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Abstract

Muscarinic acetylcholine receptor (mAChR) antagonists have been reported to decrease male fertility; however, the roles of mAChRs 
in spermatogenesis and the underlying mechanisms are not understood yet. During spermatogenesis, extensive remodeling between 
Sertoli cells and/or germ cells interfaces takes place to accommodate the transport of developing germ cells across the blood-testis 
barrier (BTB) and adluminal compartment. The cell–cell junctions play a vital role in the spermatogenesis process. This study used ICR 
male mice and spermatogonial cells (C18-4) and Sertoli cells (TM-4). shRNA of control or M5 gene was injected into 5-week-old ICR 
mice testes. Ten days post-viral grafting, mice were deeply anesthetized with pentobarbital and the testes were collected. One testicle 
was fresh frozen for RNA-seq analysis or Western blotting (WB). The second testicle was fixed for immunofluorescence staining (IHF). 
C18-4 or TM-4 cells were treated with shRNA of control or M5 gene. Then, the cells were collected for RNA-seq analysis, WB, or IHF. 
Knockdown of mAChR M5 disrupted mouse spermatogenesis and damaged the actin-based cytoskeleton and many types of junction 
proteins in both Sertoli cells and germ cells. M5 knockdown decreased Phldb2 expression in both germ cells and Sertoli cells which 
suggested that Phldb2 may be involved in cytoskeleton and cell–cell junction formation to regulate spermatogenesis. Our 
investigation has elucidated a novel role for mAChR M5 in the regulation of spermatogenesis through the interactions of Phldb2 and 
cell–cell junctions. M5 may be an attractive future therapeutic target in the treatment of male reproductive disorders.
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Introduction

Both the superior (from the coeliac and aortic 
plexuses) and inferior (from the inferior mesenteric and 
hypogastric plexuses) spermatic nerves innervate the 
testes and are involved in fine-tuning the regulation of 
testicular functions (Gerendai & Halász 1997, Gerendai 
2004). Other studies have shown that chronic testicular 
denervation in mature rats leads to the disruption of 
male germ cell development (Chow  et  al. 2000), thus 
emphasizing the vital role of the nervous system in 
spermatogenesis. Moreover, cholinergic fibers are known 
to regulate steroidogenesis in the testis (Zhu et al.2002).

Cellular actions of the ancient signaling molecule 
acetylcholine (ACh) are mediated by two types of 
membrane receptors: nicotinic receptors and muscarinic 
ACh receptors (mAChRs; Wessler  et  al. 1998, Eglen 
2006). These receptors are widely present in the central 
and peripheral nervous systems (Wessler  et  al. 1998, 
Eglen 2006). mAChRs are members of the G protein-

coupled receptor (GPCR) family and include five 
subtypes (M1–M5) that are encoded by five different 
genes (Eglen 2006).

M1, M3, and M5 mAChRs mainly couple with Gq/11 
to activate the phosphoinositide-specific phospholipase 
Cβ (PLCβ) to produce inositol 1,4,5-triphosphate (IP3) 
and 1,2-diacylglycerol (DAG), followed by the elevation 
of intracellular Ca2+ and the activity of protein kinase C 
(PKC). M2 and M4 mainly couple with Gi/o to produce 
protein-dependent signaling. M1–M4 mAChRs subtypes 
have been studied for a long time, however, M5 is the 
least investigated mAChR subtype and was the last one 
to be cloned (Bender et al. 2019, Vuckovic et al. 2019). 
However, mAChR M5 appears to have many important 
roles which makes it an attractive therapeutic target 
(Berizzi  et  al. 2016, Fujii  et  al. 2017, Vuckovic  et  al. 
2019). mAChRs are present in the male reproductive 
system; in particular, M1–M4 mAChRs subtypes are 
found in efferent ductules, epididymides, vas deferens, 
seminal vesicles, and the prostate (Lucas  et  al. 2008). 
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The mRNAs of M1–M5 mAChRs have been identified 
in rat testis Sertoli cells (Borges  et  al. 2001). mAChR 
antagonists are reported to disrupt male fertility (defects 
in efferent ductules, epididymides, vas deferens, and 
seminal vesicles) which indicates that mAChRs play 
vital roles in male reproduction (Lucas  et  al. 2008). 
Meanwhile, the roles of mAChRs in spermatogenesis 
and the underlying mechanisms are not understood. 

Spermatogenesis is a complex process that involves 
meiosis and differentiation of germ cells from 
spermatogonia to spermatocytes, then on to spermatids 
(Zhou et al. 2016, Wang et al. 2018, Sohni et al. 2019). 
During spermatogenesis, the developing germ cells 
migrate progressively from the basal to the adluminal 
compartment with extensive junction restructuring 
between germ cell-Sertoli cell or Sertoli cell-Sertoli 
cell of the seminiferous epithelium. There are three 
major types of junctions found in the testis between 
germ cells and Sertoli cells, and among Sertoli cells: 
anchoring junctions (adherens junctions; AJs), tight 
junctions (TJs), and gap junctions (GJs) (Skinner 1991, 
Jegou 1993). It has been reported that Sertoli and germ 
cells develop an intimate and elaborate bidirectional 
trafficking system to communicate together through 
paracrine factors and signaling molecules that have 
been reported to play important roles in the regulation 
of cell–cell junction restructuring. Many investigations 
found that the following play vital roles in the cell–cell 
junctions: proteins like occludin, zonula occludens-1, 
claudin-11, and filamin A (Chung et al. 1999, Su et al. 
2012); proteases and protease inhibitors such as 
cathepsin L, tryptase, cystatin C, and a2-macroglobulin 
(Mruk et al. 1997, Wong et al. 2000); cytokines such as 
transforming growth factor (TGF) b2 and TGFb3; kinases 
and phosphatases such as myotubularin (Li et al. 2001); 
small GTPases, such as Cdc42, N-Ras, Rac2, and RhoB 
(Lui  et  al. 2003a,b); transcriptional regulation (Lui & 
Cheng 2012, Lie et al. 2013); signaling pathways such 
as the nitric oxide synthase (NOS)-cGMP-protein kinase 
G (PRKG)-b-catenin (CATNB) pathway (Lee et al. 2005), 
FAK pathway (Lie et al. 2013), and many other pathways 
(Lie et al. 2013, Li et al. 2018a,b, Wen et al. 2018c).

Although it is well known that during the development 
of spermatogonial cells into spermatids the destructuring 
and restructuring of cell–cell junctions takes place, 
the intriguing cross-talk mechanisms of regulation of 
this restructuring are not yet fully understood. In the 
current study, we report that the gene knockdown of 
M5 disrupted mouse spermatogenesis and damaged the 
actin-based cytoskeleton and many types of junction 
proteins in both Sertoli cells (TM4) and germ cells (C18-
4); however, the knockdown of M1 or M3 had little 
effect on spermatogenesis even though there are many 
similarities between mAChRs M1, M3, and M5. Phldb2 
(pleckstrin homology-like domain, family B, member 
2, alternatively called LL5β) not only plays important 
roles in acetylcholine receptor (AChR) aggregation in 

the postsynaptic membrane, it is also involved in cell 
adhesion formation and extracellular matrix formation 
(Stehbens et al. 2014, Lim et al. 2016, Xie et al. 2019). 
Knockdown of M5 decreased PHLDB2 expression in 
both germ cells and Sertoli cells. Phldb2 may regulate 
cytoskeleton (actin) and other junctional proteins 
to control both BTB and ES formation to regulate 
spermatogenesis. The aim of this investigation was to 
explore the role of M5 in spermatogenesis, and where 
the PHLDB2 in the regulation of the BTB and ES in  
this process.

Materials and methods

Mice

All procedures involving live mice were performed in 
accordance with the NIH Guide for the Care and Use of 
Laboratory Animals and the protocols approved by the Institute 
of Animal Sciences, Chinese Academy of Agricultural Sciences 
Animal Care and Use Committee (2018AICAAS1002). ICR mice 
were used in this investigation. Testes from 1, 2, 3 and 6 weeks 
of age-old male ICR mice were collected for the detection of 
M1, M3, and M5 by immunofluorescence staining.

Production of lentivirus

Lentivirus production was performed as described previously 
(Shen  et  al. 2019). Lenti-shM5, shM1, shM3, and shNC 
were cloned using the lentivirus-shNC vector as a backbone 
(Supplementary Fig. 1A, see section on supplementary 
materials given at the end of this article). There were three 
knockdown shRNAs at three different positions for each gene. 
The sequences for each gene (M1, M3, and M5) and NC are 
listed below:

shNC (5’–3’): TTCTCCGAACGTGTCACGT
shM1 #1 (5’–3’): GCATTCATCGGGATCACCACA
shM1 #2 (5’–3’): GGCCTACAGCTGGAAAGAAGA
shM1 #3 (5’–3’): GGACACCATATAACATCATGG
shM3 #1 (5’–3’): GCAACATCCTTGTCATTGTGG
shM 3 #2 (5’–3’): GCAGTGACAGTTGGAATAACA
shM 3 #3 (5’–3’): GGCCCAGAAGAGTATGGATGA
shM 5 #1 (5’–3’): GGAGTCTTATCACAATGAAAC
shM 5 #2 (5’–3’): GGACTCCTTATAACATCATGG
shM 5 #3 (5’–3’): GGACCCAGGAGACAAACAATG

The efficiency and specificity of shRNA knockdown were 
determined by transfecting into 293T cells using Lipofectamine 
2000 (Invitrogen; #11668-027), followed by analysis at 60 h 
post-transfection by qPCR. Lentivirus production was then 
performed as shown in Supplementary Fig. 1B. Briefly, the 
lentiviral DNA was cotransfected with packaging plasmid 
pG-P1-VSVG, pG-P2-REV, and pG-P3-RRE HEK293T cells 
using RNAi-mate (GenePharma, Shanghai, China). The 
medium containing lentivirus was collected at 72 h post-
transfection, pooled, filtered through a 0.2-μm filter, and 
concentrated using an ultracentrifuge at 85 000 g for 2 h (4°C). 
The virus was washed once and then resuspended in PBS. 
Approximately 109 infectious viral particles/mL were obtained. 
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In vivo virus grafting and sample collection

In vivo virus grafting was performed as previously described 
(Shen  et  al. 2019). In the current investigation, 5-week-old 
ICR male mice were used, because the pubertal period is a 
crucial window for testis development and spermatogenesis. 
Briefly, 5-week-old ICR male mice were anesthetized with 
isofluorane. Microinjections were performed using 26-gauge 
needles connected to a 100 μL syringe. Virus (3 μl with titer 
greater than 3×108/mL) for each position and for each shRNA 
(in total 9 μL with a titer >9×108/mL for shNC, or shM1, or 
shM3, or shM5 individually) were mixed and then injected 
into the testes. Ten days post-viral grafting, mice were deeply 
anesthetized with pentobarbital and the testes were collected. 
One testicle was fresh frozen in liquid nitrogen then total 
RNA was extracted for RNA-seq analysis or total protein 
was isolated for Western blotting (WB). The second testicle 
was fixed in 4% paraformaldehyde (PFA). Subsequently, the 
tissues were processed to be embedded in paraffin wax for 
immunochemical analyses as reported in our previous articles 
(Zhao et al. 2020a). 

Cell culture, transfection, and growth on cover slips

The TM4 cell line (mouse Sertoli cells; purchased from ATCC) 
was cultured in DMEM supplemented with 10% fetal bovine 
serum (FBS; Gibco; Thermo Fisher Scientific, Inc.) at 37°C in 
5% CO2 (Hofmann et al. 2005). The C18-4 cell line (mouse 
spermatogonia stem cells; Donated by Dr Wenxian Zeng, 
Northwest A&F University) was held in DMEM/F12 (Gibco) 
supplemented with 10% (FBS), 2 mM L-glutamine (Invitrogen), 
and 100 U/mL penicillin and streptomycin (Invitrogen) 
(Hofmann  et  al. 2005, He  et  al. 2009, Li  et  al. 2018c). The 
cells were transfected with shRNA in 6-well plates. Similarly, 
three respective shRNAs for each gene were mixed together 
(titer >3×108/mL) with RNAi-mate for the transfection for 
both C18-4 and TM4 cells. The transfection medium was 
changed after 12 h. Stable transfected cells were cultured in a 
similar manner to the non-transfected cells in their respective 
media. The transfected cells were plated on the coverslips in 
a 6-well plate for 2 days, after which the coverslips with the  
cells were collected and fixed in 4% PFA for 
immunofluorescence staining.

RNA isolation and RNA-seq analyses as reported in 
our earlier article (Zhang et al. 2016)

Briefly, total RNA was isolated using TRIzol Reagent 
(Invitrogen) and purified using a Pure-Link1 RNA Mini Kit (Cat: 
12183018A; Life Technologies) following the manufacturer's 
protocol. Total RNA samples were first treated with DNase 
I to degrade any possible DNA contamination. Then, the 
mRNA was enriched using oligo(dT) magnetic beads. Mixed 
with the fragmentation buffer, the mRNA was broken into 
short fragments (about 200 bp), after which, the first strand 
of cDNA was synthesized using a random hexamer-primer. 
Buffer, dNTPs, RNase H, and DNA polymerase I were added 
to synthesize the second strand. The double-strand cDNA was 
purified with magnetic beads. Subsequently, 3'-end single 

nucleotide A (adenine) addition was performed. Finally, 
sequencing adaptors were ligated to the fragments. The 
fragments were enriched by PCR amplification. During the 
QC step, an Agilent 2100 Bioanaylzer and ABI StepOnePlus 
Real-Time PCR System were used to qualify and quantify 
the sample library. The library products were prepared for 
sequencing in an Illumina HiSeqTM 2500. The reads were 
mapped to reference genes using SOAPaligner (v. 2.20) with 
a maximum of two nucleotide mismatches allowed at the 
parameters of '-m 0 -× 1000 -s 40 -l 35 -v 3 -r 2'. The read 
number of each gene was transformed into RPKM (reads 
per kilo bases per million reads), and then differentially 
expressed genes were identified using the DEGseq package 
and the MARS (MA-plot-based method with random sampling 
model) method. The threshold was set as FDR ≤0.001 and 
an absolute value of log2 ratio ≥1 to judge the significance 
of the difference in gene expression. To identify the main 
sources of variation in the dataset (PCA), we employed the 
FPKM values as the input for principal component analysis 
using the FactorMiner R package. The significance of the 
principal components was obtained with the Seurat package 
via a permutation test, after 1000 randomized samplings. 
Then, the data were analyzed by GO enrichment, KEGG 
enrichment or Metascape (http://metascape.org/gp/index.
html#/main/step1).

Western blotting

Western blotting analysis of proteins was carried out as 
previously reported (Zhang  et  al. 2016, Zhao  et  al. 2020b). 
Briefly, testicular tissue samples were lysed in RIPA buffer 
containing the protease inhibitor cocktail from Sangong 
Biotech, Ltd. (Shanghai, China). Protein concentration 
was determined using a BCA kit (Beyotime Institute of 
Biotechnology, Shanghai, China). Goat anti-glyceraldehyde 
3-phosphate dehydrogenase (GAPDH; Cat #: sc-48166, Santa 
Cruz Biotechnology, Inc., Dallas, Texas, USA) was used as a 
loading control. The remaining primary antibodies (Abs) were 
purchased from Abcam or Beijing Biosynthesis Biotechnology 
CO., LTD, (Beijing, China; Supplementary Table 1). Secondary 
donkey anti-goat Ab (Cat no.: A0181) was purchased from 
Beyotime Institute of Biotechnology, and goat anti-rabbit 
(Cat no.: A24531) Abs were bought from Novex® by Life 
Technologies. Fifty micrograms of total protein per sample 
were loaded onto 10% SDS polyacrylamide electrophoresis 
gels. The gels were transferred to a polyvinylidene fluoride 
(PVDF) membrane at 300 mA for 2.5 h at 4°C. The membranes 
were then blocked with 5% BSA for 1 h at RT, followed by three 
washes with 0.1% Tween-20 in TBS (TBST). The membranes 
were incubated with primary Abs diluted with 1:500 in TBST 
with 1% BSA overnight at 4°C. After three washes with TBST, 
the blots were incubated with the HRP-labeled secondary goat 
anti-rabbit or donkey anti-goat Ab respectively for 1 h at RT. 
After three washes, the blots were imaged. The bands were 
quantified using Image-J software. The intensity of the specific 
protein band was normalized to actin first, then, the data  
were normalized to the control. The experiment was 
repeated > six times.
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Detection of protein levels and location in testis using 
immunofluorescence staining

The methodology for immunofluorescence staining of 
testicular samples is reported in our recent publications 
(Zhang et al. 2016, Zhao et al. 2020b). Sections of testicular 
tissue (5 µm) were prepared and subjected to antigen retrieval 
and immunostaining as previously described (Wang  et  al. 
2018). Briefly, sections were first blocked with normal goat 
serum in PBS, followed by incubation with primary Abs 
(Supplementary Table 1; 1:100 in PBS-0.5% Triton X-100; 
Bioss Co. Ltd. Beijing, PR China) at 4°C overnight. After a brief 
wash, sections were incubated with an Alexa 546-labeled goat 
anti-rabbit secondary Ab (1:100 in PBS; Molecular Probes) 
at RT for 30 min and then counterstained with 4',DAPI. The 
stained sections were examined using a Leica Laser Scanning 
Confocal Microscope (LEICA TCS SP5 II, Germany). Ten animal 
samples from each treatment group were analyzed. Positively 
stained cells were counted. A minimum of 1000 cells were 
counted for each sample of each experiment. The data were 
then normalized to the control. 

Immunofluorescence staining for cells on cover slips

The cells on coverslips were fixed with 4% PFA overnight 
(Zhao et al. 2020b). Subsequently, the cells were treated with 
2% Triton X-100 in PBS for 30 min. After three washes with 
PBS, the cells were blocked with normal goat serum in PBS, 
followed by incubation with primary Abs (Supplementary Table 
1) at 4°C overnight. After a brief wash, sections were incubated 
with an Alexa 546-labeled goat anti-rabbit secondary Ab 
(1:100 in PBS) at RT for 30 min and then counterstained 
with DAPI. For actin formation, the cells were incubated 
with Phalloidin-TRITC for 1 h at RT, then counterstained with 
DAPI. The stained sections were examined using a Leica Laser 
Scanning Confocal Microscope (LEICA TCS SP5 II, Germany). 
The experiments were repeated at least six times. 

Statistical analysis

Data were statistically analyzed using the ANOVA function 
in SPSS statistical software (IBM Co.). Comparisons between 
groups were tested by one-Way ANOVA analysis and the 
LSD test. All groups were compared with each other for 
every parameter (mean ± s.e.m.). Differences were considered 
significant at P  < 0.05. 

Results

M5 knockdown disrupted mouse spermatogenesis, 
while M1 and M3 knockdown did not

The expression of M5, M1, and M3 mACHRs has been 
detected in mouse testes using specific antibodies 
(Supplementary Fig. 2). M5 and M1 receptor expression 
levels were increased in murine testes between 1 and 
6 weeks of age. However, M3 receptor expression was 
low in 1-week-old mouse testes while it was elevated 
at a consistent level between 3 and 6 weeks of age.  

These three receptors are expressed in Sertoli cells 
and germ cells. M5 and M1 receptors are mainly 
expressed in the perinuclei region, while M3 is mainly 
expressed in the nuclei, which is constant with the 
findings of Lucas et al (2008). Moreover, M1 is mainly 
present in spermatids of 6-week-old mice, while M5 
and M3 are present mainly in the early stages of germ  
cells (spermatogonia or spermatocytes; Supplementary 
Fig. 2). 

In order to differentiate the function of M5 from M1 
or M3, as they all couple to Gq/11, the expression of 
these receptors was modified in mouse testes during the 
current investigation. After M5 knockdown using shRNA, 
the protein level of the M5 receptor was decreased (Fig. 
1A and B; Supplementary Fig. 3). There was also some 
staining for M5 on the Leydig cells which indicated 
that these cells also expressed M5. The gene expression 
profile of mouse testes was then determined by RNA-
seq analysis. Compared to the control (shNC), 661 
genes were increased while 622 genes were decreased 
in shM5 mouse testis samples (Fig. 1C). Principal 
component analysis (PCA) showed that the shM5 and 
shNC groups were clearly separated (Fig. 1D). The genes 
decreased by shM5 were mainly enriched in the gamete 
generation, spermatogenesis, and male reproduction 
functional pathways in gene ontology (GO) enrichment 
analysis (Fig. 2A), while those genes increased by shM5 
were enriched in others not related to spermatogenesis 
signaling pathways (Fig. 2B). In order to search more 
deeply for the mechanisms of shM5 knockdown 
disruption of spermatogenesis, Kyoto Encyclopedia 
of Genes and Genomes (KEGG) enrichment analysis 
was performed. There were two signaling pathways 
'cell adhesion molecules (CAMs)' and 'ECM-receptor 
interaction' that were significantly enriched in the 
decreased genes (Fig. 2C), while they were not found 
in the increased genes (Fig. 2D). As we know, cell–
cell junctions (especially in the BTB) play vital roles in 
spermatogenesis and male fertility (Lee et al. 2005, Lui & 
Cheng 2012, Li et al. 2018b, Wen et al. 2018c). The data 
suggested that shM5 may damage cell–cell junctions in 
the testis to disrupt spermatogenesis. 

However, shM1 had some effect and shM3 had 
little effect on spermatogenesis (Supplementary Figs 
4 and 5). There were 263 genes increased and 550 
genes decreased by shM1 (Supplementary Fig. 4A). 
Furthermore, shM1 and shNC were clearly separated 
by PCA analysis (Supplementary Fig. 4B). A total of 404 
genes were increased and 724 genes were decreased by 
shM3 and PCA analysis showed that shM3 and shNC 
were also clearly separated (Supplementary Fig. 5A 
and B). GO enrichment analysis showed that there was 
one signaling pathway 'gamete generation' enriched 
in shM1 decreased genes (Supplementary Fig. 4C). In 
addition, no pathways related to spermatogenesis or 
male fertility were enriched by shM3 knockdown genes 
(Supplementary Fig. 5C). The data here suggested that 
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M1 or M3 may have a different role from M5 in mouse 
spermatogenesis.

Using GO enrichment analysis, the signaling pathways 
related to spermatogenesis and male reproduction 
for the shM5 group were separated and analyzed for 
their protein–protein network. The proteins in these 
pathways were connected together with the above-

mentioned signaling pathways (Fig. 3A). These proteins 
could be divided into three groups as shown in Fig. 
3B. Furthermore, we found that the levels of proteins 
important to spermatogenesis (Lee et al. 2005, Li et al. 
2018a, Wen  et  al. 2018b) (TP1, PGK2, CREM, and 
p-FSCN1) were decreased in shM5 mouse testis samples 
(Fig. 3C and D, Supplementary Fig. 6). Meanwhile, 

Figure 1 M5 knockdown by shRNA in mouse 
testes disrupted spermatogenesis in vivo. (A) 
The protein level of M5 was detected by 
immunofluorescence staining (IHF) in mouse 
testes after treatment with M5 shRNA for 10 
days. Scale bar: 50 µm. (B) The protein level of 
M5 was detected by Western blotting (WB) in 
mouse testes after treatment with shRNA for 
10 days. (C) Gene expression heatmap of 
mouse testicular samples after shRNA 
treatment for 10 days. (D) Principal 
component analysis (PCA) for gene expression 
in mouse testes. 

Figure 2 Enrichment analysis for RNA-seq data 
of mouse testes. (A) Gene ontology (GO) 
enrichment analysis of the genes decreased by 
shM5 treatment in mouse testes. (B) GO 
enrichment analysis of the genes increased by 
shM5 treatment in mouse testes. (C) Kyoto 
Encyclopedia of Genes and Genomes (KEGG) 
enrichment analysis of the genes decreased by 
shM5 treatment in mouse testes. (D) KEGG 
enrichment analysis of the genes increased by 
shM5 treatment in mouse testes. Q8
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Sertoli cell marker SOX9 remained unchanged by shM5 
(Fig. 3C). The data further suggested that shM5 upset 
spermatogenesis.

The genes (decreased by shM5) in 'cell adhesion 
molecules' and 'ECM-receptor interaction' pathways 
from KEGG enrichment analysis were further analyzed 
to determine their interactive network. These genes were 
connected together with the signaling pathways (Fig. 
4A). Furthermore, the protein levels of many cell–cell 
junction proteins such as claudin, occludin, Cx43, Cx37, 
JAM1, ZO-1, E-cadherin, and catenin were determined 
in mouse testis samples. Results showed that the cellular 
localization of occludin, E-cadherin, Cx37, and Cx43 
were changed by shM5 (Fig. 4B and C; Supplementary 
Fig. 6). The data here further indicated that shM5 may 
damage cell–cell junctions to disrupt spermatogenesis.

Knockdown M5 decreased cell–cell junction proteins 
in spermatogonia stem cells

To further search for the M5 mechanism during 
spermatogenesis, M5 expression was modified 
in spermatogonia stem cells (C18-4 cell line) 
(Hofmann et al. 2005, He et al. 2009) and Sertoli cells 
(TM4 cell line) (Ge et al. 2018). The protein level of M5 
in C18-4 cells was decreased by shM5 (Fig. 5A) and 
the gene expression profile in C18-4 cells after shM5 
treatment was significantly altered. An increase was 
seen in 239 genes, while 261 genes were decreased 
by shM5 compared to shNC (Fig. 5B). The PCA data 
showed that shM5 was clearly separated from shNC 
(Fig. 5C). Reactome and GO enrichment analyses 
showed that many signaling pathways were related to 

Figure 3 Network analysis of the genes related to spermatogenesis and male fertility in mouse testes. (A) The network of genes related to 
spermatogenesis and male fertility, and the signaling pathways enriched by GO analysis. (B) The network of genes related to spermatogenesis and 
male fertility enriched by GO analysis. (C) The protein level of TP1, PGK2, and SOX9 was detected by IHF in mouse testes after shM5 treatment. 
Scale bar: 25 µm. (D) The protein level of TP1, PGK2, CREM, and p-FSCN1 was detected by WB in mouse testes after shM5 treatment. 

https://rep.bioscientifica.com


https://rep.bioscientifica.com

M5 regulation of spermatogenesis 53

 Reproduction (2021) 162 47–59

the extracellular matrix and cell adhesion for the genes 
decreased by shM5 (Fig. 5D and E), but not for those 
genes that were increased (Supplementary Fig. 7A and 
B). Furthermore, cell cytoskeleton (actin) was detected in 
C18-4 cells after shM5 treatment, and it was noteworthy 
that actin formation was dramatically damaged by 
shM5 (Fig. 6A). Subsequently, the cell–cell junction 
proteins were determined to confirm the disruption to 
the cytoskeleton. All eight cell–cell junction proteins 
occludin, claudin, JAM1, Cx37, Cx43, E-cadherin, 
ZO-1, and catenin were decreased by shM5 compared 
to shNC (Fig. 6B; Supplementary Fig. 8). The data here 
suggested that M5 plays a vital role in cell–cell junction 
formation in germ cells.

M5 knockdown decreased cell–cell junction proteins 
in Sertoli cells

M5 protein levels in Sertoli cells (TM4 cell line) were 
decreased by shM5 (Fig. 7A). shM5 significantly 
changed the gene expression profile in TM4 cells. In 
total, 90 genes were increased and 566 genes were 
decreased by shM5 in TM4 cells (Fig. 7B). PCA analysis 
found that shNC and shM5 could be clearly separated 
(Fig. 7C). GO enrichment analysis found that 174 out of 
566 genes (decreased genes) were enriched into 'protein 
binding' functional signaling pathways which suggested 
that Sertoli cell junctions may be affected by shM5 
(Fig. 7D), but not for those genes that were increased 
(Supplementary Fig. 6C and D). The next step was to 
determine the cytoskeleton (actin formation) in TM4 
cells. It was found that actin formation was disrupted by 

shM5 in TM4 cells (Fig. 8A). At the same time, the protein 
levels of the eight cell junctional proteins occludin, 
claudin, JAM1, Cx37, Cx43, E-cadherin, ZO-1, and 
catenin were significantly reduced by shM5 in Sertoli 
cells (Fig. 8B; Supplementary Fig. 8). Furthermore, there 
were a few functional pathways related to Sertoli cell 
functions such as the MAPK signaling pathway, PI3K-
AKT pathway, and mTOR pathway that have been 
enriched in KEGG analysis for the genes decreased by 
shM5 in TM4 cells (Fig. 7E) (Ni  et  al. 2019). The data 
here suggested that shM5 upset the function of Sertoli 
cells, in particular, the cell junctions. 

Deep analysis discovered the overlap of functional 
pathways in both C18-4 and TM4 cells caused  
by shM5

Twenty-seven genes overlapped between C18-4 and 
TM4 cells by shM5 (Fig. 9A). Enrichment analysis of 
those 27 genes showed that they play important roles in 
intracellular signaling transduction and the extracellular 
matrix (Fig. 9B). One of the genes, Phldb2, not only 
plays an important role in AChR aggregation in the 
postsynaptic membrane (Xie  et  al. 2019) but it is also 
involved in cell adhesion formation and extracellular 
matrix formation (Stehbens et al. 2014, Lim et al. 2016). 
Phldb2 interacts with CLASP and filamins during its 
involvement in focal adhesion and extracellular matrix 
turnover (Fig. 9C) (Su et al. 2012, Stehbens et al. 2014). 
The expression of Phldb2 was decreased in both C18-4 
and TM4 cells. Furthermore, the protein levels of 
PHLDB2 were significantly decreased by shM5 in C18-4 

Figure 4 Network analysis of the genes related 
to cell–cell junctions in mouse testes. (A) The 
network of genes related to cell–cell junctions, 
and the signaling pathways enriched by GO 
analysis. (B) Protein levels of occludin, 
claudin, Cx43, and Cx37 were detected by 
IHF in mouse testes after shM5 treatment. 
Scale bar: 25 µm. (C) Protein level of occludin 
detected by WB in mouse testes after shM5 
treatment.
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Figure 5 RNA-seq analysis of mouse spermatogonia cells (C18-4) after shM5 treatment. (A) Protein level of M5 detected by IHF in C18-4 cells 
after shM5 treatment. Scale bar: 25 µm. (B) Gene expression heatmap of C18-4 cells after shM5 treatment. (C) PCA analysis for gene expression 
of C18-4 cells. (D) Reactome enrichment analysis of the genes decreased by shM5 treatment in C18-4 cells. (E) GO enrichment analysis of the 
genes decreased by shM5 treatment in C18-4 cells. 

Figure 6 shM5 disrupted the blood–testis 
barrier and ectoplasmic specialization (ES) 
proteins in C18-4. (A) Status of the cell 
cytoskeleton (actin) in C18-4 cells was 
detected by IHF after shM5 treatment. (B) 
Protein levels of the blood-testis barrier (BTB) 
and ectoplasmic specializations (ES) specific 
proteins occludin, claudin, E-cadherin, ZO-1, 
catenin, Cx43, Cx37, and JAM1 were detected 
by IHF in C18-4 cells after shM5 treatment. 
Scale bar: 25 µm.
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Figure 7 RNA-seq analysis of mouse Sertoli cells (TM4) after shM5 treatment. (A) Protein level of M5 detected by IHF in TM4 cells after shRNA 
treatment. Scale bar: 25 µm. (B) Gene expression heatmap of TM4 cells after shRNA treatment. (C) PCA analysis for the gene expression of TM4 
cells. (D) Reactome enrichment analysis of the genes decreased by shM5 treatment in TM4 cells. (E) GO enrichment analysis of the genes 
decreased by shM5 treatment in TM4 cells. 

Figure 8 shM5 disrupted the blood–testis 
barrier and ectoplasmic specialization (ES) 
proteins in C18-4. (A) Status of the cell 
cytoskeleton (actin) in TM4 cells was detected 
by IHF after shM5 treatment. (B) Protein levels 
of the BTB and ES specific proteins occludin, 
claudin, E-cadherin, ZO-1, catenin, Cx43, 
Cx37, and JAM1 were detected by IHF in TM4 
cells after shM5 treatment. Scale bar: 25 µm.
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cells (Fig. 9D; Supplementary Fig. 8) and TM4 cells (Fig. 
9E; Supplementary Fig. 8). 

Discussion

mAChRs include five subtypes (M1–M5) which are 
known to play various roles in the physiology and 
pathophysiology of different autocrine and neuronal 
systems. Activation of mAChRs is known to be involved 
in cell proliferation, differentiation, growth, and other 
functions in male reproductive systems. This activation 
could release EGF receptor ligands to bind to EGFR and 
could activate the extracellular signal-regulated kinase 
(ERK)1/2 pathway (Lucas et al. 2008) to stimulate Sertoli 
cell proliferation. However, there are currently no reports 
regarding the activation of mAChR on spermatogenesis. 
Although there are many similarities between M1, M3, 
and M5, their functions in mouse testes are very different. 

In the current investigation, we found that knockdown 
of M1 had some effect and knockdown of M3 had little 
effect on spermatogenesis, whereas M5 knockdown 
disrupted spermatogenesis and damaged the expression 
of proteins (claudin, occludin, Zonula occludens-1 (ZO-
1), junctional adhesion molecules (JAM1), connexin 43 
(Cx43), Cx37, E-cadherin, and catenin) in the blood–
testis barrier (BTB) and ectoplasmic specializations (ES)). 

Spermatogenesis is a choreographed process of 
diploid spermatogonia undergoing differentiation to 
produce haploid germ cells. During spermatogenesis, 
extensive remodeling at Sertoli cell–cell and Sertoli 
cell-germ cell interfaces takes place to accommodate 
the transport of developing germ cells across the BTB 
and adluminal compartment (Wen  et  al. 2018b). The 
BTB is made up of actin-based tight junctions (TJs) and 
gap junctions (GJs). The extracellular matrix (ECM) is 
involved in spermatogenesis by regulating the BTB 
since Sertoli cells are in physical contact with the 
basement membrane. Although the BTB plays vital role 
in the control of Sertoli cell–cell interactions, ES is a 
unique actin-rich AJ in the testes that regulates Sertoli 
cell-germ cell interactions. ES includes basal ES at the 
Sertoli cell–cell interface of the BTB, and the apical 
ES at the Sertoli–spermatid interface (Li  et  al. 2015). 
Actin-based cytoskeletons in Sertoli and germ cells 
play crucial roles in the regulation of homeostasis of 
the BTB and the cytoskeletal elements at the basal 
ES (Wen  et  al. 2018a). Even though there have been 
many recent reports that have highlighted the factors 
involved in the regulation of the BTB and ES (Li et al. 
2015, Wen  et  al. 2018a), the intriguing cross-talk 
mechanism(s) between basal and apical ES are still not 
fully understood, because the restructuring of the BTB 
close to the basement membrane and the disruption of 
the apical tubulobulbar complex (TBC) at the luminal 
edge of the epithelium happen almost concurrently 
(Li et al. 2015). In the current investigation, we aimed 
to explore the underlying mechanisms regulating the 
basal and apical ES. We found that shM5 disrupted 
mouse spermatogenesis in vivo and damaged the actin-
based cytoskeleton and many types of junction proteins 
in both Sertoli cells (TM4) and germ cells (C18-4). 
Claudin and occludin are major players in Sertoli cell 
TJs (McCabe et al. 2016). Cadherins, AJ transmembrane 
proteins, are reported to be present at the basal ES 
(Lee  et  al. 2003). Catenins and ZO-1, the peripheral 
adaptors of basal ES and TJs, are involved in the 
engagement/disengagement mechanism between basal 
ES and TJsto make the BTB one of the 'tightest' barriers 
in the mammalian body (Yan & Cheng 2005). Connexin 
43, connexin 37, and JAMs have also been found to 
play important roles in cell–cell junctions (Zhang & 
Lui 2015, Li et al. 2016). In the current investigation, 
claudin, occludin, ZO-1, JAM1 Cx43, Cx37, E-cadherin, 
and catenin were found to be decreased by shM5 in 

Figure 9 Phldb2 pathway involved in the disruption of the blood-
testis barrier (BTB) and ectoplasmic specialization by knockdown M5 
in C18-4 and TM4 cells in vitro. (A) Summary of gene expression 
after shM5 treatment in C18-4 and TM4 cells. (B) The enrichment 
data of the 27 genes (overlay in both C18-4 and TM4 cells) by 
Metascape online. (C) Gene network of the PHLDB2 signaling 
pathway. (D) Protein levels of PHLDB2 in C18-4 cells after shM5 
treatment. Scale bar: 25 µm. (E) Protein levels of PHLDB2 in TM4 
cells after shM5 treatment. Scale bar: 25 µm.
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spermatogonial cells (C18-4) and Sertoli cells (TM4). 
Our data suggested that M5 may be involved in ES and 
BTB restructuring to regulate spermatogenesis. 

Phldb2 (pleckstrin homology-like domain, family 
B, member 2) is a PH domain-containing protein 
that is highly sensitive to phosphatidylinositol 
3,4,5-triphosphate (PIP3) as well as PIP2 (Xie et al. 2019). 
Phldb2 plays important role in AChR aggregation in the 
postsynaptic membrane (Xie  et  al. 2019). Moreover, 
Phldb2 can associate with CLIP-associating proteins 
(CLASPs), Prickle 1, and Liprin α1 to be involved in 
focal adhesion disassembly and cell polarization and 
migration (Astro  et  al. 2014, Lansbergen  et  al. 2006, 
Lim  et  al. 2016). Podosomes are actin-rich, dynamic 
structures capable of remodeling the extracellular matrix 
(ECM) and have been found in many types of cells 
such as osteoclasts, macrophages, and epithelial cells. 
Podosomes present around AChR aggregates are called 
'synaptic podosome' (Proszynski & Sanes 2013). The 
cytoskeleton- and membrane-associated protein Phldb2 
is known to be one of the key components of synaptic 
podosomes, and its upset perturbs AChR clustering in 
cultured myotubes (Kishi et al. 2005). In the current study, 
we found that shM5 decreased Phldb2 expression in 
both germ cells and Sertoli cells. Therefore, Phldb2 may 
regulate the cytoskeleton (actin) and other junctional 
proteins (claudin, occludin, Cx43, ZO-1, cadherin, and 
catenin) to control BTB and ES formation that in turn 
affect spermatogenesis. Since Phldb2 interacts with 
AChR, the mAChR M5 knockdown may upset Phldb2 
and disrupt the BTB and ES to damage spermatogenesis. 

In summary, our investigation has elucidated a novel 
role for mAChR M5 in the regulation of spermatogenesis 
through Phldb2 regulation of the BTB and ES. Further 
studies on the cross-talk between M5 and Phldb2, and 
among Phldb2, BTB, and ES will shed light on our 
understanding of the mechanisms of M5 in the regulation 
of the BTB/ES and spermatogenesis.
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