controls

40 No vaccine h

Munoz Burgos 2018 [50] 64.2 (NR) 64.3% Nivolumab, pembrolizumab NSCLC, melanoma, RCC,
head/neck, breast NR 21 NS inactive

influenza vaccine 21 No vaccine

Reddy 2019 [38] NR NR Anti-PD-1 or PD-L1 (NS) NSCLC During ICI therapy 33
19 received

quadrivalent,
13 trivalent, 1 NS

53 Not vaccinated
during ICI

Roberts 2019 [39] NR NR NS NSCLC NR 45 NS influenza vaccine 240 No vaccine

Valachis 2021 [41] 67 (13) 56.4% Nivolumab, pem-
brolizumab, atezolizumab Melanoma, NSCLC, RCC 2 months before or after

ICI initiation 67 NS influenza vaccine 236 No vaccine
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Table 2. Cont.

Study Age, Mean
Years (SD) a Males ICIs Considered Cancer Type Vaccine

Timing
Cases Controls

Sample Description Sample Description

Intervention group Control group

Sample Description Sample Description

Vutukuri 2021 [42] NR NR Pembrolizumab, nivolumab,
atezolizumab, durvalumab NS lung, melanoma NR 53 NS influenza vaccine 80 No vaccine

Wijn 2018 [43] 62.6 (3.9) 48.0% Nivolumab NS advanced lung After starting ICI or
30 days before 42 NS influenza vaccine 85 No vaccine i

GU, genitourinary; ICI, immune checkpoint inhibitor; NR, not reported, NS, not specified; NSCLC, non-small cell lung cancer treatment; PD1, programmed death-1; PD-L1 programmed
death ligand-1; RCC, renal cell carcinoma; SC, subcutaneous; SCCHN, squamous-cell head and neck cancer. a Median and ranges were transformed into mean and standard deviations
(SDs) using previously validated methods [51]. b Data provided only for Awadalla et al. (2019) [19], not reported in Allen et al. (2019) [19]. c Cohort included patients who were ICI naïve
and patients who had been on ICI more than 65 days prior vaccination. d Trivalent (two type A viruses, H1N1 and H3N2, and one type B virus, B/Brisbane), quadrivalent (adding a type
B virus, B/Phuker) inactivated virus vaccine. e Bladder cancer (n = 1), adrenocortical carcinoma (n = 1), and sarcoma (n = 1), head & neck (n = 1). f 15 µg of purified viral antigen from the
strains A/Singapore/GP1908/2015 IVR-180 (H1N1), A/Singapore/INFIMH-16-0019/2016IVR-186(H3N2), B/Phuket/3073/2013 (Yamagata), and B/Maryland/15/2016 NYMC BX-69A
(Victoria). g 43 participants received pneumococcal and 2 tetanus vaccination together with influenza vaccine. h Influenza/A/H1N1/California/2009, Influenza/A/H3N2/Texas/2012,
Influenza B/Brisbane/2008. No vaccine group included only NSCLC patients undergoing ICI. i Patients who had been vaccinated more than 30 days before receiving the first dose of ICI
were included in the non-vaccine group.
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Figure 2. Proportion of patients receiving immune checkpoint inhibitors who were vaccinated and
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in patients who already had myocarditis due to the immune checkpoint inhibitor.

Ten studies compared the risk of developing any irAEs (regardless of severity) between
vaccinated and unvaccinated patients [20,29–31,38,39,41–43,50] (Figure 3). The irAEs rates
reported in the vaccinated group were slighter lower (32%) compared to those reported
in the unvaccinated group (41%), however, the difference was not significant (RR 0.90,
95% CI 0.72 to 1.1, n = 2485, I2 = 64.8%). In one case-control study [19], the odds ratio of
vaccination among patients with irAEs compared with those not reporting an irAE was
0.54 (95% 0.34 to 0.86, n = 540).

Median time from vaccination to irAEs was reported in four studies [26,32,36,43]. The
shortest median time was 37 days (range 14 to 60) and the longest was 3.2 months (range
0 to 10.6) (Weighted median time was 88.4 ± 189.2 days). The mean difference between
the vaccinated and unvaccinated groups in one study was 11.1 days (95% CI -38.6 to 16.5,
n = 127) [43].

3.6. Immunogenicity

Seroprotection [hemagglutination inhibition (HI) titer of 1:40 which is considered an
immunologic correlate corresponding to a 50% reduction in the risk of contracting influenza
in adults] for influenza type A was reported by three studies [9,35,36]. Rates were 79% for
H1N1 (95% CI 65% to 90%, n = 93, I2 = 52.9%) and 78% for H3N2 (95% CI 61% to 92%, n = 93,
I2 = 71.3%). Seroprotection for influenza type B was reported by two studies [35,36]. Pooled
rate was 75% (95% CI 64% to 85%, n = 69, I2 = 25%). One study reported seroconversion
in 57% of vaccinated patients (i.e., an increase in antibody titers from <1:10 to >1:40 or a
>4-fold increase from a prevaccination titer of more than 1:10) [35].
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3.7. Influenza Infection Rates

Eight studies provided data on this outcome [22,23,26,28,30–33]. After receiving the
vaccine 7 days to 6 months prior to or during ICI treatment, the pooled proportion of
participants reporting an influenza-positive laboratory test was 2% (95% CI 0% to 6%, three
studies [27,30,33], n = 154, I2 = 0%) (Figure 4). The proportion of participants reporting a
laboratory-confirmed infection ranged from 1% to 4%. Four studies included control group
data on this outcome [22,23,30,31]. This difference was not observed in the only controlled
study where influenza was confirmed with laboratory methods [30].

Five studies reported the proportion of participants with influenza-like symptoms
without laboratory confirmation of infection [22,23,28,31,32] (Figure 5). The pool rate of
patients reporting symptoms was 14% (95% CI 2% to 32%; n = 841, I2 = 94.5%). Although
only bordering on statistically significant, vaccinated patients were 1.4 times more likely
to develop influenza-like symptoms compared to unvaccinated patients (95% CI 1.0 to
1.9, n = 1846, I2 = 16%). Sixteen percent of those receiving the vaccine reported influenza
symptoms, compared to 10% of the unvaccinated participants, with an absolute risk of
6% (95% CI -3% to 16%). The number needed to harm was 26 (95% CI 11 to 976); that
is, the number of people that needed to be vaccinated in order for one person to have
influenza-like illness.

3.8. Cancer-Related Outcomes

Five studies reported data [22,29,31,36,41]. Among vaccinated patients, the median
overall survival ranged from 15.3 to 73.5 months. Two studies reported longer progression-
free survival for vaccinated patients compared with unvaccinated patients (pooled HR
0.67, 95% CI 0.52 to 0.87; n = 479, I2 = 0%) [29,41]. In another study of 300 patients [22], the
disease control rate (defined as the rate of stable diseases, partial and complete responses)
for vaccinated people age 71 or above was higher than for unvaccinated patients of the
same age group (published OR 2.8, 95% CI 1.0 to 7.8). Three studies reported data on
overall survival, which was longer in vaccinated participants than in those unvaccinated
(pooled HR 0.78, 95% CI 0.62 to 0.99; n = 779, I2 = 0%) [22,29,41].
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ICI treatment discontinuation was reported in five studies [29,30,38,43,50]. No statisti-
cally significant differences were observed between vaccinated and unvaccinated patients
(RR 1.2, 95% CI 0.74 to 1.8, n = 516, I2 = 65%. The median time to treatment failure re-
ported in one study for vaccinated patients receiving ICI for non-small-cell lung cancer was
10.2 months (95% CI 6.8 to 13.6) [22].

Six studies provided data on death rates [22,25,28,30,41,43]. Influenza-related deaths
were reported in two studies [22,25], irAE-related deaths in two studies [28,41], and cancer-
related deaths in another two studies. Overall, death rates were similar between groups,
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except for cancer-related deaths, among which patients in the vaccinated group had higher
mortality rates (RR for influenza-related 0.18, 95% CI 0.01 to 3.8, n = 400, I2 = 0%; RR for
irAE-related 1.6, 95% CI 0.08 to 32.1; and RR for cancer-related 1.6, 95 CI 1.0 to 2.6).

3.9. Reporting Biases and Certainty of Evidence

The reporting bias assessment was performed in the primary outcome (i.e., patients
receiving ICIs who were vaccinated and reported an immune-related adverse event). There
was no evidence of small-study effects (Egger test p = 0.55) in the funnel plot (Figure S1).
Table S4 shows the certainty assessment.

4. Discussion

In this systematic review with meta-analyses, we evaluated the risk of irAEs post-
influenza vaccine. We found that the rates of irAEs were similar between vaccinated and
unvaccinated patients, and the most frequently reported events were endocrine events,
pneumonitis, rash, colitis, and arthritis. These data indicate that influenza vaccination
does not substantially increase risk of irAEs and may be associated with lower laboratory-
confirmed infections in cancer patients treated with ICIs.

Our meta-analysis found seroprotection and seroconversion rates similar to those
observed in a low-risk target population (60% to 100%) [52]. Further, the proportion
of participants reporting an influenza infection after vaccination differed between those
studies reporting infection without laboratory confirmation and those with laboratory
confirmation, with lower rates observed for those in the laboratory-confirmed group.
When compared with unvaccinated patients, although there was a small absolute risk
increase (6%) in the vaccinated group of developing influenza-like symptoms, this was
below the estimated median incidence rate of 8% for influenza in the US [53]. We also
evaluated cancer-related outcomes, and observed longer survival in vaccinated compared
with unvaccinated patients, with the rates of ICI treatment discontinuation similar among
groups. These encouraging results indicate that influenza vaccination is relatively safe for
patients and does not interfere with ICI treatment.

A previous study hypothesized that vaccination in combination with ICI could mediate
infiltration of central memory T cells into the tissues leading to an enhanced immune
response [36]. An alternative hypothesis is that the increased risk may result from the cross-
reactivity of T cells invigorated by influenza vaccination proteins [54]. These hypotheses
combined with irAE rates above 40% reported in observational studies [9,29,36,38,41,50],
led other authors to summarize the data and evaluate the efficacy and safety of influenza
vaccination in patients with cancer during treatment with ICIs. To date, three systematic
reviews have summarized published data on the topic [13–15]. Two studies provided only a
narrative summary without any attempt to pool results. Of these, Bersanelli et al. described
nine studies in a tabular format and concluded that there was controversial evidence
and additional studies were needed [13]. Desage et al. used evidence from 10 studies to
determine whether influenza vaccination induced serological protection and increased
irAEs [14]. The results of each included study were summarized in a paragraph without
interpretation or concluding remarks. Spagnolo et al. included 10 studies, and the authors
provided descriptive statistics to pool data for irAE rates without using meta-analytic
methodology for binomial data [15]. Data on efficacy outcomes were not pooled. Our study
is the first systematic review with meta-analysis with data from 19 studies. We summarized
and pooled data on safety and efficacy outcomes, including cancer-related outcomes, which
have not been summarized previously.

There are important limitations to consider. Although we used a systematic and
best-practice approach to coalesce the available evidence, more research from studies at
low risk of bias is warranted, given that the confidence in our estimates of effects is low due
to the non-randomized nature of the studies included, their potential for high risk of bias,
and the inconsistency observed. However, for ethical reasons, no randomized controlled
trials have been conducted to evaluate the benefits and harms of influenza vaccination
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in patients receiving ICIs. Thus, our results, despite being based on uncontrolled trials
and observational studies, further the understanding of clinical outcomes in the absence
of randomized trials [18]. In assessing survival, there are concerns regarding the ability
to isolate the effects of vaccination from other factors that impact survival in patients
receiving ICI treatment, given the absence of information on the distribution of key factors
by vaccination status, such as tumor type, gender, and clinical co-factors. Differences in
cancer control and progression may exist based on age for cancer patients treated with ICIs,
as reported in one study [22]. We note that the mean age represented in the meta-analysis
ranged from 54–67 years. Therefore, the examined studies included patients who were of
relatively young age. Future studies should aim to determine the association of influenza
vaccination on various clinical outcomes in elderly cancer patients.

In conclusion, the described findings provide encouraging evidence that influenza
vaccination is safe in patients receiving ICI. The incidence of irAEs was similar regardless
of vaccination status. Regarding efficacy, although seroprotection rates were similar to
those observed in the cancer population not receiving ICI, and the data also support an
improvement in survival in vaccinated patients, future larger studies of high quality are
needed to corroborate the efficacy of influenza vaccination in lowering the incidence of
laboratory-confirmed infections in patients with cancer receiving ICI.
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Figure S1: Funnel plot for primary outcome; Table S4: Summary of findings table.
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