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Abstract 

Background:  Single-cell sequencing technologies provide unprecedented opportunities to deconvolve the 
genomic, transcriptomic or epigenomic heterogeneity of complex biological systems. Its application in samples from 
xenografts of patient-derived biopsies (PDX), however, is limited by the presence of cells originating from both the 
host and the graft in the analysed samples; in fact, in the bioinformatics workflows it is still a challenge discriminating 
between host and graft sequence reads obtained in a single-cell experiment.

Results:  We have developed XenoCell, the first stand-alone pre-processing tool that performs fast and reliable 
classification of host and graft cellular barcodes from single-cell sequencing experiments. We show its application 
on a mixed species 50:50 cell line experiment from 10× Genomics platform, and on a publicly available PDX dataset 
obtained by Drop-Seq.

Conclusions:  XenoCell accurately dissects sequence reads from any host and graft combination of species as well 
as from a broad range of single-cell experiments and platforms. It is open source and available at https​://gitla​b.com/
XenoC​ell/XenoC​ell.
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Background
Patient-derived xenografts (PDX) are being increasingly 
recognized as relevant preclinical models in many areas 
of biomedical research, including oncology and immu-
nology. In recent years, the development and rapid dif-
fusion of ultra-high-throughput droplet-based single-cell 
(sc) sequencing technologies has allowed resolution 
of genomic, transcriptomic and epigenomic profiles at 
the level of individual cells [1]. This approach proved 
to be invaluable for the analyses of complex and/or 

heterogenous biological systems, and will be increasingly 
used to analyse human xenograft samples [2].

One potential limit of single-cell sequencing experi-
ments of xenograft samples is the presence of host (e.g. 
mouse) cells along with graft (e.g. human) cells. Moreo-
ver, for reasons that are inherent to the droplet technol-
ogy, a cell originating from the host may accidentally 
be encapsulated in the same droplet of a cell from the 
graft, forming a mixed-species multiplet. While sev-
eral solutions have been proposed for the identifica-
tion of multiplets [3, 4], few approaches are available to 
reduce host-cell contamination. Contamination may be 
reduced using upstream physical or biochemical strate-
gies such as flow cytometry-based cell sorting or laser 
microdissection. Downstream in silico techniques have 
been developed to separate human-mouse chimeric data 
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by classifying individual reads, but are limited to NGS 
experiments on bulk cell populations [5, 6]. To date, 
there are no stand-alone tools available to pre-process 
chimeric data from ultra-high-throughput droplet-based 
single-cell sequencing experiments of xenograft samples. 
Here, we propose XenoCell to overcome this challenge, 
by extending the functionality of Xenome [5] for the clas-
sification of individual droplets and separation of cells 
from different organisms.

Implementation
The XenoCell workflow
XenoCell is implemented in Python and made available 
as a Docker image, which contains all third-party soft-
ware dependencies as a pre-configured system in order to 
facilitate portability across platforms and easier integra-
tion into existing workflows, such as those built with the 
Snakemake [7] or Nextflow [8] frameworks.

The XenoCell procedure consists of two main steps 
schematically represented in Fig. 1, starting from paired 
R1 and R2 FASTQ files (input) containing, respectively, 
barcodes and cDNA sequence from droplet-based single-
cell RNA or DNA sequencing experiments.

•	 Step A XenoCell classifies each read into one of 
five classes (graft-specific, host-specific, ambigu-

ous, both, and neither), retrieves the corresponding 
barcode-containing read for reads unambiguously 
assigned to either graft or host, and creates a CSV 
table as an intermediate output. This table contains 
the fractions of graft- and host-specific reads for each 
cellular barcode. In this step, XenoCell takes advan-
tage of Xenome [5] to ensure highly accurate classifi-
cation.

•	 Step B XenoCell extracts graft-specific cellular bar-
codes based on user-defined upper/lower thresholds 
for the tolerated fraction of host/graft-specific reads 
(Fig. 2) (with respect to all the reads associated with a 
particular cellular barcode).

In a separate (optional) step, users can repeat step B 
with a different threshold to extract host- specific cellular 
barcodes, thereby allowing a separate analysis of the host 
cells.

The final output of XenoCell consists of filtered, paired 
FASTQ files which are ready to be analysed by any stand-
ard bioinformatic pipeline for single-cell analysis, such as 
Cell Ranger [9] as well as custom workflows, e.g. based 
on STAR [10], Seurat [11] and scanpy [12].

Dataset
The mixed-species dataset was generated using the 
10× Genomics Chromium Single Cell 3′ Library (v3 
chemistry) and then sequenced on Illumina NovaSeq 
machine. It is available through the 10× Genomics web-
site (https​://suppo​rt.10xge​nomic​s.com/singl​e-cell-gene-
expre​ssion​/datas​ets/3.0.0/hgmm_5k_v3) and licensed 

Fig. 1  Schematic workflow of XenoCell. The illustration shows the 
step-wise operations being performed on the input paired FASTQ 
files from droplet-based single-cell sequencing experiments

Fig. 2  Extracting subsets of cellular barcodes based on specified 
thresholds. Each dot represents a cellular barcode and its 
corresponding percentage of reads coming from the host. Depicted 
dashed lines indicate the thresholds used for XenoCell (0–0.1 for 
graft-specific cellular barcodes; 0.9–1.0 for host-specific cellular 
barcodes)

https://support.10xgenomics.com/single-cell-gene-expression/datasets/3.0.0/hgmm_5k_v3
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under the Creative Commons Attribution license. The 
PDX dataset was generated using Drop-seq [13] and it is 
publicly available through the Gene Expression Omnibus 
repository (https​://www.ncbi.nlm.nih.gov/geo/) under 
accession number GSE128195 [14].

scRNA‑Seq data analysis
The downstream data analysis of the mixed-species data-
set, after XenoCell pre-processing, involved the following 
steps and relative tools:

•	 FASTQ files were processed using Cell Ranger v3.0.2, 
including alignment and cell barcode filtering.

•	 Resulting count matrices were merged and processed 
in R v3.5.3 and, among other tools, Seurat v3.0.

•	 Correlations of transcripts per gene between Xeno-
Cell-filtered and unfiltered cells were calculated in R 
v3.5.3 both for graft and host cells.

The downstream data analysis of the PDX dataset, after 
XenoCell pre-processing, involved STARsolo v2.7.5c for 
read alignment, cell barcode filtering, and generation of 
the transcript count matrix.

Code
All commands and steps, together with further informa-
tion regarding the installation process and usage details, 
are documented and freely available through the Xeno-
Cell GitLab repository (https​://gitla​b.com/XenoC​ell/
XenoC​ell). We also provide a minimal Snakemake-based 
[7] XenoCell pipeline that allows to run the previously 
described steps on multiple samples in an automated and 
parallelized fashion, ideally performed on High Perfor-
mance Computing (HPC) clusters due to high memory 
requirements.

Runtime assessment
In the 50:50 mixed-species dataset, using 16 CPU cores, 
read classification (workflow step A) took 2 h 27 m and 
extraction of graft cells (workflow step B) took 1 h 31 m 
to finish. In the PDX dataset, using 16 CPU cores, read 
classification finished within 1 h 40 m, and extraction of 
graft cells took 1 h 14 m to complete. More details can be 
found in Additional file 1: Table S1.

Results and discussion
XenoCell is a Python-based wrapper around Xenome [5] 
supplied with functions for data processing. An overview 
of the XenoCell workflow is shown in Fig. 1 (see Imple-
mentation section). The input to XenoCell consists of 
paired reads from droplet-based single-cell sequencing 
experiments of xenograft samples from any proportion of 
host/graft species.

Once for, every cellular barcode, the percentage of 
graft- and host-specific reads is calculated (Step A), the 
extraction of cellular barcodes representing the cells from 
the organism of interest is performed (Step B) on the 
basis of a user-defined threshold of tolerance (Fig. 2).

To assess the performance of XenoCell, we applied it 
to a publicly available single-cell gene expression data-
set released by 10× Genomics (supplementary data), 
which is composed of a 1:1 mixture of fresh frozen 
human (HEK293T) and mouse (NIH3T3) cells (for a total 
of ~ 5000 cells).

We retrieved graft- and host-specific cellular barcodes, 
containing a maximum of 10% or a minimum of 90% 
host-specific reads, respectively. Then, we used the Xeno-
Cell-filtered FASTQ output files as input for Cell Ranger 
to align the reads against the hg19 and mm10 genome 
assemblies, respectively, resulting in 2532 graft and 2626 
host cells, reflecting the initial 1:1 mixture of cells.

We compared our results against the well-estab-
lished Cell Ranger pipeline, which currently is the only 
one supporting a comparable approach (albeit exclu-
sively applicable to scRNA-seq data generated with the 
10× Genomics platform).

We took advantage of a function of Cell Ranger that is 
able to create a combined reference genome from two 
species, align reads from a single data set against it, and 
quantify the fraction of species-specific reads for each 
cell of the data set, thereby allowing to split the cells by 
the species they originated from. To compare the assign-
ment of cells to one of two species through XenoCell and 
Cell Ranger in the aforementioned example data set, we 
have prepared a combined reference genome made from 
human (hg19) and mouse (mm10) using this feature of 
Cell Ranger.

We performed a total of three analyses: (1) align-
ment of the unfiltered data set to the combined human-
mouse reference genome, (2) alignment of human 
cells extracted with XenoCell to the human reference 
genome, (3) alignment of mouse cells extracted with 
XenoCell to the mouse reference genome. The num-
ber of cells identified after XenoCell filtering in analy-
ses 2 and 3 confirm the initial 1:1 proportion of human 
and mouse cells in the data set. Moreover, ~ 97% and 
100% of the cells identified as graft- and host-specific 
by XenoCell, respectively, were classified concordantly 
by Cell Ranger (Additional file  2: Fig. S1). To check 
whether filtering of cellular barcodes with XenoCell 
affects the transcriptional profiles of the single cells, 
potentially due to the removal of reads classified as 
ambiguous by Xenome, we aligned the unfiltered sam-
ple and the graft-specific cells retrieved by XenoCell to 
the human reference genome (hg19) using Cell Ranger, 
and represented the transcriptional profiles in a UMAP 

https://www.ncbi.nlm.nih.gov/geo/
https://gitlab.com/XenoCell/XenoCell
https://gitlab.com/XenoCell/XenoCell
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projection generated with Seurat (Fig.  3). Results 
clearly show that the graft cells retrieved by XenoCell 
occupy the same transcriptional space as the unfiltered 
sample, with the other population of cells likely repre-
senting mouse cells. Similarly, we aligned the unfiltered 
sample and host-specific cells retrieved by XenoCell to 
the mouse reference genome (mm10) using the same 
procedure as for the human cells (Fig. 4) thus obtaining 
the same results. As a confirmation, we measured the 
correlation of transcripts per gene between XenoCell-
filtered and unfiltered cells, for both graft (hg19, r = 1) 
and host (mm10, r = 1) cells (Additional file 3: Fig. S2). 
Results lead to the same conclusion that XenoCell does 
not introduce a systematic bias to the transcriptional 
profiles of the investigated cells due to the removal 
of reads which cannot be unambiguously assigned to 
either human (graft) or mouse (host). Moreover, in 
both cases, we investigated whether the removed cells 
(visually identifiable in the UMAP projection of the 
unfiltered sample as the grey cluster that is not present 
in the graft and host subsets of Figs.  3 and 4, respec-
tively) were correctly assigned to their respective coun-
terpart. As expected, this was the case for 99.7% and 
97.9% of cells for graft-specific and for host-specific 
scenario. The remaining 7 (0.3%) and 47 (2.1%) cells 
were found to have significant UMI counts for both 
organisms (range 16–87%), therefore they were cor-
rectly discarded by the imposed thresholds (0–10% of 

host-specific reads for cellular barcodes from the graft; 
90–100% of host-specific reads for cellular barcodes 
from the host; Additional file 4: Fig. S3).

Overall, XenoCell and the multi-species analysis with 
Cell Ranger produced concordant results. However, the 
functionality of Cell Ranger to align reads from scRNA-
seq experiments to a multi-species reference genome is 
only available for samples generated by the 10× Genom-
ics scRNA-seq kits, thereby limiting its applicability. 
Instead, XenoCell offers the flexibility to set a threshold 
on the permitted fraction of host/graft-specific reads, 
depending on the biological question the user poses, and 
is not restricted to any particular technology or library 
preparation kit.

In this light, we assessed the effectiveness of XenoCell 
on a publicly available PDX dataset [14] generated using 
the Drop-seq protocol [13]. When we applied XenoCell 
to this this dataset, we detected 11 cellular barcodes con-
taining more than 250,000 host-specific reads and less 
than 5% graft-specific reads (Additional file  5: Fig. S4), 
which would likely pass common cell whitelisting meth-
ods, ultimately ending up contaminating the dataset. 
To confirm our suspicion, we performed three separate 
analyses: (1) alignment of human cells extracted with 
XenoCell to the human reference genome, (2) alignment 
of mouse cells extracted with XenoCell to the mouse ref-
erence genome, (3) alignment of the unfiltered data set 
to the human reference genome. Using STARsolo with 

Fig. 3  UMAP generated with unfiltered cells and graft-specific cells after alignment to the human genome. As reflected by the full overlap of the 
graft cells (blue) with the left group of the unfiltered cells (gray), XenoCell successfully extracted only graft cells and, more importantly, without 
affecting their transcriptomic profiles
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default parameters to generate transcript count matrices, 
and intersecting the sets of identified cells from the dif-
ferent analyses, we found that 19 of the 581 cells (3.3%) 
identified in the unfiltered dataset belonged to the host 
and were successfully removed by XenoCell in the puri-
fied graft sample.

These results suggest that upstream biochemical or 
physical strategies to purify xenograft samples by remov-
ing contaminating cells from the host organism might 
not always be fully successful, and, therefore, bioin-
formatic pre-processing of the sequenced data should 
become a routine practice in single-cell experiments 
from xenografts. Overall, we demonstrated that XenoCell 
can be applied to data generated by multiple single-cell 
technologies and we tested its effectiveness on a mixed-
species dataset and a real PDX dataset.

Conclusion
XenoCell is the first stand-alone tool that is able to clas-
sify and separate cellular barcodes in droplet-based sin-
gle-cell sequencing experiments from xenograft samples. 
It has a broad range of applications both in terms of sin-
gle-cell multi-omic data types (including scRNA, scDNA, 
scChIP, scATAC) and of single-cell protocols (including 
10× Genomics Chromium, Drop-Seq [13], inDrop [15], 
Seq-Well [16], CEL-seq2 [17], MARS-seq/MARS-seq2 
[18, 19], mcSCRB-seq [20]), from any combination of 

host and graft species. XenoCell provides paired FASTQ 
files as outputs, granting substantial flexibility for further 
analysis. In conclusion, the proposed tool addresses the 
urgent needs of software support for analyses of single-
cell data.

Availability and requirements

Project Name: XenoCell.
Project home page: https​://gitla​b.com/XenoC​ell/
XenoC​ell.
Operating system(s): Platform-independent.
Programming language: Python.
Other requirements: None.
License: MIT License.
Any restrictions to use by non-academics: None.

Supplementary Information
The online version contains supplementary material available at https​://doi.
org/10.1186/s1292​0-021-00872​-8.

Additional file 1. Table S1. Computational resources needed  to process 
public datasets. The table reports details regarding the setting of the 
analyzed datasets: 50:50 cell line mixed-species and a published Drop-Seq 
dataset from a real PDX scRNAseq experiment. Computation time for each 
step is specified.

Fig. 4  UMAP generated with unfiltered cells and host-specific cells after alignment to the mouse genome. As reflected by the full overlap of the 
graft cells with the right group of the unfiltered cells (gray), XenoCell successfully extracted only host cells (red) and, more importantly, without 
affecting their transcriptomic profiles

https://gitlab.com/XenoCell/XenoCell
https://gitlab.com/XenoCell/XenoCell
https://doi.org/10.1186/s12920-021-00872-8
https://doi.org/10.1186/s12920-021-00872-8


Page 6 of 7Cheloni et al. BMC Med Genomics           (2021) 14:34 

Additional file 2. Fig. S1. Comparison of barcode classification by Xeno-
Cell and Cell Ranger on a mixed human-mouse dataset. Both tools extract 
mostly the same human cells (~ 97% overlap), with only a few cells spe-
cific to each tool. Instead, all murine cells extracted by XenoCell were also 
found by Cell Ranger. The classification of cellular barcodes which were 
extracted by both XenoCell and Cell Ranger are concordant in all cases.

Additional file 3. Fig. S2. Correlation of transcripts per gene in XenoCell-
filtered and unfiltered cells. The plots depict the perfect correlation of 
transcripts per genes counts calculated for both graft (hg19, left panel) 
and host (mm10, right panel) cells before and after XenoCell processing.

Additional file 4. Fig. S3. Characterization of cellular barcodes missed 
by XenoCell. Highlighted in red are the 54 (47 + 7) cellular barcodes that 
were missed after XenoCell preprocessing, which instead were expected 
to be scored according to the UMAP projection of the unfiltered sample. 
The plot shows that these 54 cellular barcodes were discarded because 
they contained high transcript counts for both organisms and were 
filtered out due to the imposed thresholds. Moreover, we observed 105 
cellular barcodes that appear to be hybrid (> 10,000 transcripts, between 
10-90% of host-specific reads). The multiplet rate specified by 10× 
Genomics is expected to be 0.8% in 1000 cells, which is in accordance 
with our results consisting of 5000 cells and having a chance of cross-spe-
cies droplet of 50% (cells of the two species were mixed in equal fraction).

Additional file 5. Fig. S4. Classification of cellular barcodes in the PDX 
dataset. The sequenced reads of the P3 sample in the public PDX dataset 
were classified and grouped by the cellular barcodes they are associated 
with. Then, cellular barcodes are plotted based on the number of graft- 
and host-specific reads they contain. A cellular barcode was labelled “graft” 
if at least 90% of its reads are graft-specific, and “host” if at least 90% of 
reads are host-specific. While most cellular barcodes clearly originate from 
graft cells, we identified several cellular barcodes with a high number 
of host-specific reads, therefore likely originating from host cells that 
contaminated the sample. While the precise number of contaminating 
host cells depends on the cell identification threshold, there are 11 cellular 
barcodes with more than 250,000 host-specific reads and less than 5% 
graft-specific reads, which would likely pass most cell filtering procedures 
and be included in the analysis. Without prior XenoCell filtering, 19 host 
cells were included in the final dataset when we processed it with STAR-
solo (default parameters).

Abbreviations
NGS: Next generation sequencing; PDX: Patient-derived xenograft; sc: Single-
cell; scATAC​: Single-cell assay for transposase-accessible chromatin sequenc-
ing; scChIP: Single-cell chromatin immunoprecipitation sequencing; scCNV: 
Single copy number variants sequencing; scDNA: Single-cell DNA-sequencing; 
scRNA: Single-cell RNA-sequencing.
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