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Abstract

Background: Defects in genes involved in mitochondrial fatty-acid oxidation (mFAO) reduce the ability of patients
to cope with metabolic challenges. mFAO enzymes accept multiple substrates of different chain length, leading to
molecular competition among the substrates. Here, we combined computational modeling with quantitative mouse
and patient data to investigate whether substrate competition affects pathway robustness in mFAO disorders.

Results: First, we used comprehensive biochemical analyses of wild-type mice and mice deficient for medium-chain
acyl-CoA dehydrogenase (MCAD) to parameterize a detailed computational model of mFAO. Model simulations
predicted that MCAD deficiency would have no effect on the pathway flux at low concentrations of the mFAO substrate
palmitoyl-CoA. However, high concentrations of palmitoyl-CoA would induce a decline in flux and an accumulation
of intermediate metabolites. We proved computationally that the predicted overload behavior was due to substrate
competition in the pathway. Second, to study the clinical relevance of this mechanism, we used patients’ metabolite
profiles and generated a humanized version of the computational model. While molecular competition did not affect
the plasma metabolite profiles during MCAD deficiency, it was a key factor in explaining the characteristic acylcarnitine
profiles of multiple acyl-CoA dehydrogenase deficient patients. The patient-specific computational models allowed us to
predict the severity of the disease phenotype, providing a proof of principle for the systems medicine approach.

Conclusion: We conclude that substrate competition is at the basis of the physiology seen in patients with mFAO
disorders, a finding that may explain why these patients run a risk of a life-threatening metabolic catastrophe.

Keywords: Medium-chain acyl-CoA dehydrogenase deficiency, Multiple acyl-CoA dehydrogenase deficiency,
Mitochondrial fatty-acid oxidation, Systems medicine, Kinetic modeling

Background
Mitochondrial fatty-acid oxidation (mFAO) is essential
for providing energy during periods of fasting or other
metabolic stress. In humans, more than 15 different
inborn errors of metabolism have been described in this
pathway. These genetic disorders affect organs such as
the liver, heart and skeletal muscle [1], and together they

constitute a large group of individually rare diseases [2].
The fact that affected patients show genetic and pheno-
typic heterogeneity calls for treatment tailored to the in-
dividual, i.e., personalized medicine. Some patients, such
as those with medium acyl-CoA dehydrogenase (MCAD)
deficiency, have few or no symptoms under normal cir-
cumstances [3–5], these patients can oxidize fatty acids
completely and at a normal rate [6]. This may be be-
cause the role of MCAD is taken over by isoenzymes
such as short-chain acyl-CoA dehydrogenase (SCAD)
and very-long-chain acyl-CoA dehydrogenase (VLCAD).
In contrast, other mFAO disorders have a severe neo-
natal phenotype, as is the case in VLCAD deficiency and
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in severe cases of multiple acyl-CoA dehydrogenase defi-
ciency (MADD).
The clinical manifestations of mFAO disorders can be

aggravated by fasting, exposure to cold, or exercise [7, 8].
Such circumstances may then lead to sudden death, bio-
chemically associated with hypoketotic hypoglycemia,
even in patients with the apparently mild MCAD defi-
ciency. Thus, the deficiency of a single enzyme that is not
essential under normal circumstances reduces the robust-
ness of the metabolic network, rendering it less able to
cope with metabolic challenges. The mechanism that un-
derlies this sudden crisis is not well understood. A recent
study in mice lacking the long-chain acyl-CoA dehydro-
genase enzyme (Lcad–/–) showed low blood-glucose levels
during fasting to be related to the supply of amino-acid
precursors for hepatic glucose production [9]. Yet, the link
between this shortage of amino acids and the primary en-
zyme defect in mFAO is still unclear. This illustrates that,
although the enzymes involved in mFAO are well known,
our understanding of the regulation of this pathway is far
from complete. Further insights into mFAO functioning
will not only help to improve the treatment of patients
with inherited mFAO disorders, but should also contrib-
ute to a better understanding of how the mFAO pathway
is involved in multifactorial and age-related diseases, such
as obesity and type 2 diabetes [10].
The metabolism of a healthy individual is exceptionally

robust with respect to perturbations in genetics, nutri-
tion and workload, in the sense that key metabolic func-
tions are normally unaffected by such perturbations [11].
In particular, the levels of blood glucose and cellular
ATP are maintained within a narrow range. This is why
mammals shift from carbohydrate oxidation to mFAO
during fasting. The oxidation of fatty acids then provides
a reliable supply of ATP for glucose production by the
liver. This key function of the liver often fails unpredict-
ably in mFAO disorders, leading to a sudden drop in
glucose levels, triggered, for example, by fasting during
intercurrent infections [12]. This sensitivity of individ-
uals with mFAO disorders to external perturbations
means that this group of diseases is particularly suitable
for the study of metabolic robustness.
Since robustness is a dynamic property of a metabolic

network, its description cannot rely exclusively on a
static representation of data, but requires kinetic compu-
tational modeling. Like polymers, fatty acids are de-
graded in repetitive cycles and until now the systemic
implications of such a pathway structure have hardly
been explored. The pathway of mFAO in the liver is il-
lustrated schematically in Fig. 1a. In each oxidation
cycle, an acyl-CoA ester (the activated form of a fatty
acid) is shortened by two carbon atoms and the product
becomes the substrate for the next cycle. In rodents, the
first step in mFAO is catalyzed by four isoenzymes

(VLCAD, LCAD, MCAD and SCAD), which together
cover CoA esters with chain lengths ranging from 4 to
16 carbon atoms. Substrates of different chain lengths
therefore compete for common enzymes. Since each en-
zyme molecule can only bind one substrate molecule at
a time, the alternative substrates for the same enzyme
act as competitive inhibitors. MCAD, for instance, cata-
lyzes the dehydrogenation of acyl-CoA esters of 4 to 12
carbon atoms (Fig. 1a). The dehydrogenation of any of
these substrates is competitively inhibited by binding of
all the other substrates and products. This principle ap-
plies to all enzymes in the pathway, generating a large
number of feedforward and feedback inhibition loops in
the pathway. The absence of the one enzyme–one reac-
tion relationship and the resulting substrate competition
has a major impact on the systemic properties of lipid
and polymer metabolism in general. The mFAO is not
the only cellular pathway where substrate competition
takes place; this is a general feature of lipid metabolism
[13]. Moreover, mRNA species are also known to compete
for ribosomes and enzymes in both lipid and glycogen me-
tabolism are known to typically accept substrates of vari-
ous chain lengths and branching types. The few studies
that have investigated polymer metabolism quantitatively –
by applying thermodynamics, kinetic modeling, and con-
trol analysis – have related it to enhanced robustness on
the one hand [14] as well as ultra-sensitivity to environ-
mental challenges on the other [15, 16].
In this study, we took a systems-biology approach to

investigate whether and how substrate competition is
involved in the characteristic features of mFAO disorders,
and particularly in the loss of metabolic robustness in
these patients. We made use of our recently published dy-
namic computational model of mFAO, which describes
substrate competition in terms of detailed kinetic equa-
tions for each of the reactions of Fig. 1a [16]. This model
is based on an extensive collection of enzyme kinetic data
from purified enzymes. As independent validation, we
showed that measured time courses of acylcarnitines
could be predicted quite accurately by model simulations
[16]. We combined this computational model with the
MCAD knockout (KO) mouse, which is reported to
mimic characteristics typical of MCAD-deficient patients
such as elevated serum levels of medium-chain acylcarni-
tines, cold intolerance after fasting and high neonatal mor-
tality [17]. We also made use of diagnostic acylcarnitine
profiles of patients to study the physiological and clinical
relevance of substrate competition. For reasons that will
be explained later, the profiles of MADD patients proved
particularly insightful.
Here we provide evidence that (1) substrate competi-

tion in mFAO – a mechanism inherent to the repetitive
metabolism of fatty acids – renders the pathway vulner-
able to substrate overload, particularly in the absence of
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Fig. 1 Modeling of mFAO in wild-type and MCAD-knockout mouse liver. a Schematic representation of fatty acid β-oxidation. Reactions in black are part
of the computational model, reactions in grey are not in the model, but are discussed in the text and dashed arrows are sink reactions. b Examples of
rate equations used for the model with and without competition. CPT1 carnitine palmitoyltransferase 1, CACT carnitine acylcarnitine translocase, CPT2
carnitine palmitoyltransferase 2, SCAD short-chain acyl-CoA dehydrogenase, MCAD medium-chain acyl-CoA dehydrogenase, LCAD long-chain acyl-CoA
dehydrogenase (not present in human mFAO (grey)), VLCAD very-long-chain acyl-CoA dehydrogenase, CROT crotonase, M/SCHAD medium/short-chain
hydroxyacyl-CoA dehydrogenase, MCKAT medium-chain ketoacyl-CoA thiolase, MTP mitochondrial trifunctional protein, ETF electron transfer flavoprotein
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MCAD; (2) this substrate competition is physiologically
relevant since it is a key factor in explaining the patient-
specific acylcarnitine profiles of MADD patients; and (3)
it is clinically relevant since a computational model that
included substrate competition was able to explain the
severity of the patients’ symptoms from their acylcarni-
tine profiles, while a similar model without competition
could not.

Results
To explore the mechanism underlying loss of metabolic
robustness in MCAD deficiency, our first aim was to
adapt the existing computational model of mFAO in rat
liver. To this end, we collected quantitative data from
the livers of MCAD-KO and wild-type mice.

MCAD-KO mouse characteristics
The MCAD-KO mouse created by Tolwani et al. [17] was
backcrossed from a mixed 129P2xC57BL6/J background to
a C57BL6/J background. The basic physiological character-
istics of the newly obtained strain can be found in
Additional file 1: Table S1 and Additional file 2:
Figure S2A–E. The residual enzyme activity in liver ho-
mogenates of MCAD-KO mice, as measured with a clin-
ical diagnostic assay for MCAD, was 9.3% of the wild-type
activity (Additional file 2: Figure S2D). The activity was
measured with phenylpropionyl-CoA as a supposedly
MCAD-specific substrate. This percentage is similar to
that found previously in the 129P2xC57BL6/J MCAD-KO
strain [18]. Most likely, the residual activity in the KO
mice originates from peroxisomal phenylpropionyl-CoA
oxidation rather than from MCAD itself [19]. Bloodspots
of MCAD-KO mice contained elevated medium-chain
acylcarnitine levels (C6-C10 and C10:1) and an increased
ratio of C8/C10 acylcarnitines (Additional file 2:
Figure S2A, B). This metabolic profile is typical of MCAD-
KO mice [17] and similar to that of patient profiles [20].

Knockout of MCAD is not compensated for by increased
capacity of other enzymes
Subsequently, we studied whether the knockout of MCAD
was compensated for by altered expression of genes en-
coding other mFAO enzymes. As expected, MCAD was
below the detection limit in the liver, both at mRNA and
protein level. However, neither real-time PCR (Additional
file 2: Figure S2F) nor quantitative, targeted proteomics
(Fig. 2a) showed any significant differences between
knockout and wild-type mice for any of the other tran-
scripts or proteins involved in mFAO. Notably, the con-
centrations of the other acyl-CoA dehydrogenases (SCAD,
LCAD and VLCAD) – which have overlapping substrate
specificity with MCAD – were unchanged. Moreover, the
enzyme activities of crotonase (CROT), medium/short-
chain hydroxyacyl-CoA dehydrogenase (M/SCHAD) and

medium-chain ketoacyl-CoA thiolase (MCKAT) for C4
substrates did not differ significantly between mitochon-
drial homogenates of MCAD-KO and wild-type mice
(Additional file 2: Figure S2G).
We measured the total acyl-CoA dehydrogenase

(ACAD) activity for substrates over the entire range of
chain lengths from C4 to C16. In the MCAD-KO, enzyme
activity was decreased for the short- and medium-chain
acyl-CoAs (C4–C10), but unchanged for the longer chain
lengths (Fig. 2b). Since C4–C10 acylcarnitines are sub-
strates for MCAD, this result is consistent with loss of
MCAD activity without compensation by covalent modifi-
cations of the other ACAD enzymes. Indeed, by deconvo-
lution of the total acyl-CoA dehydrogenase activities for
the various chain lengths, we could fit the specificity for
the chain length as well as the Vmax values of SCAD,
LCAD and VLCAD to a single parameter set for MCAD-
KO and wild-type mice (Additional file 3: Text S3).
Overall, the protein concentrations of mFAO enzymes

measured did not suggest compensation for the knock-
out of MCAD activity, nor did we find an indication for
compensation through changes in their specific activity.

Conversion of the dynamic mFAO model from rat to
mouse liver
To convert our previously constructed dynamic model
of mFAO in rat liver [16] into one of mouse liver, we
completed the above-described dataset by measuring the
acylcarnitine concentrations with chain lengths C4–C16
over time. At time zero, palmitoylcarnitine or octanoyl-
carnitine was given to isolated liver mitochondria of
wild-type and MCAD-KO mice (Fig. 2c–f, symbols). The
knockout of MCAD led to increased levels of decanoyl-
(C10), octanoyl- (C8) and hexanoylcarnitine (C6) and a
reduced rate of octanoylcarnitine consumption.
The above-measured data on enzyme kinetics, includ-

ing the parameter set for the acyl-CoA dehydrogenases,
were directly incorporated into the model. Subsequently,
additional parameter values were fitted to the acylcarni-
tine time courses. Since models with complex biochem-
ical rate equations are typically underdetermined [21],
we only fitted the parameters to which the acylcarnitine
concentrations were most sensitive (see Methods and
Additional file 4: Table S4 for rationale and estimated
parameter values). The fitted model (Additional file 5:
Model S5) described the experimental data accurately
(Fig. 2c–f; symbols: experimental data; lines: model
simulations).
The fluxes served as validation data, as they had not

been used for parameter fitting. When expressed relative
to wild-type, the oxidation of palmitoylcarnitine (C16)
was not significantly reduced in the MCAD-KO, both in
experiment and simulation (Fig. 2g). This was due to the
fact that this flux was hardly controlled by MCAD at the
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timescale of the experiment (25 minutes) and the role of
MCAD was effectively taken over by the other ACADs
(Additional file 6: Table S6). The oxidation of octanoyl-
carnitine (C8), however, which directly feeds octanoyl-
CoA into MCAD, was substantially reduced in the
MCAD-KO compared to the wild-type, in agreement
with the higher flux control by MCAD under this condi-
tion (Additional file 6: Table S6).
In accordance with the biochemistry depicted in

Fig. 1a, each enzyme converted multiple substrates and
each substrate was distributed over multiple enzymes
(Fig. 2h). In the absence of MCAD, SCAD and LCAD
took over the conversion of C6–C10 acyl-CoAs (Fig. 2i).
This indicates that the characteristic properties of the

mFAO pathway – redundancy of enzymes and competi-
tion among substrates for an enzyme – were preserved
in the model simulations.

MCAD is required in the mFAO pathway to protect
against substrate overload
Next, we studied the effect of fasting on the mFAO
pathway in wild-type and MCAD-KO mice by computa-
tional modeling. Free fatty acid levels are known to
increase upon fasting [22] and we mimicked this by in-
creasing the palmitoyl-CoA concentration. Palmitoyl-CoA
is the activated form of the fatty acid palmitate (C16) and
it is the first substrate in the computational model. In the
wild-type model, the mFAO rate approached a maximum

Fig. 2 Experimental and simulation data of the mFAO model of wild-type and MCAD-knockout (KO) mouse liver. a Concentrations of mFAO enzymes per
mg mitochondrial protein in wild-type (orange bars) and MCAD-KO (purple bars) mouse livers. Data represents median, the box extends from the 25th to
75th percentile and the whiskers extend from the minimum to the maximum value (n = 6). b Total acyl-CoA dehydrogenase (ACAD) activity for substrates
of varying carbon chain lengths per mg mitochondrial protein measured in homogenate of isolated mitochondria in wild-type (orange) and MCAD-KO
(purple) mouse livers. Data represents median and each individual data point (n = 4). Panels c–f show the dynamic profiles of the Cn-acylcarnitines upon
addition of the substrate palmitoylcarnitine (C16; panel c and d) and octanoylcarnitine (C8; panel e and f) to isolated mitochondria of wild-type livers
(panel c and e) and MCAD-KO livers (panel d and f) in the presence of the uncoupler FCCP. Symbols represent the data measured (data represents
mean ± SEM (n = 6)) and lines represent the simulation after parameter estimation. The color scheme indicated in panel d is similar for panels c–f.
Panel g shows the relative change in maximum oxidation rate (flux) normalized to the rate of the wild-type, in experiments (oxygen consumption rate
measured during 25 minutes in the presence of FCCP; data represents mean ± SEM (n = 6)) and in dynamic simulations (rate of NADH production by
mFAO simulated over the same time period). Panels h and i: Distribution of steady-state flux across the various chain lengths for the mFAO enzymes
simulated in the computational model of mouse liver mFAO, for wild-type (panel h) and MCAD-KO (panel i). *P < 0.05, **P < 0.01
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at saturating substrate concentrations (Fig. 3a). When we
simulated the MCAD-KO in the model, by setting the
Vmax value of MCAD to 0, the flux declined steeply when
palmitoyl-CoA exceeded 20 μM (Fig. 3a). This coincided
with a steep decrease in free coenzyme A (CoASH)
(Fig. 3c) due to its sequestration in accumulating CoA
esters (Additional file 7: Figure S7A). CoASH is a sub-
strate for the reactions catalyzed by the enzymes carnitine
palmitoyltransferase 2 (CPT2), mitochondrial trifunctional
protein and MCKAT, and is therefore essential for main-
taining mFAO flux. Previously, we have shown that accu-
mulation of CoA esters as such does not necessarily
inhibit mFAO flux [16]. It would appear that, when the
mFAO pathway became overloaded with substrate, CoA
esters accumulated, which caused a steep decline of
CoASH and rendered the pathway incapable of maintain-
ing its flux.
We then explored why the flux declined so steeply in

the MCAD-KO mouse, while the wild-type was pro-
tected against substrate overload. We hypothesized that
this was caused by the competition among CoA esters of
different chain lengths for a limited set of acyl-CoA de-
hydrogenases. This competition would become more in-
tense in the MCAD-KO, where the MCAD substrates
have to compete with other acyl-CoAs for the remaining
enzymes SCAD, LCAD and VLCAD. To test this hy-
pothesis, we adapted the model. In the original model,

each reaction was competitively inhibited by substrates
and products of different chain lengths (Fig. 1b). We
constructed an alternative model version in which each
enzyme pool was split into distinct smaller pools, each
dedicated to the conversion of a particular chain length
and not affected by competing substrates (as in [16]; see
Fig. 1b and Methods for a mathematical description;
Additional file 8: Model S8). When competition was
thus removed, mFAO flux no longer decreased at high
palmitoyl-CoA concentrations, nor did we observe the
steep decline in CoASH concentration (Fig. 3b, d;
Additional file 7: Figure S7B). This proves that, under
these conditions in the model, MCAD-KO mitochondria
have sufficient catalytic capacity to oxidize fatty acids at
the same maximum rate as wild-type mitochondria. In
the absence of MCAD, it appeared that, instead, molecu-
lar competition – an intrinsic biochemical feature of the
pathway topology – was the cause of the pathway’s sus-
ceptibility to becoming overloaded and losing its capabil-
ity to maintain flux at high substrate concentrations.

The relevance of substrate competition to physiology and
clinical outcome
Subsequently, we asked whether substrate competition is
of any physiological or clinical relevance. In patients
suffering from mFAO deficiencies, serum acylcarnitine
profiles are well documented, since they form the basis

Fig. 3 Steady-state rates and CoASH concentrations at increasing concentrations of the substrate palmitoyl-CoA for wild-type (solid orange line)
and MCAD-KO (dashed purple line). a Steady-state palmitoyl-CoA oxidation rate in the mouse liver model with competition. b Steady-state
palmitoyl-CoA oxidation rate in the mouse liver model without competition. c Steady-state CoASH concentration in the mouse liver model with
competition. d Steady-state CoASH concentration in the mouse liver model without competition
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for diagnosis of the disease and the patient’s metabolic
status. They are often considered to be an approxima-
tion of mitochondrial acyl-CoA levels, since accumu-
lated CoA esters are converted into carnitine esters by
CPT2 (Fig. 1a) and transported into the blood. We
therefore studied the acylcarnitine profiles in the compe-
tition and non-competition models in more detail.
As in MCAD-deficient patients [20], our MCAD-KO

mice accumulated acylcarnitines with chain lengths varying
from C6 to C10 (Additional file 2: Figure S2A–C). Both
the competition and the non-competition version of the
MCAD-deficient model mimicked these elevated levels of
medium-chain acylcarnitines, although the patterns dif-
fered quantitatively (Additional file 7: Figure S7C, D).
These medium-chain acylcarnitines are derived from
medium-chain acyl-CoAs, which are the direct substrate of
MCAD. Therefore, their accumulation is somewhat trivial
and not dependent on competition. We concluded that
MCAD deficiency was not the most appropriate condition
to distinguish between the two models.
For a more stringent test of the physiological relevance

of substrate competition we shifted to MADD. Patients
suffering from this disease have a partial deficiency in
one of the three electron transfer flavoprotein (ETF)
proteins: ETFα, ETFβ or ETF dehydrogenase. These pro-
teins are responsible for the electron transfer between
the acyl-CoA dehydrogenases and the mitochondrial
electron transport chain [23]. Consequently, the transfer
of electrons from the FADH2 cofactor of the acyl-CoA
dehydrogenases to the electron transport chain (Fig. 1a)
is diminished in MADD patients [23]. This leads to a
higher FADH2 reduction state and inhibits the oxidation
of acyl-CoA esters of all chain lengths through simultan-
eous inhibition of all acyl-CoA dehydrogenases. MADD
patients have heterogeneous acylcarnitine profiles.
Figure 4a, b shows two such profiles. Compared with
healthy controls, both patients had elevated acylcarnitine
levels over the entire range of carbon chain lengths. In
the first patient (Fig. 4a), levels of medium-chain acylcar-
nitines were specifically elevated, while in the second
(Fig. 4b), butanoylcarnitine (C4) and palmitoylcarnitine
(C16) were extremely high.
To simulate the patients’ acylcarnitine profiles, we

converted the original rat model into a human model.
Since LCAD is not essential in human mFAO [12], it
was removed from the model. Kinetic parameters avail-
able for human SCAD, MCAD and VLCAD were then
incorporated into the model [24, 25]. Subsequently, we
estimated a subset of parameters by fitting the model to
the average acylcarnitine profile from a healthy popula-
tion. Since these were plasma values and the model
contained cytosolic concentrations of acylcarnitines, the
data were converted to cytosolic concentrations as
described in the Methods section. The acylcarnitine

profiles predicted by the human model (Additional file 9:
Model S9) corresponded closely to the acylcarnitine profiles
of healthy subjects (Additional file 7: Figure S7E) and CoA
esters of various chain lengths were distributed over differ-
ent enzymes, as expected (Additional file 7: Figure S7F).
First, we simulated the MADD acylcarnitine profiles in

the two mFAO models, both including and excluding
substrate competition (Additional file 9: Model S9 and
Additional file 10: Model S10). To this end, we increased
FADH2 while keeping the total concentration of FADH2

plus FAD constant at 0.77 μM. The patient profiles
could be mimicked qualitatively by the model with com-
petition (dark blue bars in Fig. 4c, d). Since the model
yields cytosolic liver concentrations, we cannot compare
the absolute numbers with levels in patient serum, but
we are able to compare the patterns. The different pro-
files were associated with different FAD reduction states.
A profile similar to that of patient 1 – showing accumu-
lation of medium-chain acyl carnitines (Fig. 4a, c) – was
calculated at an FADH2 concentration of 0.6 μM (78%
reduction of total FAD). The FADH2 concentration was
further increased to 0.73 μM (95% reduction of total
FAD) to obtain a profile similar to that of patient 2 –
showing characteristic accumulation of C4 and C16 acyl-
carnitines (Fig. 4b, d). In contrast, in the human model
without molecular competition (Additional file 10:
Model S10), acylcarnitine concentrations remained low
over the whole range of carbon chain lengths, irrespect-
ive of the degree of reduction of the FAD pool (light
blue bars in Fig. 4c, d). The latter result can be under-
stood intuitively. Accumulation of metabolites occurs
when their production and consumption are unbalanced.
A diminished capacity of FADH2 oxidation affects each
cycle of the mFAO pathway to a similar extent and such
an imbalance is unexpected. The elevated levels of acyl-
carnitines over the whole range of chain lengths, as ob-
served in patients, are therefore counterintuitive and
require a special mechanism. The fact that the competi-
tion model predicted this pattern correctly suggests that
this special mechanism might well be substrate competi-
tion. This finding also supports the notion that substrate
competition is important to explain patient physiology.
Second, we simulated the effect of MADD on mFAO

flux and explored how this was influenced by substrate
competition. We increased the palmitoyl-CoA concen-
tration gradually at three concentrations of FADH2:
0.43 μM (56% reduced) for healthy human liver, 0.6 μM
(78% reduced) for patient 1, and 0.73 μM (95% reduced)
for patient 2. When the FADH2 concentration was in-
creased, the maximum rate through the mFAO pathway
decreased (Fig. 4e), with a concomitant reduction in
CoASH levels (Additional file 7: Figure S7G). This im-
plies that the mFAO capacity of patient 2 was much
more affected than that of patient 1, which is consistent
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Fig. 4 (See legend on next page.)
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with the patients’ clinical symptoms. Patient 1 had mild
clinical symptoms, while patient 2 was severely affected,
with congenital anomalies and died 3 days after birth. In
contrast, the model without competition predicted only
a mild effect of the FAD reduction state on flux, even if
the FAD pool was 95% reduced (Fig. 4f ). This is incom-
patible with the patients’ symptoms and further corrobo-
rates the importance of substrate competition for patient
physiology.
We conclude that substrate competition is the main

mechanism that helps to explain the acylcarnitine pro-
files seen in MADD patients, and that a computational
model that includes substrate competition may explain
the severity of the disease phenotype in these patients.

Discussion
In this work, we have shown that deficiencies in the
enzymes involved in the mFAO pathway can cause se-
vere loss of pathway robustness. In agreement with our
previous work [16], we demonstrated that substrate
competition was an essential aspect of the mechanism
that caused a steep decline in flux when the pathway
was overloaded with substrate. MCAD deficiency aggra-
vated the risk of overload, since the same substrates then
competed for fewer isoenzymes. The resulting flux de-
cline was mediated by a self-amplifying depletion of
CoASH. We like to emphasize that the current analysis
does not yet dissect the sequence of events that explains
how metabolite competition leads to a flux decline; this
is the subject of our ongoing studies (manuscript in
preparation).
In our simulations of MADD patients, substrate com-

petition and CoASH decline resulted in fluxes far below
the catalytic capacity that could be realized with the
same enzymes in a non-competition model (Fig. 4e, f ).
CoASH is an essential cofactor, and the maintenance of
the CoASH pool is critical for energy metabolism.
Chemical inhibition of CoASH biosynthesis in mice is
lethal and it has been shown that the primary cause of
death in these mice is hypoglycemia [26]. Hence, CoASH

provides a direct link between fatty acid metabolism and
glucose homeostasis. This suggests that the decline in
CoASH due to substrate competition may also be the
underlying cause of the low blood glucose levels seen in
MCAD-deficient patients during a metabolic crisis.
Mitchell et al. [27] reviewed the widespread relevance of

CoA sequestration, toxicity and redistribution (CASTOR)
in inborn enzyme deficiencies, not only in mFAO, but
also, for instance, in branched-chain amino-acid metabol-
ism. According to these authors, a common denominator
of these diseases is the accumulation of CoA esters and
the associated depletion of CoASH, which leads to the risk
of life-threatening hypoglycemia. They proposed that
alterations in CoA metabolism might displace the patient’s
“set point” such that minor physiological fluctuations,
such as a surplus of CoA-dependent substrates, might in-
duce a metabolic crisis. Although very plausible, since
their publication in 2008, these ideas have hardly been
followed up. This may be because CoASH and CoA-ester
concentrations in the liver and other patient tissues are
relatively inaccessible. Here, we have shown how compu-
tational modeling can fill this gap. The main progress of
our work beyond the CASTOR hypothesis is that that we
provide a molecular mechanism in which substrate com-
petition among acyl-CoAs for common enzymes strongly
amplifies the depletion of CoASH: levels of CoASH did
not decline gradually as a function of palmitoyl-CoA sub-
strate, but declined steeply beyond a threshold value of
substrate (Fig. 3c). In this respect, it should be noted that
not only dietary nutrients, but also xenobiotics, drugs, and
intestinal fermentation products, such as butyrate and
propionate, depend on CoA for their metabolism [28, 29].
For a complete view of CoA homeostasis it will be neces-
sary to integrate the metabolism of all these substances
into the model.
The clinical spectrum of patients with a deficiency in

mFAO varies considerably, ranging from neonatal death
to patients who remain asymptomatic throughout life.
Even a group of patients who all have the same MCAD
mutation and who have no residual MCAD activity have

(See figure on previous page.)
Fig. 4 Experimental and simulated acylcarnitine profiles of two MADD patients, differing in disease severity, and the consequences for the
simulated mFAO flux in those patients. Panels a and b: Experimental data for plasma concentrations from a healthy population (red bars; data
represents mean ± standard deviation (n = 1750) and the two MADD patients (single time point; blue bars; panel a: patient 1; panel b: patient 2).
Note that the same control data were used for a and b, but due to the different Y-axis scales, they are barely visible in panel b. Panels c and d:
Simulated acylcarnitine profiles for healthy subjects (red bars; FADH2 concentration of 0.43 μM), patient 1 (blue bars panel c; FADH2 concentration
0.6 μM) and patient 2 (blue bars panel d; FADH2 concentration 0.73 μM). Simulations were performed at a constant sum of FADH2 and FAD of
0.77 μM. The dark blue and red bars are the concentrations simulated in the human model with competition and the light blue and red bars are
the concentrations simulated in the human model without competition. Panel e: Steady-state rates of flux at increasing concentrations of the
substrate palmitoyl-CoA for healthy subjects (solid red line; FADH2 concentration of 0.43 μM), patient 1 (dotted blue line; FADH2 concentration
0.6 μM) and patient 2 (dashed blue line; FADH2 concentration 0.73 μM) simulated in the model with competition. Panel f: Steady-state rates of
flux at increasing concentrations of the substrate palmitoyl-CoA for healthy subjects (solid red line; FADH2 concentration of 0.43 μM), patient 1
(dotted blue line; FADH2 concentration 0.6 μM) and patient 2 (dashed blue line; FADH2 concentration 0.73 μM) simulated in the model
without competition
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been shown to exhibit this full range of clinical presenta-
tions [30]. In part, this may be due to compensatory
mechanisms, such as increased expression of SCAD or
peroxisomal β-oxidation enzymes, which can take over
the catalytic function of MCAD. In the MCAD-KO mice
we did not observe adaptations in SCAD, however.
Alternatively, other CoA-dependent processes may be
downregulated, or CoA-liberating enzymes, such as acyl-
CoA esterases [31–33], upregulated. For the broader
group of mFAO disorders it is likely that the clinical
heterogeneity may also be attributed to differences in
the residual activity of the defective protein. However,
for the other example considered in the current study
(MADD), the residual enzyme activity is not routinely
measured in patients, since the ETF and ETF dehydro-
genase assays require anaerobic conditions [34]. Finally,
the different clinical presentations may be due to differ-
ent exposures to CoA-dependent nutrients, intestinal
fermentation products, or xenobiotics.
Clearly, the disease severity and optimal treatment,

and possibly also the susceptibility to nutritional or
xenobiotic factors, differ between individual patients and
depend not only on the primary disease-related muta-
tion, making mFAO disorders attractive for a personal-
ized systems medicine approach. Because liver and
muscle tissues are not readily accessible for diagnostic
purposes, functional tests, such as tests for enzyme ac-
tivities, mFAO rates, or compensatory gene expression,
must be performed on less relevant cell types such as
fibroblasts. Instead, we do have access to serum meta-
bolic profiles, and metabolomics methodology is
developing rapidly [35]. Making the link between these
“circumstantial” data and the disease mechanism in the
affected tissues requires computational modeling [36].
Recently, personalized genome-scale stoichiometric meta-
bolic models have been developed to identify patient-
specific drug targets [37, 38]. A limitation of these models,
however, is that they lack kinetics, while more complex
disease mechanisms, such as the substrate competition
mechanism highlighted here, do depend on complex
enzyme kinetics.
To our knowledge, this is one of the first studies in

which a dynamic computational model based on detailed
biochemistry has been used to describe individual
patients and differentiate between them (see [39] for
another example). It will be important to validate the ap-
proach in a larger cohort of patients. If this is successful,
the model will enable us to assess the potential of treat-
ment options previously considered, such as the admin-
istration of carnitine or CoA precursors [40], or to
suggest entirely novel treatments such as medications
that interfere in redox metabolism [16]. To obtain a
fully-fledged patient-specific risk and treatment profile,
it will be necessary to expand the approach to include

surrounding metabolic pathways such as citric acid
cycle, oxidative phosphorylation [39, 41], peroxisomal
fatty-acid oxidation, and CoA-dependent pathways.
Nevertheless, it is a promising first step towards a
patient-specific risk assessment for a group of severe
metabolic disorders. For now, the computational model
has allowed us to gain insight into a disease mechanism
that is normally considered inaccessible due to limited
tissue sampling and the absence of routine assays for
CoA esters [27].

Conclusion
Systems medicine holds great promise for understanding
the mechanisms of complex diseases and improving
treatments tailored to individual patients. Here, we used
computer modeling to analyze metabolic data from
knockout mice and patients with mFAO disorders, and
explain why patient physiology is not robust against
metabolic challenges. Enzymes in the mFAO accept
multiple substrates of different chain lengths. This leads
to molecular competition among the substrates. We dem-
onstrated that substrate competition aggravates metabolic
impairment in these disorders more than should be ex-
pected from the defect alone. Our detailed biochemical
model can explain the characteristic metabolite profiles
seen in these patients and predict the severity of their
symptoms. To our knowledge, this is one of the first
descriptions of a detailed dynamic model of metabolism
being applied to individual patient data. Our results
therefore provide a proof of principle for the systems
medicine approach.

Methods
Animal experiments
MCAD-KO mice on the mixed 129P2xC57BL6/J back-
ground [17] strain were crossed for five generations with
wild-type C57BL6/J mice. Heterozygous breeding pairs
were taken from the fifth generation offspring to gener-
ate the MCAD-KO and wild-type littermates used in this
study.
Male mice were used for experiments at the age of

2–4 months. Mice were fed commercially available la-
boratory chow (ABDiets, Woerden, The Netherlands). For
experiments under fasting conditions, mice were placed in
a clean cage at 9 pm and terminated and dissected
12 hours later by cardiac puncture under isoflurane
anesthesia. On the day of sacrifice, bloodspots were ob-
tained by cardiac puncture for acylcarnitine analysis. A
small piece of liver tissue was collected and snap-frozen in
liquid nitrogen for mRNA analysis. Part of the liver was
freeze-clamped and stored at –80 °C. The rest of the liver
tissue was collected in a buffer containing 250 mM su-
crose and 10 mM Tris (pH 7.0) and used for the isolation
of mitochondria.
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Dynamic flux and metabolite profiles in isolated
mitochondria
Mitochondria were isolated from liver tissue of male
C57Bl/6 J wild-type and MCAD-KO mice (2–4 months
old) according to the method of Mildaziene et al. [42].
The oxygen consumption rate of uncoupled mitochondria
was measured by incubating them with substrate (either
palmitoylcarnitine (C16) plus malate, or octanoylcarnitine
(C8) plus malate) in the presence of ADP, L-carnitine and
FCCP at 37 °C in a stirred, two-channel high-resolution
Oroboros oxygraph-2 k (Oroboros, Innsbruck, Austria).
See Van Eunen et al. [16] for an elaborate description of
the procedure. Samples to measure the acylcarnitine were
quenched in acetonitrile (10 μL sample in 100 μL
acetonitrile).

Mass spectrometry analysis of acylcarnitines
Acylcarnitine concentrations were measured in liver
homogenates and mitochondrial samples according to
Derks et al. [20].

Quantitative PCR
Total RNA was isolated from homogenates of snap-
frozen liver tissue of adult male MCAD-KO (n = 4) and
wild-type C57BL6/J (n = 4) mice with Tri reagent
(according to the manufacturer’s instructions; Sigma-
Aldrich, St Louis, MO). Total mRNA was quantified on a
NanoDrop ND-100 UV-Vis spectrophotometer (NanoDrop
Technologies, Wilmington, DE, USA). cDNA was synthe-
sized by a reverse transcription procedure according to
the manufacturer’s protocols (Sigma-Aldrich). cDNA was
amplified with the primers and probes listed in Additional
file 11: Table S11. Real-time PCR was performed on an
ABI-Prism 7700 fast PCR system (Applied Biosystems,
Foster City, CA, USA). Transcript levels were calculated
relative to the expression of the housekeeping gene 36B4,
and normalized for expression levels of wild-type mice.

Targeted proteomics of mFAO proteins
Absolute quantification of mFAO proteins was done by
targeted proteomics [43]. Isotopically labeled standards
were ordered from Polyquant in the form of purified, syn-
thetic proteins consisting of peptide concatamers with
13C-labeled lysine and arginine, derived from the proteins
of interest. The protein concatamers (QconCATs) were
designed to quantify each of the proteins with two or
three standard peptides. See for a detailed description of
the method [44]. The selected peptides are listed in
Additional file 12: Table S12.

Enzyme activity
Enzyme activity assays were done in either liver homo-
genate or mitochondrial extracts. The reported enzyme
activities represent the summed activity of all isoenzymes

in the extract at saturating substrate concentrations and
are expressed per liver or mitochondrial protein (μmoles
of substrate converted per minute per milligram extracted
protein). Tissues or mitochondria were disrupted by
sonication (30 one-second pulses, 10–13 Watt with one-
second breaks; samples were on ice during the entire
procedure) in either phosphate-buffered saline (137 mM
NaCl, 2.7 mM KCl, 10 mM Na2HPO4, 1.8 mM KH2PO4)
or in a buffer with 250 mM sucrose, 10 mM Tris pH 7.0,
and 1 mM DTT. All enzyme activities, except for that of
MCAD, were measured in freshly prepared extracts at
37 °C in a Synergy H4 plate reader (BioTek, Winooski,
US). Three or four different dilutions in 10 mM phosphate
buffer (pH 7.0) with DTT were analyzed to check for
linearity. The acyl-CoA dehydrogenase activity was so low
that only the undiluted sample could be measured. For
the remaining enzymes we took the average of 2 or 3 dilu-
tions in the linear area. Protein determinations were
carried out with the bicinchoninic acid kit (BCA Protein
Assay Kit; Pierce, Thermo Fisher Scientific, Rockford, IL,
USA) with BSA (2 mg/mL stock solution; Pierce) as a
standard; 1 mM DDT was added to the standard if it was
also present in the extract. For all assays the reaction mix-
tures without start reagent were pre-warmed at 37 °C.

3-Phenylpropionyl-CoA dependent MCAD
MCAD enzyme activity was measured at 37 °C in
medium containing 100 mM phosphate buffer (pH 8.0),
1 mM ferrocenium hexafluorophosphate and 0.4 mM
3-phenylpropionyl CoA (start reagent). Reactions were
terminated after 20 minutes. The product cinnamoyl-CoA
was measured on an HPLC system with UV detection
(Waters, Milford, MA, USA).

Acyl-CoA dehydrogenase (ACAD) (modified from [45])
The reaction mixture contained 100 mM potassium
phosphate buffer (pH 7.4), 0.4 mM ferricenium hexa-
fluorophosphate, 0.5 mM N-ethylmaleimide, 0.1 mM
EDTA, 0.1% Triton x-100, and 0.5 mM CnAcyl-CoA
(start reagent; where n denotes number of carbon atoms
of the unbranched acyl chain). The reduction of ferrice-
nium hexafluorophosphate was followed over time by
measuring the absorbance at 300 nm.

Medium/short-chain hydroxyacyl-CoA dehydrogenase
(M/SCHAD) (modified from [46])
The reaction mixture contained 0.1 M Tris-HCl (pH 10.0),
1 mM NAD+, and 0.1 mM hydroxybutyryl-CoA (start
reagent). The production of NADH was monitored over
time at 340 nm.

Crotonase (CROT)
The assay mixture contained 0.1 M Tris-HCl (pH 10.0),
1 mM NAD+, and 0.15 mM Crotonyl CoA (start reagent).
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The production of NADH was monitored over time at
340 nm. This assay records the combined activity of
CROT and M/SCHAD and was only used to check
whether CROT activity was present in the samples. The
measured activity was not used in the model.

Medium-chain ketoacyl-CoA thiolase (MCKAT) (modified
from [47])
The assay mixture contained 0.1 M Tris-HCl (pH 8.0),
25 mM MgCl2, 50 mM KCl, 0.05 mM acetoacetyl CoA
and 0.05 mM CoA (start reagent). Measuring the ab-
sorbance at 303 nm over time determined the consump-
tion rate of acetoacetyl CoA.

Computational methods
The computational model described in Van Eunen et al.
[16] was converted to sbml format and imported into
COPASI software version 4.11.65 [48] for parameter es-
timation as well as for steady-state and time simulations.
The concentrations in the model are in μM and the time
unit is minutes. Fluxes of individual enzymes are in
μmol.min–1.mg mitochondrial protein–1. The rate
through the NADH oxidation reaction (vnadhsink) is
taken as the rate through the mFAO pathway.
For the mouse model the Vmax values obtained from the

enzyme activity measurements were used as input for the
model. A subset of kinetic constants (Additional file 4:
Table S4) was fitted to the combined dataset of acylcarni-
tine time courses in isolated mitochondria of wild-type
and MCAD-KO mouse livers. The data of all four experi-
mental conditions, i.e., wild-type and MCAD-KO with
either palmitoyl- or octanoylcarnitine as the substrate,
were used in one fitting round to obtain a single set of
parameters. The subset of parameters was defined based
on the sensitivity of the acylcarnitine concentrations to
the specific parameters. From this list of parameters we
selected the parameters that were identifiable. This means
that we included only the parameters that gave a value
with a small standard error when they were fitted to the
data. Parameter values to be fitted were allowed to vary
between the lower and upper boundary as indicated in
Additional file 4: Table S4. For parameters that were
deconvolved from the measured enzyme kinetics, the
boundaries were set to 20% higher or lower than the mea-
sured value. The specificity factors always had an upper
boundary of 1, since it indicates the maximum activity for
that specific chain-length. The boundaries of the re-
maining parameters were set such that the characteristic
properties of the mFAO pathway – redundancy of en-
zymes and competition among substrates for an enzyme –
were preserved in the model simulations. Initial concen-
trations of the acylcarnitines were allowed to vary between
the measured value ± 20% and the Vmax value of MCAD

in the wild-type condition between the measured
value ± 10%.
To humanize the model, LCAD was removed and pa-

rameters for which the human values were known were
incorporated (Additional file 13: Table S13). A subset of
kinetic constants (Additional file 14: Table S14) was fit-
ted to the average acylcarnitine profile from a healthy
population. Since these were plasma values and the
model contained cytosolic concentrations of acylcarni-
tines, the concentrations were converted from plasma to
cytosolic concentrations. This was done by keeping the
steady-state palmitoylcarnitine (C16) concentration of
the model and adapting the concentrations of the other
chain lengths so that they had the same ratio as that
seen in the plasma data. The subset of parameters to be
fitted was defined based on the sensitivity of the acylcar-
nitine concentrations to the specific parameters. From
this list of parameters we selected the parameters that
were identifiable. This means that we included only the
parameters that gave a value with a small standard error
when they were fitted to the data. Parameter values to
be fitted were allowed to vary between the lower and
upper boundary as indicated in the Additional file 14:
Table S14. The boundaries of the remaining parameters
were set such that the characteristic properties of the
mFAO pathway – redundancy of enzymes and competi-
tion among substrates for an enzyme – were preserved
in the model simulations.
Steady state in both the mouse and human model was

calculated with a fixed palmitoyl-CoA concentration of
25 μM, which was the substrate of the model, unless in-
dicated otherwise. The concentrations of the boundary
metabolites were also fixed and are given in Additional
file 15: Table S15. For both the mouse and human
model, the obtained steady-state concentrations of the
acylcarnitines and CoASH as well as the flux through
the mFAO (expressed as flux to NADH) are presented
in Additional file 15: Table S15.
Parameter estimation was done in COPASI [48] by

applying the Levenberg-Marquardt algorithm (iteration
limit 200, tolerance 1 × 10–6). The extracellular concen-
trations of the acylcarnitines were compared with the
experimental data and the least sum of squares was the
objective function to be minimized:

E Pð Þ ¼
X

i;j

ωj⋅ xi;j−yi;j Pð Þ
� �2

ð1Þ

in which E is the objective value, P is the tested param-
eter set, xi,j is a point in the dataset, and yi,j(P) is the
corresponding simulated value. The indices i and j rep-
resent time and metabolite species in the dataset. The
weight factor for each data column is given by ωj and
was set to a fixed value of 1. Additional file 4: Table S4,
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Additional file 14: Table S14, and Additional file 15:
Table S15 list (2) the boundary metabolite concentra-
tions used for steady-state calculations, (2) the fitted
parameters and the imposed constraints, (3) the steady-
state fluxes, and (4) metabolite concentrations for both
the mouse and human model.
The competition was removed from the model such

that a percentage of each enzyme was dedicated to a
particular chain length and that the competitive inhib-
ition term was removed from the equation. Figure 1b
gives an example of an equation with and without com-
petition. Enzymes were partitioned such that at 25 μM
of palmitoyl CoA the flux distribution among parallel
enzymes was similar in the models with and without
competition. This was different for the wild-type and
MCAD-KO model, since the flux is redistributed over
the remaining acyl-CoA dehydrogenases when MCAD is
lost. Additional file 16: Table S16 contains the partition
factors for both the mouse and human model.

Statistical analysis
Differences between normally distributed continuous data
were analyzed using parametric tests, and data that were
not normally distributed were analyzed using non-
parametric tests. The significance level was set at P < 0.05.
Statistical analyses were performed using GraphPad Prism
software (GraphPad Software Inc., version 5.00, 2007).
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