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The chronic low-grade inflammation of adipose tissues, primarily mediated by adipose
tissue macrophages (ATMs), is the key pathogenic link between obesity and metabolic
disorders. Oleanolic acid (OA) is a natural triterpenoid possessing anti-diabetic and anti-
inflammation effects, but the machinery is poorly understood. This study investigated the
detailed mechanisms of OA on adipose tissue inflammation in obese mice. C57BL/6Jmice
were fed with high-fat diet (HFD) for 12 weeks, then daily intragastric administrated with
vehicle, 25 and 50mg/kg OA for 4 weeks. Comparing with vehicle, OA administration in
obese mice greatly improved insulin resistance, and reduced adipose tissue hypertrophy,
ATM infiltration aswell as theM1/M2 ratio. The pro-inflammatorymarkers were significantly
down-regulated by OA in both adipose tissue of obesemice and RAW264.7macrophages
treated with interferon gamma/lipopolysaccharide (IFN-γ/LPS). Furthermore, it was found
that OA suppressed activation of mitogen-activated protein kinase (MAPK) signaling and
NACHT, LRR, and PYD domain-containing protein 3 (NLRP3) inflammasome through
decreasing voltage dependent anion channels (VDAC) expression and reactive oxygen
species (ROS) production. This is the first report that oleanolic acid exerts its benefits by
affecting mitochondrial function and macrophage activation.

Keywords: oleanolic acid, obesity, inflammation, macrophages, ROS

INTRODUCTION

In recent years, obesity has become a seriously global threat to human health, which also
lowers the quality of people’s life. The association of obesity with chronic inflammation
contributes to a variety of metabolic diseases such as atherosclerosis, cardiovascular disease,
insulin resistance (IR) and type 2 diabetes (Xu et al., 2003; Fernández-Sánchez et al., 2011; Yao
et al., 2017). It has been found that obesity-induced inflammation begins with white adipose
tissue (WAT), accompanied with the steady development to IR, and eventually the
inflammation become systemic (Xu et al., 2003). Immune cells, especially macrophages,
are key players in this development of inflammation in obese individuals (Shoelson et al.,
2007). In obese mice, the up-regulation of macrophage-related genes is mainly induced in
WAT (Xu et al., 2003). The adipose tissue macrophage (ATM) is essential in the pathogenesis
of obesity and related metabolic disorders, both in genetic and diet-induced overweight
rodents and obese patients (Weisberg et al., 2003).
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ATMs account for only 10% of the total cells of the normal
adipose tissue, while as high as 41% for the obese tissue (Weisberg
et al., 2003). In lean mice, the majority of ATMs consist of F4/
80+CD11b+CD206+ macrophages, also defined as the
alternatively activated M2 macrophages. Differently, the main
population of ATMs in obese mice is F4/80+CD11b+CD11c+

macrophages, known as the classically activated M1macrophages
(Lumeng et al., 2008). M1 macrophages are the main source of
inducible nitric oxide synthase (iNOS) (Dallaire et al., 2008) and
pro-inflammatory cytokines such as interleukin-6 (IL-6), tumor
necrosis factor-alpha (TNF-α) (Lumeng et al., 2007a), in adipose
tissues (Hill et al., 2014). M2 macrophages secrete anti-
inflammatory cytokines such as arginase 1 (ARG1), mannose
receptor C type 1 like protein 1 (MRC1) and IL-10 (Xiao et al.,
2016). A large number of M1 macrophages can form a crown-like
structure (CLS) around dying adipocytes in obese individuals
(Lumeng et al., 2008). This formation is associated to the obesity-
related IR and other processes. Several lines of evidence indicate
that the obesity-related IR and inflammation can be improved by
reduction of ATM infiltration or alternation of ATM polarization
(Zhao et al., 2015; Zhuge et al., 2016; Jing et al., 2017; Ni et al.,
2020). The specific depletion of M1 macrophages restores insulin
sensitivity in diet-induced obese mice (David et al., 2008),
whereas reducing the number of M2 macrophages predisposes
lean mice to IR (Odegaard et al., 2007). Therefore, reducing
macrophage infiltration in epidydimal white adipose tissue
(eWAT) or inhibiting M1 polarization of ATMs can be a
potential direction for seeking novel therapeutic targets for IR.

Chronic inflammation and oxidative stress reinforce each
other in obesity. For example, macrophage infiltration into
WAT leads to up-regulation of lipolysis (Samuel and Shulman,
2016), resulting in an increase of free fatty acid (FFA) and
consequently reactive oxygen species (ROS) overproduction
(Hurrle and Hsu, 2017). This overproduction results in
oxidative stress by overwhelming the cellular antioxidant
defense system (Furukawa et al., 2004), and promotes pro-
inflammatory M1 macrophage activation, followed by
induction of TNFα and monocyte chemoattractant protein-1
(MCP1) (Cruz et al., 2007; Lumeng et al., 2007b).
Furthermore, this impairs the insulin signaling (Manna and
Jain, 2015; Tangvarasittichai, 2015) and activates cellular
stress-sensitive pathways such as mitogen-activated protein
kinases (MAPKs) (Gan et al., 2016; Zhao et al., 2019),
NACHT, LRR, and PYD domain-containing protein 3
(NLRP3) inflammasome (Sorbara and Girardin, 2011), etc.
Many factors can act to expression of ROS to regulate
oxidative stress and inflammation, and voltage dependent
anion channels (VDAC) is one of them (Zhou et al., 2011).

As a natural triterpenoid, oleanolic acid (OA) widely exists in a
variety of fruits such as apples, grapes, dates and pomegranates, as
well as olive oil (Fai and Tao, 2009). Recent studies have shown
OA’s pleiotropic benefits. For example, OA has been applied as an
over-the-counter drug against human liver disease in China
(Pollier and Goossens, 2012). OA has also been proved to
have hypolipidemic (Wang et al., 2013), antioxidant (Su et al.,
2018) and anti-inflammatory (Lee et al., 2013) activities, with a
reductive effect on IR. Several recent studies reported that OA

treatment decreased serum levels and gene expression of the pro-
inflammatory cytokines in mice with obesity or related metabolic
diseases (Zohra et al., 2018; Gamede et al., 2019; Matumba et al.,
2019), but little is known whether OA improves inflammation in
adipose tissue, and the underlying mechanisms have yet to be
elicited. Besides, all the studies on improving IR mentioned above
are animal models of prophylactic administration.

In this study, we demonstrated that OA improved HFD-
induced IR, oxidative stress, adipocyte hypertrophy and
adipose chronic inflammation in therapeutic administration
mice model. The anti-inflammatory effects of OA were
associated with reduction of ATM infiltration and its
polarization to M1. OA attenuated the expression of interferon
gamma/lipopolysaccharide (IFN-γ/LPS)-induced M1 marker
genes in RAW 264.7 macrophages, presumably by reducing
VDAC expression and ROS production to inhibit activation of
MAPK signaling and NLRP3 inflammasome. These data suggest
that in diet-induced obese mice, OA attenuates oxidative stress
and chronic inflammation in the adipose tissue, thereby
preventing IR.

MATERIALS AND METHODS

Animals
Animal experiments were performed in accordance with the
National Institutes of Health Guide for the Care and Use of
Laboratory Animals with approval from the Ethics Committee of
Chongqing Medical University. C57BL/6J male mice (4–6 weeks
old, n � 21) were maintained under standard recommended
conditions in the Laboratory Animal Center of Chongqing
Medical University. Briefly, mice were housed in colony cages
under 12-h light-dark cycles at 23 ± 1°C. Animals were on the
standard diet for 2 weeks prior to the experiments, and then the
mice were fed with a high-fat diet (HFD) (60% fat; Research Diets,
United States) for 12 weeks. After that, the body weight curve of
these mice were compared to that of the control mice on normal
diet (ND), and glucose tolerance test (GTT) was performed to
evaluate the success of obesity model. Then the mice were
randomly divided into three groups (n � 7 per group). The
groups were further fed on high fat diet while receiving vehicle
(5% Gum Arabic solution) (Sangon, China, dissolved in ddH2O),
OA 25 mg/kg or OA 50 mg/kg (selleck, United States, suspended
in 5% Gum Arabic solution) per day individually by intragastric
administration for 4 weeks, followed by a measurement of mice’s
body weight and GTT. Finally, the mice were overnight fasted,
assessed for the level of fasting blood glucose (FBG), and then
sacrificed. The blood and WAT samples were collected for the
follow-up experiments.

Glucose Tolerance Test
The mice were fasted for 14 h for GTT, followed by
measurements of body weight and FBG. Mice were then
injected intraperitoneally with glucose solution. The blood
glucose levels at 30, 60, 90 and 120 min were monitored.
Notably, the obese mice fed with HFD for 12 weeks were
administered with 50% glucose solution (2 mg/g body weight)
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while the obese mice intragastric administrated for 4 weeks
received 25% glucose solution (1 mg/g body weight), due to
the fact that the mice at this stage were more obese and their
blood glucose levels were prone to exceed the detection limit).

Cell Culture
RAW264.7 (ATCC, United States) macrophages were grown in
DMEM (Gibco, United States) supplemented with 10% fetal
bovine serum (FBS) (Gibco), 1% penicillin/streptomycin (P/S)
(Beyotime Biotechnology, China) at 37°C with 5% CO2.

Femurs and tibias were isolated from male C57BL/6J mice of
6–8 weeks old and briefly sterilized by 70% ethanol. The bone
marrow cells were resuspended in DMEM medium with 10%
FBS, 1% P/S, and Macrophage Colony-Stimulating Factor
(M-CSF) (10 ng/ml) (PeproTech, United States). The bone
marrow-derived macrophages (BMDMs) were ready for
further experiments after 7–10 days.

The inflammatory macrophages were established by
additional 20 ng/ml IFN-γ (PeproTech) and 100 ng/ml LPS
(Sigma-Aldrich, United States) treatment for 16 h. OA was
prepared with DMSO (Sigma-Aldrich) as a stock solution of
50 mmol/L.

Cell Viability
The cytotoxic effects of OA to RAW 264.7 cells were evaluated by
the Methyl Thiazolyl Tetrazolium (MTT) assay, as previously
described (Huang et al., 2020). In general, the seeded RAW 264.7
cells were incubated with OA and IFN-γ/LPS for 16 h, mixing
withMTT, and then assayed for cell viability. The absorbance was
monitored by a microplate reader at the wavelength of 490 nm
(Supplementary Figure 1).

Histological and Immunofluorescence
Staining
Epidydimal white adipose tissue (eWAT) and inguinal white
adipose tissue (iWAT) were fixed in 4% paraformaldehyde,
embedded in paraffin after dehydration with a series of
ethanol solution, and cut into slides with the thickness of
5 μm, then stained with hematoxylin and eosin (H&E).
AdipoCount 1.1 was used to calculate the adipocyte area.

Immunofluorescence was performed to evaluate the
macrophages recruitment to adipose tissues by immune-
staining. The sections were heated in citric acid repair solution
for antigen repair and then blocked with 5% normal donkey
serum for 2 h. Shook off the serum and added F4/80 antibody
(PBST dilution: 0.1% Tween-20 and 0.5% BSA, 1:100 dilution)
dropwise, and incubated the sections in a wet box at 4°C overnight
(>8 h). The next day, took out the wet box and rewarming for
more than 30 min, rinsed the sections in PBS, added the
corresponding fluorescent secondary antibody (1:500 dilution)
and incubate it in a wet box at room temperature for 1 h. Rinsed
the sections in PBS again and stained the nuclei with DAPI (4′,6-
Diamidino-2-28 phenylindole dihydrochloride) for 10 min at
room temperature. Fully rinsed the sections in PBS, dried the
remaining PBS buffer solution, covered with 50% glycerol
(diluted with PBS), and applied nail polish around the cover

slides to block the air. Immediately observed the sections under a
fluorescence microscope (Olympus, Japan).

Enzyme-Linked Immunosorbent Assay and
Biochemical Determination
Serum insulin levels were determined by ELISA kit (Millipore,
United States) and the standard operation steps were according to
the manufacturer’s protocol. Serum TG, FFAs, and T-CHO levels
(Nanjing Jiancheng Company, China), and SOD, Gpx activities
(Beyotime Biotechnology, China) were measured using
commercial kits according to the manufacturer’s instructions.
Optical density (OD) was determined on a microplate reader.
HOMA-IR index � [fasted insulin (μIU/ml) × fasted glucose
(mmol/L)]/22.5 (Neuschwander-Tetri, 2010). Adipo-IR index �
fasted insulin (mmol/L) × fasted NEFA (pmol/L) (Musso et al.,
2012).

Quantitative Real-Time PCR
Total RNA was isolated from eWAT or cells using TRIzol
Reagent (Thermo Scientific, 15596026, United States). For
qRT-PCR, 1 μg total RNA from each sample was reverse-
transcribed by using a Revert Aid first-strand cDNA synthesis
kit (Thermo Scientific, 00698284, United States). The cDNA
products were amplified using Quantstudio3/5 (Thermo
Scientific, United States) real-time PCR instrument with the
Power SYBR Green PCR Master Mix (Thermo Scientific,
00736756, United States). The expression levels of target genes
were calculated using the 2−ΔΔCT method with normalization to
the standard housekeeping gene 18s, and expressed as relative
mRNA levels compared with internal control. Primers used for
qRT-PCR are shown in Table 1.

Western Blot
Cells were lyzed in cell lysis buffer on ice for 30 min. The tissue
samples were sonicated (70 Hz, 90 s) in cell lysis buffer, followed by
an additional incubation on ice for 20min. Then the lysates were
centrifuged at 4°C for 15min at the speed of 12,000 rpm. The protein
in the collected supernatant was degenerated under 100°C and then
quantitated. Equal amounts of protein samples were loaded on SDS-
PAGE gels, separated by electrophoresis, and transferred onto PVDF
membranes. After being blocked with 5% skimmilk, themembranes
were incubated over-night at 4°C with the primary antibodies and
1 h at room temperature with appropriate secondary HRP-
conjugated antibodies. Antibodies are shown in Table 2.

Flow Cytometry Analysis
Adipose tissues were minced in PBS containing 0.075%
collagenase (Sigma-Aldrich, C2139, United States). After
incubated at 37°C for 30 min and filtrated with 100 mesh
filter, cell suspensions were centrifuged at 1,500 rpm for 5 min
to remove adipocyte. Isolated stromal vascular fraction (SVF)
pellet was collected from the bottom. The SVF pellet was
resuspended in PBS containing 3% BSA, then red blood cell
lysis buffer was added and incubated for 3 min. After washing in
3% BSA, bottom cells were incubated with Fc-Block (CD16/32,
12-0161-85, ebioscience) for 20 min at 4°C. Antibodies against
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CD45-FITC (11-0451-82, ebioscience), F4/80-PE (123110,
Biolegend), CD11b-PerCP/Cy5.5 (101227, Biolegend), CD206-
APC (141707, Biolegend) and CD11c-APC (117310, Biolegend)
were added, and incubated for 20 min followed by washing in PBS
containing 3% BSA. Data analysis and compensation were
performed using BD Accuri C6 Plus.

RAW264.7 macrophages were digested with trypsin and
terminated with PBS containing 3% BSA, then centrifuged,
resuscitated and incubated with Fc-Block. The following steps were
the same as above.

In Vitro Chemotaxis Assay
For the migration assay, 100,000 BMDMs were placed in the
upper chamber of an 8 μm polycarbonate filter (24-transwell
format; Corning, United States), whereas the corresponding
conditioned medium was placed in the lower chamber. After
16 h, cells were fixed in formalin, stained with crystal violet and
observed under the microscope.

Mitochondrial Reactive Oxygen Species
Determination
Mitochondrial ROS level was determined using MitoSOX™ Red
mitochondrial superoxide indicator (Invitrogen, United States)

and FCM analysis. The specific operation steps were according to
the manufacturer’s protocol.

Statistical Analysis
All data are presented as means ± SEM. Mean value differences
between two groups were assessed by two-tailed Student’s t-test. p
values less than 0.05 were considered to be statistically significant.
Statistical analyses were performed with Graph Pad Prism 8.

RESULTS

Oleanolic Acid Significantly Improves
Metabolic Dysfunction in Obese Mice
Induced by High-Fat Diet
The obese murine model was applied here to study the effect of
OA on obesity-related metabolic dysfunction. C57BL/6J mice
were fed with HFD for 12 weeks, and the mice body weight
increased significantly, the impaired glucose tolerance suggested
establishment of the obesity model, compared with the mice fed
with ND (Supplementary Figure 2). Then the obese mice were
intragastric administrated with vehicle, 25 mg/kg or 50 mg/kg
OA for 4 weeks. The tested OA concentration was adapted from
previous studies that used doses of 20, 40, 250 mg/kg/day, or
50 mg/kg/3 days in mice (Wang et al., 2015; Su et al., 2018;
Nakajima et al., 2019), and 5–100 mg/kg/day in rats (Ying
et al., 2014; Lee et al., 2016; Matumba et al., 2019).

OA administration in obese mice lowered the bodyweight
(Figure 1A) while improved glucose tolerance (Figure 1B),
fasting insulin level (Figure 1C) and HOMA-IR index
(Figure 1D). Consistently, OA administration also induced
activation of the AKT pathway, which is considered as a
marker event of insulin sensitivity improvement (Figure 1E).
Moreover, OA decreased basal plasma concentrations of total
cholesterol (TC), triglyceride (TG) and FFA (Figure 1F). In
addition, the Adipo-IR index (Figure 1F) was decreased by
OA treatment. Obesity-related IR can up-regulate lipolysis
(Degerman et al., 2003) and increase FFA levels. Figure 1G
showed the ratio of phosphorylated hormone sensitive lipase
(p-HSL) to HSL, which usually used as the indicator of adipose
lipolysis, was down-regulated by OA treatment. The 25 mg/kg

TABLE 1 | Primer sequences (5′ to 3′).

Gene Forward Reverse

18s CGCCGCTAGAGGTGAAATTCT CATTCTTGGCAAATGCTTTCG
F4/80 CTTTGGCTATGGGCTTCCAGTC GCAAGGAGGACAGAGTTTATCGTG
iNOS CAGAGGACCCAGAGACAAGC TGCTGAAACATTTCCTGTGC
MCP1 CTGGATCGGAACCAAATGAG CGGGTCAACTTCACATTCAA
IL-6 GACAACCACGGCCTTCCCTAC TCATTTCCACGATTTCCCAGA
TNFα CGTCGTAGCAAACCACCAA GGGCAGCCTTGTCCCTTGA
MRC1 CTCTGTTCAGCTATTGGACGC TGGCACTCCCAAACATAATTTGA
IL-10 GGACAACATACTGCTAACCG TTCATGGCCTTGTAGACACC
Caspase-1 CCTTCATCCTCAGAAACAAAGG CATTATTGGATAAATCTCTGAAGG
IL-1β GCTGCTTCCAAACCTTTGACC GAGTGATACTGCCTGCCTGAA
IL-18 GACTCTTGCGTCAACTTCAAGG CAGGCTGTCTTTTGTCAACGA

TABLE 2 | Antibodies for WB.

Antibody Source Company Catalog no.

β-actin Rabbit Cell Signaling Technology #4967
p-Akt Rabbit Cell Signaling Technology #4058
Akt Rabbit Cell Signaling Technology #9272
p-HSL Rabbit Novus NBP3-05459
HSL Rabbit Cell Signaling Technology #4107
p-JNK Rabbit Cell Signaling Technology #4668
JNK Rabbit Cell Signaling Technology #9252
p-ERK Rabbit Cell Signaling Technology #9101
ERK Rabbit Cell Signaling Technology #9102
p-p38 MAPK Rabbit Cell Signaling Technology #9211
P38 MAPK Rabbit Cell Signaling Technology #9212
Caspase-1 (tissue) Mouse Santa Cruz sc-56036
Caspase-1 (cell) Rabbit Proteintech 22915-1-AP
VDAC Rabbit Cell Signaling Technology #4661
IL-1β Hamster Santa Cruz sc-12742
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dose of OA treatment hadmaximal effect on these improvements.
These data showed that OA could improve glucose and lipid
metabolism in HFD-induced obese mice. Notably, the
improvement in inflammation, glucose tolerance, and insulin
sensitivity in the OA-treated mice also sustained in the body-
weight matched groups (Supplementary Figure 3).

Oleanolic Acid Treatment Reduces the
Adipocyte Hypertrophy and the
Macrophages Infiltration Into Epidydimal
White Adipose Tissue
Figure 1 has shown that OA treatment improves IR, thus we next
tried to underline how OA treatment achieves its effects on IR. It

is known that changes in adipocyte morphology and infiltration
of macrophages in adipose tissue contribute to IR development
(Xu et al., 2020), we then examined the effect of OA on adipocyte
morphology and macrophage infiltration. As shown in
Figure 2A, OA treatment reduced the ratio of adipose tissue
weight to body weight, and significantly decreased the adipocyte
size in HFD-treated mice (Figures 2B,C). HE staining and
immunofluorescence showed fewer CLSs in the eWAT after
OA treatment, which suggested a decreased macrophage
accumulation (Figures 2B,D). The mRNA expression of F4/80
(amacrophage marker) in eWATwas evaluated by qPCR, and the
proportion of F4/80+ cells in eWAT was measured by FCM. The
results showed a decreasing trend of macrophage infiltration by
OA treatment (Figures 2D,E).

FIGURE 1 |OA improves glucose and lipid metabolism and alleviates diet-induced IR. (A) Body weight of mice in vehicle, 25 mg/kg OA, 50 mg/kg OA group at the
end of the experiment (n � 7). (B)Glucose tolerance test (GTT) in mice after 4 weeks of OA treatment (n � 7). (C) Fasting plasma insulin levels (n � 7). (D) HOMA-IR index
(n � 7). (E)Western blots of phospho-Ser473 Akt (p-Akt), and Akt in eWAT of mice. (F) Plasma concentrations of triglyceride, total cholesterol, FFA at baseline (fasted),
and Adipo-IR index (n � 5–7). (G)Western blots of phospho-Ser660 HSL (p-HSL), and HSL in the eWAT of mice. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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FIGURE 2 |OA diminishes adipocyte size and reduces macrophage infiltration to eWAT in DIOmice. (A) Ratio of eWAT/iWAT to body weight of mice (n � 7). (B)HE
staining results of eWAT and iWAT. Scale bars � 100 µm. (C) Statistics of the adipocyte area (n � 51–76). (D) F4/80 immunofluorescence staining, mRNA expression
(n � 5) and CLSs statistics (n � 9) of eWAT. Scale bars � 50 µm. (E) Representative plots and statistics of FCM analysis: total ATMs to the SVF of eWAT and iWAT (n � 5).
(F) Transwell results of BMDMs, scale bar � 100 µm (n � 6).*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001 vs. vehicle or control incubations, ††p < 0.01 vs. IFN-
γ/LPS stimulated incubations.
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Macrophages infiltrating adipose tissue are generally chemotactic
from peripheral blood. In order to further confirm whether OA
could reduce the chemotaxis of macrophages, the effect of OA on
macrophage migration under inflammatory condition was assayed

using trans-well chemotaxis assay in vitro. As shown in Figure 2F,
OA significantly inhibited IFN-γ/LPS-induced macrophage
migration. These data suggested that OA decrease macrophage
infiltration by inhibiting chemotaxis of macrophages.

FIGURE 3 | OA decreases eWAT inflammation level and ratio of M1/M2 ATMs in DIO mice. (A) ATMs associated markers in eWAT (n � 5). (B) WB of
phosphorylated p38 MAPK (p-p38 MAPK), phosphorylated JNK (p-JNK), phosphorylated ERK (p-ERK), and their total proteins in eWAT of mice. (C–F) FCM analysis of
the SVF of eWAT and iWAT of mice (n � 5). (C, E) Representative plots of FCM analysis: proportion of M1 or M2macrophages to ATMs. (D, F) Statistics of FCM analysis.
Data are percentages of M1 ATMs, percentages of M2 ATMs, and M1/M2 ratios. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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FIGURE 4 | OA reduces inflammation and M1 polarization in RAW264.7 macrophages stimulated by IFN-γ/LPS. (A) OA suppresses the increase of IFN-γ/LPS
induced M1 markers mRNA expression in RAW264.7 macrophages (n � 3). (B) WB of phosphorylated p38 MAPK (p-p38 MAPK), phosphorylated JNK (p-JNK),
phosphorylated ERK (p-ERK), and their total proteins in RAW264.7 macrophages. (C) FCM analysis of the M1 ratio of RAW264.7 macrophages (n � 3). **p < 0.01,
***p < 0.001, ****p < 0.0001 vs. control incubations, †p < 0.05, ††p < 0.01, †††p < 0.001, ††††p < 0.0001 vs. IFN-γ/LPS stimulated incubations.
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Oleanolic Acid Attenuates Inflammation and
Changes the Proportion of M1 and M2
Macrophages in Adipose Tissue of High-Fat
Diet Mice
An significant increase in ATM infiltration is often observed in eWAT
rather than iWAT in the process of obesity (Gómez-Ambrosi et al.,
2004; Cancello et al., 2005; Amano et al., 2014). Consequently,
infiltrated ATM induced expression of inflammatory markers that
play key regulatory roles in the development of obesity-related IR
(Dong et al., 2014). Here we next investigated whether OA treatment
can impact inflammation in eWAT. The qPCR results showed that
pro-inflammatory markers derived from M1 macrophages (iNOS,
MCP1, TNFα) were significantly down-regulated in eWAT of OA
administrated mice compared with the vehicle treated mice
(Figure 3A). The decreased expression of M2 macrophage related
genes in eWAT (Figure 3A) may be due to the decrease in the total
number of infiltrated macrophages in adipose tissue after OA
treatment. These findings were associated with attenuated
phosphorylation of c-Jun N-terminal kinase (JNK) and extracellular
signal-regulated kinase (ERK) (the key proteins in MAPK signaling
pathway) in eWAT of diet-induced obesity (DIO) mice (Figure 3B).

To explain how inflammation is down-regulated in eWAT of
OA-administrated mice, we tested whether this decrease is due to
regulation of macrophages polarization in eWAT. FCM analysis
showed that the proportion of M1 ATMs decreased in WAT of
obese mice with OA treatment, whereas the proportion of M2
ATMs increased, the ratio of M1/M2 decreased significantly
(Figures 3C–F). The polarity transition of ATMs could lead
toward an anti-inflammatory phenotype.

Taken together, these results suggested that OA treated mice
showed attenuated inflammation and decreased M1/M2 ratio in
WAT of DIO mice.

Oleanolic Acid Decreases Inflammation and
Inhibits M1 Polarization Induced by IFN-γ/
LPS in Macrophages In Vitro
Given the association between OA treatment and ATM polarization
in obese mice, RAW264.7 macrophages and bone marrow-derived
macrophages (BMDMs) were engaged to determine whether OA
directly regulates macrophage activation and/or polarization.
Consistently with results in vivo, the expression levels of M1
marker genes (iNOS, MCP1, IL-6 and TNFα) were decreased in
these macrophages stimulated with the combination of IFN-γ/LPS
and OA (Figure 4A; Supplementary Figure 4B), and the
phosphorylation of JNK, ERK and p38 were also inhibited by the
treatment as expected (Figure 4B; Supplementary Figure 4A).
Furthermore, flow cytometry analysis showed that OA significantly
inhibited the IFN-γ/LPS induced M1 polarization (Figure 4C).

Oleanolic Acid Resists the Activation of
NLRP3 Inflammasome by Blocking Voltage
Dependent Anion Channels and Reducing
Reactive Oxygen Species Production
To investigate how OA reduce adipose tissue inflammation and
inhibit macrophage M1 polarization, we further tested whether it

depends on regulating activation of the NLRP3 inflammasome.
The NLRP3 inflammasome (NLRP3/ASC/caspase-1 complex) is
a key player of inflammation and M1 macrophage polarization
(Ślusarczyk et al., 2018), and plays a central role in the induction
of obesity and IR (Stienstra et al., 2011; Vandanmagsar et al.,
2011).

We firstly examined the expression of caspase-1, which was
the effector of NLRP3 inflammasome, in RAW264.7, BMDMs
and mice eWAT. The data showed that the up-regulation of
caspase-1 induced by IFN-γ/LPS or DIO was inhibited
significantly by OA treatment (Figures 5A–D; Supplementary
Figures 5A,B). Consistently, the levels of IL-1β and IL-18, the
inflammatory cytokines processed by inflammasome, were also
decreased significantly with OA treatment (Figures 5B,D;
Supplementary Figure 5B). Our results suggested that OA
could resist the activation of NLRP3 inflammasome.

Due to ROS production in macrophages triggers the activation
of NLRP3 inflammasome (Dostert et al., 2008; Eisenbarth et al.,
2008), the levels of the mitochondrial ROS was detected. Figures
5E,F revealed that OA attenuated the up-regulation of ROS
production induced by IFN-γ/LPS stimulation in RAW
264.7 cells.

Voltage dependent anion channels, the most abundant
proteins of the outer mitochondrial membrane (Colombini,
2004), is known to regulate mitochondrial ROS production
(Da-Silva et al., 2004) and associated with the NLRP3
inflammasome (Wolf et al., 2016). Previous investigators had
noted that the knockdown of the VDAC somehow blocks NLRP3
inflammasome activation (Zhou et al., 2011). With IFN-γ/LPS
stimulation in vitro or DIO in vivo, VDAC protein levels were up-
regulated, which is consistent with ROS production. However,
OA attenuated the increase of VDAC protein levels (Figures
5A,C; Supplementary Figure 5A).

To further determine whether OA improves inflammation and
regulates macrophage polarization through VDAC and ROS,
rotenone (selleck, United States, 10 μmol/L), a mitochondrial
complex Ι inhibitor that can lead to the up-regulation of
VDAC and robust ROS production (Zhou et al., 2011; Jiang
et al., 2017), was added 6 h before cell harvest to counteract the
effects of OA on VDAC expression and ROS production in
RAW264.7 macrophages. We observed that the addition of
rotenone up-regulated VDAC, increased the production of
ROS, and significantly weakened the anti-inflammatory and
the inhibition effect of the MAPK pathway and inflammasome
activation of OA. In addition, inhibition of VDAC by the
inhibitor VBIT-12 (selleck, United States, 20 μmol/L) in
RAW264.7 macrophages treated with IFN-γ/LPS mimicked
the OA’s effects (Figure 6). Endogenous antioxidant enzymes
such as superoxide dismutase (SOD) and glutathione peroxidase
(GPx) have been known as the main regulator in the
mitochondrial ROS production, and their activation can lead
to the remission of inflammatory response (Gasparrini et al.,
2017; Zhao et al., 2020).We found that OA increased the activities
of SOD and GPx in RAW264.7 macrophages stimulated by IFN-
γ/LPS, while rotenone attenuated this effect. As expected, VBIT-
12 also increased the activities of SOD and GPx (Figure 6H).
Taken together, these data supported that OA could inhibit the
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FIGURE 5 |OA decreases the expression of VDAC, the activation of NLRP3 inflammasome and the production of mitochondrial ROS in vitro and/or in vivo. (A)WB
of VDAC, Caspase-1, IL-1β in eWAT of mice. (B) qPCR results of Caspase-1, IL-1β and IL-18 in eWAT (n � 5). (C)WB of VDAC, Caspase-1 in RAW264.7 macrophages.
(D) qPCR results of Caspase-1, IL-1β and IL-18 in RAW264.7 macrophages (n � 3). (E) Fluorescence staining of mitochondrial ROS in RAW264.7 macrophages. (F)
Fluorescence intensity of MitoSOX analyzed by FCM in RAW264.7 macrophages (n � 3–4). *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001 vs. vehicle or control
incubations, †p < 0.05, ††p < 0.01, †††p < 0.001, ††††p < 0.0001 vs. IFN-γ/LPS stimulated incubations.
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activation of NLRP3 inflammasome by reducing ROS production
and VDAC expression.

DISCUSSION

The association of obesity, adipose tissue inflammation, and
metabolic diseases makes the inflammatory pathways an
appealing direction for designing the novel treatment of
obesity-related metabolic complications (Belkina and Denis,
2010; Gregor and Hotamisligil, 2011; Zatterale et al., 2019).
Consistent with previous reports (Lee et al., 2013; Ying et al.,
2014; Zohra et al., 2018), our research showed that OA can
improve IR (Figure 1) and has anti-inflammatory effects (Figures
3A,B, 4B,C; Supplementary Figure 4). For the first time, we
reported that OA can improve adipose tissue inflammation by
regulating macrophage infiltration and polarization in
therapeutic administration mice model.

Macrophages are known to play an important role in obesity-
related metabolic diseases progression and contribute to the
development of diabetic complications in concert with
endothelial cells and adipocytes (Giacco and Brownlee, 2010;
Pitocco et al., 2013). ROS is essential for the induction and
maintenance of polarization of M1 type macrophages, and it
activates multiple pro-inflammatory pathways including MAPK
and NLRP3 inflammasome (Kohchi et al., 2009; Sorbara and
Girardin, 2011; Gan et al., 2016; Zhao et al., 2019). Recent studies
about oxidative stress in diabetic complications assessed ROS in
certain cell types such as endothelial and epithelial cells (Xiao
et al., 2014; Nishikawa et al., 2015; Qi et al., 2017). However, the
role of macrophage-generated ROS in obesity complications is
still underappreciated. Here, our study shows that OA, a potent
antioxidant, can suppress M1-macrophage polarization by
eliminating ROS that act as a second messenger regulating the
IFN-γ/LPS-stimulated MAPK pathway and activation of NLRP3
inflammasome (Figures 4–6).

Previous studies show that MAPK is an important signaling
pathway that regulates inflammation and is associated with
metabolic dysfunctions in obesity and diabetes (Gehart et al.,
2010). For instance, ERK modulates inflammatory activation of

FIGURE 6 | Rotenone neutralized the anti-inflammatory effect of OA,
while VBIT-12 showed a similar effect with OA in RAW264.7 macrophages.
(A) Rotenone attenuated the inhibitory effect of OA on the expression of M1
marker mRNA in RAW264.7 macrophages induced by IFN-γ/LPS, while

(Continued )

FIGURE 6 | VBIT-12 had a similar effect to OA. (n � 3). (B) FCM analysis of the
M1 ratio of RAW264.7 macrophages (n � 3). (C) WB of phosphorylated p38
MAPK (p-p38 MAPK), phosphorylated JNK (p-JNK), phosphorylated ERK
(p-ERK), and their total proteins in RAW264.7 macrophages. (D) WB of
VDAC, Caspase-1 in RAW264.7 macrophages. (E) qPCR results of Caspase-
1, IL-1β and IL-18 in RAW264.7 macrophages (n � 3). (F) Fluorescence
staining of mitochondrial ROS in RAW264.7 macrophages. (G) Fluorescence
intensity of MitoSOX analyzed by FCM in RAW264.7 macrophages (n � 5). (H)
The activities of SOD and GPx. (n � 3). (I) A summary of our current findings.
Oleanolic acid alleviates inflammation and regulates macrophage polarization
in adipose tissue of obesemice to improve insulin resistance, at least in part by
inhibiting VDAC and thus reducing mitochondrial ROS, thereby negatively
regulating the activation of NLRP3 inflammasome and MAPK signaling
pathway. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001 vs. control
incubations, †p < 0.05, ††p < 0.01, †††p < 0.001, ††††p < 0.0001 vs. IFN-γ/LPS
stimulated incubations, #p < 0.05, ##p < 0.01, ###p < 0.001, ####p < 0.0001 vs.
the combination of IFN-γ/LPS and OA incubations.
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macrophages to inhibit beige adipogenesis in obesity (Chung
et al., 2017), p38 regulates inflammation and insulin signaling
(Nandipati et al., 2017), JNK promotes obesity-induced IR by
regulating ATMs M1 polarization in WAT (Han et al., 2013). In
this study, p-JNK and p-ERK was down-regulated but p-p38 was
up-regulated in eWAT of mice treated with OA compared with
the one of the control mice treated with vehicle (Figure 3B), while
in vitro, the expression levels of all three phosphorylated kinases
in IFN-γ/LPS stimulated macrophages were down-regulated by
OA treatment (Figure 4B; Supplementary Figure 4A). This
difference between in vivo and in vitro might be due to the
fact that there are more cell types involved at the tissue level. As in
adipose tissue, there are adipocytes and many other cell types in
addition to macrophages, while only macrophages are used in
in vitro experiments. The OA-dependent regulation of p38
phosphorylation in non-macrophage cells may be different.
Another reason could be that the stimulating factors triggering
inflammation in vivo and in vitro are different. Besides, although
p-p38, p-ERK and p-JNK all play important roles in
inflammation, p-JNK which is more important for
macrophage polarization (Vallerie et al., 2008; Han et al.,
2013), was down-regulated both in vivo and in vitro. In
addition to the MAPK signaling pathway and NLRP3
inflammasome, it is not excluded that OA acts through other
downstream pathways to regulate obesity-induced inflammation.

The main source of a diverse variety of ROS in most cells is
mitochondria (Figueira et al., 2013; Ganeshan and Chawla, 2014),
and the mitochondria membrane proteins take important roles in
ROS production. VDAC, the most abundant protein in
mitochondria membrane, is reported to be ultimately required
for ROS production (Messina et al., 2011). Our work revealed that
OA can down-regulate VDAC and impair ROS production.
Interestingly, it has been reported that VDAC inhibitors can
restore insulin secretion in type 2 diabetes islet donors and
prevent hyperglycemia in diabetic mice (Zhang et al., 2019).
This is the first report that OA may play its role by affecting
mitochondrial function. But how VDAC is regulated by OA
needs to be further studied.
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