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Abstract: Electrospinning can be used to prepare nanofiber mats from diverse polymers, polymer
blends, or polymers doped with other materials. Amongst this broad range of usable materials,
biopolymers play an important role in biotechnological, biomedical, and other applications. However,
several of them are water-soluble, necessitating a crosslinking step after electrospinning. While
crosslinking with glutaraldehyde or other toxic chemicals is regularly reported in the literature, here,
we concentrate on methods applying non-toxic or low-toxic chemicals, and enzymatic as well as
physical methods. Making gelatin nanofibers non-water soluble by electrospinning them from a
blend with non-water soluble polymers is another method described here. These possibilities are
described together with the resulting physical properties, such as swelling behavior, mechanical
strength, nanofiber morphology, or cell growth and proliferation on the crosslinked nanofiber mats.
For most of these non-toxic crosslinking methods, the degree of crosslinking was found to be lower
than for crosslinking with glutaraldehyde and other common toxic chemicals.

Keywords: nanofiber blends; water-solubility; polymer complex; polymer blend; crosslinker; genipin;
aldehydes; UV-crosslinking; electron beam; photo initiator

1. Introduction

Gelatin is derived from collagen by partial hydrolysis, either by acid processing (type
A) or by alkaline or lime processing (type B) [1]. Gelatin is often processed from waste,
e.g., from fish skin and bones after filleting [2]. As a natural material, gelatin shows
different physical and chemical properties, depending on its origin [3–5]. Values typically
measured in comparative studies are, e.g., the molecular weight, amino acid composition,
gel strength, viscosity, melting point, as well as breaking force, water vapor permeability,
or water solubility.

Gelatin’s physical and chemical properties as well as the abundant availability make it
interesting for diverse applications in food, cosmetics, and the pharmaceutical industry, but
also as a coating of photographic films. Other important areas of application are biotechnol-
ogy and biomedicine. Especially gelatin-based porous scaffolds are of high interest in tissue
engineering [6]. However, here, a challenge occurs due to the water-solubility of gelatin,
which necessitates crosslinking after producing the scaffolds. There are different physical
methods, such as UV irradiation or dehydrothermal treatment [7,8], chemical methods
such as exposure to glutaraldehyde in the form of vapor or liquid [9,10] or to ethylcar-
bodiimidehydrochlorine (EDC) combined with N-hydroxysuccinimide (NHS) [11,12], or
enzymatic treatment by genipin or transglutaminases [13,14]. Generally, the crosslinking
method influences the physical and chemical properties of the resulting scaffold [15–17].

This is especially important for nanofibrous scaffolds, as they are often produced
by electrospinning. The structure of these ultrathin fibers is usually modified by the
crosslinking process, in this way also modifying the porosity, mechanical properties, and
suitability for cell growth. Here, we give an overview of recent crosslinking techniques
for electrospun gelatin nanofiber mats and their suitability for tissue engineering, with
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the objective to shed light on alternatives to common glutaraldehyde crosslinking, but
also making clear which crosslinking degrees can be reached by which method, to allow
researchers on this base to decide which process is most suitable for their recent application.

2. Electrospun Gelatin Nanofibers—Production and Properties

Electrospinning can be used to produce nanofiber mats by a relatively simple tech-
nique. In brief, a polymer solution or melt is introduced into an electric field that is
produced by a high voltage between two electrodes, where the polymer solution or melt
is accelerated to the counter electrode and in this way stretched until ultrathin fibers are
deposited on the substrate, which usually shields the counter electrode [18–20]. Often used
techniques are needle-based electrospinning (Figure 1a) [21] and wire-based electrospin-
ning (Figure 1b) [22], while there are diverse other technologies available in the broad
range of needleless electrospinning.

Figure 1. Examples of electrospinning techniques: (a) Needle-based electrospinning, from [21], originally published under
a CC-BY license; (b) wire-based electrospinning, from [22], originally published under a CC-BY license.

Electrospinning gelatin is in principle possible from aqueous solutions. For example,
Zhang et al. investigated the influence of the spinning temperature as well as of the solid
content in the solution on the morphology of the gelatin nanofiber mat [23]. They dissolved
30–40% gelatin with a molecular weight of 25 kDa in distilled water of 40 ◦C, varied the
temperature of the solution in the syringe during spinning between 30 and 50 ◦C, and
found that the viscosity decreased with temperature and increased with solid content,
while the conductivity increased with temperature and with concentration. The average
fiber diameter slightly decreased with temperature and strongly increased with gelatin
concentration. Crosslinking was performed with EDC/NHS in a ratio of 2.5:1, resulting
in reduced weight loss, significantly reduced swelling, and clearly modified stress–strain
curves, which also depended strongly on whether they were measured in the dry or in the
wet state.

Kwak et al. compared cold fish gelatin nanofibers electrospun from pure water as
solvent with acetic acid/water (50:50, v/v) and 2,2,2-trifluoroethanol (TFE), which are
also often used [24]. They found relatively high viscosities and concentrations to be
advantageous for the formation of uniform fibers, while reduced values led to beaded
fibers or pure beads. The fiber diameters again increased with the gelatin concentration,
while flow rate, voltage, and distance between the needle tip and collector did not show a
significant impact. Comparing the three different solvents, spinning from distilled water
reached the highest productivity, especially for relatively high flow rates around 0.4 mL/h.

Depending on the exact type of gelatin, spinning from pure water is often challenging.
Ki et al. reported about this problem and suggested formic acid as a possible solvent [25].
They also found increasing fiber diameters with increasing concentration and no significant
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impact of the spinning distance on the diameter. From circular dichroism spectra, they
concluded that the original helical conformation of the gelatin powder seemed to be
transferred into a random coil conformation if electrospinning is performed from formic
acid. This visible degradation of gelatin by formic acid is only one example of many
reported in the literature, showing an impact of the used solvent on the physical and also
chemical properties of the electrospun nanofibers. This may lead to the necessity to take
the production process into account when optimizing the crosslinking procedure.

Acetic acid is another possible solvent, as suggested by Gu et al. for needle-based
electrospinning of porcine skin gelatin [26]. They used acetic acid of 50–90% concentration
and found that higher acid concentrations to lead to bead-free fibers, while also a minimum
of 10% gelatin concentration was necessary to avoid beads, which was attributed to the
higher viscosity for higher solid content, counteracting the bead-forming surface tension.
At the same time, a higher gelatin concentration again increased the average fiber diameter.

As an alternative to acetic acid, Song et al. used acetic acid/ethyl acetate in different
ratios and compared both solvents with hexafluoro-2-propanol (HFP), which is an often
used but toxic solvent for spinning gelatin nanofibers [27]. They found again a relatively
high percentage of acetic acid necessary to avoid beads and the fiber diameter increasing
with the gelatin concentration. However, adding ethyl acetate could be used to increase the
spinnability and reduce the solvent acidity. In addition, this co-solvent approach resulted in
the only sort of gelatin nanofibers that revealed in a differential scanning calorimetric (DSC)
analysis an endothermic peak near 220 ◦C, as the original gelatin powder does. In contrast,
the nanofiber mats spun from acetic acid and HFP did not show such a peak anymore,
suggesting that these solvents seemed to negatively influence the gelatin structure.

Varying the gelatin concentration in TFE, Huang et al. also found an increasing
fiber diameter with increasing solid content between 5% and 15% [28]. In addition, they
investigated the mechanical properties of the electrospun nanofiber mats and suggested
finer fibers for higher tensile modulus and ultimate tensile strength, while they also
recognized a negative effect of beads on these mechanical properties.

As these few examples show, gelatin nanofiber mats may have a broad range of
physical and chemical properties, depending on the gelatin source, extraction, solvent, and
electrospinning parameters, which are not always completely given in the literature. This
has to be taken into account when evaluating the different crosslinking approaches as well
as possible contradictory literature reports.

3. Physical Crosslinking

One of the possibilities to crosslink gelatin nanofibers is based on the use of high-
energetic light, i.e., UV irradiation. In this approach, inter- and intramolecular photodimer-
ization techniques are used to control the crosslinking density [29]. For example, Ko et al.
firstly prepared trans-cinnamic acid modified gelatin, used it for electrospinning from
HFP with a needle-based technique on a rotating collector, and crosslinked these gelatin
nanofibers by UV irradiation at 254 nm for different durations, before the unreacted gelatin
was rinsed with water [29]. They found higher UV absorbance with increasing amount of
cinnamoyl groups, with no absorbance of natural gelatin at the investigated wavelength of
270 nm. The crosslinking density also increased with increasing UV irradiation duration up
to 3 h, while longer times did not show further crosslinking effects. However, comparison
with genipin crosslinked gelatin nanofibers showed higher cell proliferation of the latter.

An interesting effect of the UV irradiation duration was reported by Beishenaliev et al.,
who prepared gelatin by decalcification, thermosonication, and lyophilization of marine
fish scales [30]. For needle-based electrospinning onto a stationary plate collector, the
gelatin was dissolved in acetic acid/water in a ratio of 9:1. In contrast to Ko et al. [29],
the photo-crosslinker was not added during electrospinning; instead, the nanofiber mats
were placed in Petri dishes and irradiated from both sided at a wavelength of 254 nm
using the UV crosslinker CL-508.G [30]. They found that depending on the UV irradiation
duration between 5 and 20 min, the average fiber diameter was approximately double to
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triple the original value of approximately 50 nm. Unexpectedly, the longest UV irradiation
time resulted in a completely dissolved nanofiber mat after 10 days of water resistance
test, while the nanofiber mats crosslinked for 5 min or 10 min lost approximately 30%
of their surface area after 14 days of incubation in medium. This was attributed to the
molecular denaturation of the gelatin nanofibers during extended UV irradiation, as it had
been reported before [31].

Ichimaru and Taguchi derived gelatin with molecular weight of 40,000 g/mol from
Alaska Pollock [32]. They dissolved this gelatin in water/ethanol at 55 ◦C, added decanal
for reductive amination of the amino groups and then 2-picoline borane to prepare decanyl-
modified gelatin, which was electrospun from 50% ethanol aqueous solution at 55 ◦C in a
needle-based process. Subsequent UV irradiation at 185 and 254 nm for 15–60 min was used
to hydrophilize the nanofiber mat, as shown in previous reports [33,34]. UV irradiation
significantly increased the burst strength and the remaining mass after 60–150 min in a
collagenase solution [32]. It must be mentioned that crosslinking was here not the main
goal of the UV treatment, so that no photo-crosslinking agent was applied.

One of the typical physical problems is the relatively low crosslinking extent, since
only the surface is reached by these treatments, which requires dehydrothermal treatment
(DHT), i.e., applying high temperatures under vacuum. Ratanavaraporn et al. combined
this technique with different other physical and chemical crosslinking methods that were
applied on nanofiber mats electrospun with a needle-based technique from gelatin type
A and B in formic acid at different concentrations [35]. They found a high degree of
crosslinking of nearly 80% for type B, which was treated by DHT at 140 ◦C for 48 h, and a
lower degree of only approximately 55% for type A. Both values were higher than those for
a pulsed inductively coupled plasma treatment under argon gas and significantly lower
than all combinations of DHT with plasma treatment or chemical crosslinking.

DHT of nanofibers prepared from gelatin from cold water fish skin was investigated
by Gomes et al. [36]. The electrospinning solutions were prepared by acetic acid and
distilled water, the latter also containing genipin. Electrospinning was performed with
a needle-based technique on a slowly moving plate. For crosslinking, the samples were
heated in an oven at different temperatures between 100 and 160 ◦C at a vacuum of 2 mbar
for durations of 24–72 h. For the first solution, without genipin, DHT crosslinking for
several days resulted in a reduction of the weight loss down to approximately 15%, while
the genipin-containing nanofibers did not show a clear dependence on the crosslinking
time. It should be mentioned that crosslinking with glutaraldehyde (GA) for more than 5 h
could nearly fully avoid weight loss, showing that this chemical method is more efficient
in this case. Figure 2 also shows that GA helped retain the nanofiber mat morphology to
a certain amount, while the DHT-treated nanofiber mat was not dissolved but strongly
modified. The genipin crosslinked nanofiber mats showed a fibrous structure with much
larger fiber diameters [36]. Interestingly, in spite of the toxicity of GA, the cell viability
after different cultivation times of 3T3 fibroblasts was acceptable or even better for gelatin
nanofiber mats after 5 h of GTA, as compared to DHT treatment.

Ghassemi and Slaughter compared DHT with chemical crosslinking by EDS/Sulfo-
NHS [37]. For type B gelatin, electrospun from acetic acid/distilled water by a needle-based
technique, they found a DHT temperature between 120 and 180 ◦C to be optimal to build
non-covalent bonds between gelatin molecules, with only small morphological changes due
to crosslinking and slightly reduced average diameters. However, when these crosslinked
gelatin nanofiber mats were immersed into medium (Dulbacco’s modified Eagle medium,
DMEM) or phosphate-buffered saline (PBS) solution, they dissolved identically to the non-
crosslinked nanofiber mat, showing that crosslinking here did not work well. In contrast,
EDC/NHS crosslinking maintained their surface morphology in PBS, while they showed
strong swelling in DMEM.
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Figure 2. Scanning electron microscopy (SEM) images after immersion in Dulbecco’s modified Eagle medium (DMEM) for
3 days of: pure gelatin nanofiber mat crosslinked by (A) GTA 2 h; (B) GTA 5 h; (C) DHT; and (D) gelatin/genipin nanofiber
mat (scale bar = 10 µm). Reprinted from [36]. Copyright 2021 Elsevier.

It should be mentioned that Mozaffari et al. report about the good crosslinking
of gelatin type A nanofiber mats, electrospun from acetic acid and tannic acid, after
applying a vacuum at a relatively low temperature of 45 ◦C [38], while DHT normally uses
temperatures above 100 ◦C. Here, tannic acid supports chemical crosslinking [39–41] so
that this vacuum treatment has no pure physical crosslinking method.

As these examples show, the non-toxic method of DHT crosslinking shows quite
different efficiencies, depending on the gelatin type and the preparation conditions, and is
due to its relatively low crosslinking effect mostly suitable for the area of drug delivery
and other applications in which dissolution of the nanofiber mat within a defined time
is required.

γ rays are high-energy electromagnetic radiation, which is typically produced by
radioactive processes that are usually defined as having quantum energies of more than
200 keV or wavelengths of less than 5 pm. For example, they are used in medical radiation
therapy, for sensory applications, sterilization, or the polymerization of materials. They
can also be used for crosslinking gelatin.

Since γ-sterilization is not unusual in biotechnology, crosslinking by γ rays also
belongs to the physical techniques sometimes used to produce gelatin hydrogels [42,43].
However, studies about γ rays used to crosslink electrospun nanofiber mats were not found
in the literature. This may be attributed to the fact that crosslinking by γ rays will produce
hydrogels rather than completely avoid fiber swelling [44], making other crosslinking
methods more attractive for the use with nanofiber mats.
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Another crosslinking method, sometimes reported for gelatin, is electron beam irra-
diation [45–47]. Regarding nanofiber mats, Lee et al. used type B gelatin (250 bloom) for
needle-based electrospinning from a TFE solution [48]. Parts of these nanofiber mats were
crosslinked by glutaraldehyde; both treated and untreated nanofiber mats were afterwards
e-beam treated at irradiations doses between 10 and 300 kGy (uncrosslinked gelatin) and
between 100 and 600 kGy (GA treated gelatin), respectively, with dose rates of 8.33 kGy/s
in all cases. They found a decrease of the molecular weight with increasing e-beam dose.
Interestingly, e-beam irradiation here increased weight loss during incubation in PBS; i.e.,
it reduced the effect of the previous GA crosslinking step, as also visible in the morphology
modification after incubation in PBS, as shown in Figure 3 [48]. Other attempts to use
e-beam irradiation for crosslinking electrospun gelatin nanofiber mats were not found in
the recent literature.

Figure 3. Morphology of e-beam crosslinked gelatin nanofiber mats as a function of irradiation dose and incubation period
at T = 37 ◦C in PBS. Scale bars are 10 µm. Reprinted from [48], originally published under a CC-BY license.

Finally, crosslinking gelatin by plasma treatment is sometimes reported [49,50]. For
example, Liguori et al. used gelatin type A (300 bloom) from porcine skin for electrospin-
ning core–shell fibers by a coaxial needle, in which the core contained genipin and the shell
contained gelatin in acetic acid/water [51]. For comparison, pure gelatin nanofiber mats
were electrospun with a common needle. These nanofiber mats were plasma treated using
dielectric barrier discharge plasma in air at room temperature. They found no influence of
the plasma treatment on both sorts of nanofiber mats. For both nanofiber mats, crosslinking
by plasma treatment increased the mechanical properties and the morphological stability
of the nanofiber mats in aqueous solutions, which was attributed to an increase of the
crosslinked ε-amino groups, while additional stabilization without involving the gelatin
free amino groups was found.

Ratanavaraporn et al. used pulsed inductively coupled plasma in argon atmosphere at
a pressure of 5 Pa, applying 1 pulse, as comparison to the aforementioned DHT treatment,
as well as a combination of plasma and DHT treatment, and they found pure plasma
treatment to show the lowest degree of crosslinking, while combining plasma with DHT
showed a slightly smaller crosslinking degree for type B gelatin and a slightly larger
value for type A [35]. It must be mentioned that different crosslinking techniques result
in significantly different modifications of the nanofiber mat morphology, as depicted in
Figure 4 [35].
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Figure 4. Scanning electron microscopy (SEM) images of electrospun gelatin type A nanofiber mats, crosslinked with differ-
ent techniques (a) non-crosslinked, (b) DHT, (c) plasma, (d) DHT/plasma, (e) DHT/EDCw, (f) DHT/EDCe, (g) DHT/sEDCw,
(h) DHT/sEDCe, and (i) DHT/vGA (scale bars = 10 µm). Reprinted from [35]. Copyright 2021 Elsevier.

Again, similar to the aforementioned physical crosslinking techniques, plasma treat-
ment of gelatin nanofiber mats is not often found in the literature. In most cases, UV
treatment or DHT are applied if physical crosslinking of gelatin nanofibers is desired.
While only a few so-called negative results are reported, showing that transferring the
physical crosslinking techniques applied on gelatin bulk materials is not necessarily suc-
cessful (e.g., [48]), it can be assumed that more experiments have been performed and not
published. In this area of research, more investigations are necessary, including clear re-
ports on approaches that do not work, to allow researchers to find out whether alternatives
to the often toxic chemical crosslinkers are available.

4. Chemical Crosslinking

The most often used chemical crosslinking agents belong to the aldehydes. In many
studies, glutaraldehyde is used to crosslink electrospun gelatin nanofibers, either as vapor
or in fluid form [52–56]. On the one hand, GA is a very efficient crosslinking agent, as
visible in Figure 5 [53]. On the other hand, glutaraldehyde is toxic, with highly problematic
effects on the human health, such as chronic bronchitis and even possible genetic activity,
reported in diverse studies [57–59]. Thus, different crosslinking chemicals are necessary,
combining low-toxicity with efficient crosslinking.

Another crosslinking approach for gelatin nanofiber mats is based on the aforemen-
tioned EDC/NHS. The idea behind this combination is that EDC promotes isopeptide
bonds between the amino acid chains in proteins in an aqueous solution, while NHS
subsequently stabilizes the EDC-fixed proteins [12,60].
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Figure 5. Crosslinked electrospun gelatin fibers: (a) before water-resistant test; immersed in 37 ◦C
deionized water for (b) 2 days, (c) 4 days, and (d) 6 days (d). Reprinted from [53]. Copyright
2021 Elsevier.

For example, Agheb et al. compared chemical crosslinking by GA and EDC/NHS
for electrospun nanofiber mats from modified gelatin–tyrosine by either integrating one
of the crosslinkers into the gelatin solution or by crosslinking after electrospinning [61].
Interestingly, they found interconnected pores in the EDC/NHS crosslinked scaffold, while
crosslinking with GA closed the pores. Both nanofiber mats crosslinked by integrating
the chemicals into the spinning solution were found to be superior to the others, and after
crosslinking, no cell-toxic residues were found in any of the nanofiber mats. Similarly,
Hajiabbas et al. found increased mechanical properties and stability of gelatin nano fiber
mats that were in situ crosslinked with EDC/NHS as well as no toxic effects on a cell
culture [62].

Ghassemi and Slaughter compared DHT, genipin-EDC/Sulfo-NHS, and EDC/Sulfo-
NHS crosslinked gelatin scaffolds for their possible use as three-dimensional scaffolds [63].
They used gelatin type B from bovine skin for needle-based electrospinning from an acetic
acid/distilled water solution, alternatively with additional genipin in a solution of ethanol
and PBS. For crosslinking, different concentrations of EDC were applied with 90% ethanol
and various molar ratios of EDC/Sulfo-NHS. DHT was performed at 160 ◦C for 48 h at
a vacuum of 22 mm Hg. While DHT crosslinking, as reported above from other studies,
led to destroying the morphology upon immersion of the nanofiber mat in PBS or cell
culture medium, degradation investigations after 14 days and 30 days of storage under
different conditions showed the long-term stability of the EDC/Sulfo-NHS crosslinked
nanofiber mats.

These samples underline the suitability of EDC/NHS crosslinking for gelatin nanofiber
mats. This method is additionally known to enable producing non-toxic crosslinked
collagen products [64]. EDC is normally regarded as non-cytotoxic and biocompatible [65],
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while both EDC and NHS can cause skin, respiratory, and serious eye irritations; i.e., they
are not completely non-toxic. Too high concentrations of EDC/NHS may cause a certain
risk of cytotoxicity [66], which is why ideally only low concentrations of this crosslinking
combination are used [67].

Another approach that was mentioned in brief before is crosslinking gelatin nanofiber
mats by different oxidized phenolic compounds. These crosslinkers are assumed to be
safe and non-toxic. Applied in oxidizing media, the oxidation of phenolics to ortoquione
and further reaction with amino or sulfhydryl groups within the protein structure result
in strong C-N or C-S bonds [68], while in other environments, free radicals can be formed
reacting with tyrosine, lysine, or cysteine so that protein molecules are crosslinked [69].

Tavassoli-Kafrani et al. investigated tannic, gallic, ferulic, and caffeic acids as possible
crosslinking agents for electrospun gelatin nanofibers [70]. They showed that especially
tannic acid can be used as a crosslinking agent for gelatin nanofiber mats, as visible in
Figure 6 from the strongly reduced solubility after crosslinking, and at the same time, it
adds antioxidant and antimicrobial properties. The same group showed more recently that
crosslinking gelatin nanofiber mats loaded with essential oil was also possible with tannic
acid [71].

Figure 6. Solubility of pure and tannic acid-crosslinked gelatin nanofiber mats at different pH
values. Different letters above column shows significant differences at p < 0.05. Reprinted from [70].
Copyright 2021 Elsevier.

Gelatin type A from porcine skin was electrospun from acetic acid/water in a needle-
based apparatus and crosslinked by tannic acid added to the gelatin solution. Mozaffari et al.
found increased tensile strength and reduced elongation at break due to crosslinking, uni-
form nanofiber morphology for optimized spinning parameters, as well as antibacterial
activity against Staphylococcus aureus and Escherichia coli [41].

As these few examples show, phenolics are highly interesting natural crosslinking
agents. Due to their intrinsic antimicrobial properties, they may have an additional ad-
vantage in some applications, as compared to other chemical, physical, or enzymatic
crosslinking agents.

Another nature-inspired crosslinker is polydopamine (pDA), which is an adhesive
protein secreted by marine mussels. Leung et al. prepared antimicrobial nanofiber mats
by needle-based electrospinning of a gelatin/pDA solution including different metal ions
(Figure 7), which they treated by ammonium carbonate vapor to reach pDA-mediated
crosslinking, which was improved by most of the metal ions [72]. Composite nanofiber
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mats including Ca2+ or Zn2+ ion were fond sterile against methicillin-resistant S. aureus
and vancomycin-resistant Enterococcus faecium strains, while Ag+ ions led to a broader an-
tibacterial activity against both Gram-positive and Gram-negative bacteria for a minimum
of 40 days.

Figure 7. Electrospinning and crosslinking of metal-ion loaded gelatin nanofiber mats. Reprinted with permission from [72].
Copyright 2019 American Chemical Society.

Similarly, Dhand et al. used polydopamine to crosslink gelatin type A (from porcine
skin) nanofiber mats, which were electrospun in a needle-based technique from TFE [73].
Some electrospinning solutions were doped with dopamine, partly with different antibi-
otics, and tested against diverse Gram-positive bacteria, Gram-negative bacteria, and yeast
strains. Dopamine crosslinking was performed in a desiccator with ammonium carbon-
ate vapor. Measuring the inhibition zones against the different bacteria and yeast, they
found high antimicrobial activity for most of the antibiotics over 20 days, showing that
polydopamine crosslinking did not interfere with burn wound healing. While there are
also studies reporting aqueous alkaline pDA coating methods [74–77], the studies shown
here, working with the sublimation of ammonium carbonate, i.e., with an alkaline vapor
phase in which the oxidative polymerization of dopamine is supported [78,79], seem to be
advantageous in terms of retaining the original fiber morphology.

As these examples show, polydopamine-based crosslinking in an alkaline environ-
ment offers the possibility to prepare stable gelatin nanofiber mats without significant
modifications of the morphology of the as-spun nanofiber mats.

Another quite often used crosslinking agent is glyoxal, which is the smallest di-
aldehyde (i.e., it contains two aldehyde groups). It is less toxic than the highly toxic
formaldehyde and glutaraldehyde; however, it can also cause skin, respiratory, and serious
eye irritations. Opposite to the aforementioned EDC and NHS, the ability to cause genetic
defects cannot be excluded; thus, while often used as a crosslinker for gelatin [55,80–82],
glyoxal will not be treated in detail here. The same is valid for epichlorohydrin, which can
cause skin corrosion, is acutely toxic for oral or dermal contact or on inhalation, and is
carcinogenic, but nevertheless is regularly used as a crosslinking agent for gelatin [83–85].

However, there are some other materials that are non-toxic or at least low-toxic, or the
toxicological properties were not investigated. Proanthocyanidin, also called procyanidine,
a natural plant metabolite, is one of these materials that is sometimes used as a crosslinking
agent for gelatin [86–88]. Huang et al. report on crosslinking gelatin nanofiber mats by
proanthocyanidin; however, they performed electrospinning with a needle-based process
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from gelatin/PVA/proanthocyanidin dissolved in formic acid, while the actual crosslink-
ing step was performed in glutaraldehyde [89]. Chen et al. crosslinked gelatin type A
(300 bloom), electrospun from TFE in a needle-based process, by GA, genipin, and also
procyanidine [90]. They found a temperature-dependent redshift of the amide I absorption
band in the infrared spectrum of the procyanidine crosslinked nanofiber mats, which they
attributed to the temperature dependence of the intra-/intermolecular hydrogen-bonding
of gelatin; i.e., it disrupted hydrogen bonding interactions at higher temperatures and thus
increased interactions between procyanidine and gelatin. Compared with GA and genipin,
crosslinking with procyanidine resulted in the highest elastic moduli, and the remaining
mass after enzymatic degradation during 96 h was highest. The morphology after 1 d or
2 d of enzymatic degradation was also superior for procyanidine crosslinking, showing
that procyanidine crosslinking is indeed a highly interesting method. Nevertheless, more
reports dealing with crosslinking gelatin nanofiber mats by procyanidine were not found
in the literature.

Another class of substances sometimes used for the crosslinking of gelatin is poly
(carboxylic acids), i.e., dicarboxylic acids with unbranched chains, containing two COOH
groups. Some examples are oxalic acid, citric acid, fumaric acid, or maleic acid. While
fumaric acid is usually regarded as low-toxic, oxalic acid is corrosive, and citric acid is
skin and eye irritant. For citric acid, the crosslinking effect was attributed to reactions
between the carboxylic groups of the citric acid and the amino groups of gelatin, as shown
by infrared spectroscopy [91]. Crosslinking gelatin films with citric acid was performed by
mixing both materials with agar and glycerol, heating, and pouring into Petri dishes [92,93].
One study about crosslinking electrospun nanofiber mats with citric acid did not report
successful crosslinking; water solubility was not significantly reduced [94].

Finally, saccharides can be used to crosslink gelatin, based on the so-called Maillard
reaction, which starts with a condensation reaction between saccharides and amino acids
and, along different pathways, finally results in irreversible crosslinking [94]. Etxabide et al.
report on a significantly reduced solubility of fish gelatin-based films especially for ribose
as a crosslinker, while glucose and lactose also showed an effect after 6–24 h of heat
treatment [95]. Siimon et al. investigated the crosslinking of nanofiber mats prepared
by needle-based electrospinning of gelatin type A from porcine skin with glucose and
glacial acetic acid, which was followed by thermal treatment [96]. They found too high
glucose concentrations to make the nanofiber mats brittle, while the elastic modulus could
be increased by crosslinking.

Morsy et al. combined glucose with glycerol, both of which can react with the amino
acids in gelatin via the Maillard reaction, as crosslinkers in the electrospinning solution
of gelatin type A in glacial acetic acid [97]. To enhance crosslinking, they firstly prepared
an aqueous solution of gelatin and glycerol, heated it up to 90 ◦C, cooled it down to room
temperature, and dried it at 40 ◦C for 72 h to form gelatin–glycerol powder, which was
dissolved in glacial acetic acid to prepare an electrospinning solution. Partly, glucose was
added to this solution. The electrospun nanofibers mats show strong modifications of the
surface morphology as compared to pure gelatin nanofiber mats (Figure 8), water uptake
of up to more than 800% after 10 days, and degradation after 10 days (gelatin/glycerol) or
14 days (gelatin/glycerol/glucose), respectively.

Most recently, Kwak et al. used sucrose, glucose, and fructose to crosslink cold water
fish gelatin, which was needle-electrospun from distilled water with one of the sugars
added [98]. After spinning, crosslinking was performed at a temperature of 100 ◦C for
4 h. They found the highest crosslinking degree for fructose, followed by glucose, while
sucrose had nearly no impact. Similarly, the tensile stress and Young’s modulus were
most enhanced by fructose, while the maximum strain at break was largest for the sucrose-
crosslinked nanofiber mat. Only after fructose crosslinking, the sample mass remained
nearly unaltered after 10 days of hydrolytic degradation.
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Figure 8. SEM images of the electrospun nanofiber mats produced from (a) pure gelatin;
(b) gelatin/glycerol; (c) gelatin/glycerol/glucose. Reprinted from [97]. Copyright 2021 Elsevier.

A higher temperature of 170–175 ◦C, applied for 3 h was chosen by Siimon et al., who
used gelatin type A from porcine skin, gelatin type B from bovine skin, and glucose in
glacial acid for needle-based electrospinning of nanofiber mats [99]. Depending on the
glucose content, different modifications of the nanofiber mat morphologies were already
found before thermal crosslinking. Chemical investigations showed an optimum glucose
content of 20%. For higher glucose concentrations, the number of viable fibroblast cells
seeded on these nanofiber mats was lower. On the other hand, scaffolds with higher glucose
contents of 25% and 30% showed resistance to digestion in collagenases and trypsin, while
20% glucose resulted in partial degradation and lower glucose content in full dissolution.

As these examples show, promising approaches to reach chemical crosslinking of
gelatin nanofiber mats are mostly based on EDC/NHS, phenolics such as tannic acid,
polydopamine, or saccharides. On the other hand, there are still diverse approaches
that have not been optimized or not even been tested on gelatin nanofiber mats. Here,
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more research is necessary to find more possible chemical crosslinkers that work also on
nanofibrous materials.

5. Enzymatic Crosslinking

Enzymatic crosslinking of gelatin is most often performed by genipin [100–102] or mi-
crobial transglutaminase [103–105]. Both are not non-toxic, but they are briefly mentioned
here as examples for enzymatic crosslinking. Genipin is a molecule extracted from the
gardenia plant fruit, which crosslinks gelatin in a two-step process, firstly by building hete-
rocyclic linking of genipin to an amine in gelatin, followed by a nucleophilic substitution
of the ester group in genipin resulting in covalent crosslinks between the primary amine
residues [101]. Microbial transglutaminase (MTG) is a transferase that is assumed to build
covalent bonds between different polymer chains, resulting in a hydrogel network [105].
Other enzymes that have been used to crosslink biopolymers belong to the transferases,
hydrolases, and oxidoreductases [105], and they have been scarcely investigated for their
possible use with electrospun nanofiber mats.

Panzavolta et al. investigated crosslinking nanofiber mats from type A gelatin from
porcine skin, which were electrospun with a needle-based system from acetic acid/distilled
water, purely or with additional genipin after an incubation time of 30 min [106]. Af-
terwards, they were soaked in genipin solution in ethanol at different concentrations
and crosslinking times, whereafter they were partly rinsed in PBS and dried at different
temperatures. They found that PBS rinsing after the genipin treatment was necessary to
retain the fiber morphology, as depicted in Figure 9. With this optimized method, more
than 90% of crosslinking could be reached, in contrast to the as-spun gelatin/genipin
nanofibers showing values around 15%. Interestingly, no large differences between gelatin
and gelatin/genipin nanofiber mats were observed in terms of morphology or mechani-
cal properties.

Figure 9. SEM images of nanofiber mats crosslinked by genipin, followed by PBS rinsing, spun from (a) gelatin;
(b) gelatin/genipin, after 7 days immersion in DMEM. Scale bars depict 5 µm. Reprinted from [106]. Copyright 2021 Elsevier.

Su and Mo used a genipin vapor at room temperature instead to crosslink electrospun
gelatin nanofiber mats [107]. Depending on the crosslinking conditions, they found that
the time-dependent release of a model drug made these nanofiber mats suitable for drug
delivery, while they could also suit as tissue engineering scaffolds for a higher degree of
crosslinking. Del Gaudio et al. loaded human vascular endothelial growth factor into
electrospun gelatin nanofiber mats crosslinked with two different genipin concentrations,
and they found a cumulative release of approximately 60–90% after 28 days, depending on
the crosslinking degree [108].

Another method was suggested by Gualandi et al., who used coaxial electrospin-
ning to mix gelatin and genipin solutions during spinning, with the possibility to tailor
the genipin content by varying the feeding rates of the solutions [109]. After a thermal
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treatment for 1–3 days, followed by rinsing in ethanol and PBS, highly crosslinked gelatin
nanofibers were produced with retained morphology in aqueous solution and increased
mechanical properties.

In spite of these advantageous properties of genipin for crosslinking gelatin, it must
be mentioned that it is toxic if swallowed and thus is only mentioned here as one of the
few examples of enzymatic crosslinking found in the literature. Microbial transglutam-
inase (mTG), on the other hand, may cause breathing difficulties, allergies, or asthma
when inhaled and is thus less toxic, but it is still far from being harmless, while it is
nevertheless cytocompatible.

Although mTG is often found in the literature as a crosslinker for gelatin, studies
can only be found on pure gelatin, which is not electrospun or on electrospun gelatin
blends [110–114]. Apparently, the topic of crosslinking electrospun gelatin nanofibers
needs to be investigated in more detail in the future.

6. Blending Gelatin with Other Polymers

As a last method to improve the mechanical strength and to reduce the water solubility
of electrospun gelatin nanofiber mats, they can be blended with other polymers, in this
way often retaining the positive properties of gelatin for tissue engineering in combination
with the mechanical stability of the water-stable polymer.

One of the typical blend partners of gelatin is chitosan. Chitosan is derived from chitin
by partial deacetylation, and it is, similar to gelatin, biocompatible, biodegradable, and
antimicrobial [115]. Dhandayuthapani et al. prepared chitosan/gelatin blend nanofibers by
electrospinning from TFA/dichloromethane solution and found significantly better tensile
strength, in the range of normal human skin, for the blended nanofibers [116]. Similarly,
Yin-Guibo et al. found improved mechanical properties for silk fibroin/gelatin blended
electrospun nanofiber mats, as compared to both pure materials [117]. The solubility in
water was not mentioned in these studies.

The latter can be improved by blending gelatin with water-resistant polymers, such
as polycaprolactone (PCL), which is a synthetic polymer often used in tissue engineering.
Chong et al. reported on PCL/gelatin blend nanofibers electrospun from formic acid in a
needle-based technique and loaded with an antibiotic model drug [118]. They showed a
strong increase of the average fiber diameter with the polymer concentration between 12%
and 18%, an increase of the hydrophilicity with increasing gelatin content, and a weight loss
of up to 16% for the blend fibers after 14 days, while no weight loss occurred for the pure
PCL fibers. Antibacterial tests against Gram-positive Bacillus cereus and Gram-negative
E. coli showed large inhibition zones, as visible in Figure 10.

Figure 10. Antibacterial activity of 14% w/v PCL/GE-based nanofiber against (a) Bacillus cereus; (b) Escherichia coli.
From [118], originally published under a CC-BY license.
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Kim et al. blended gelatin with polyurethane (PU) in different ratios to electrospin
nanofiber mats from a hexafluoro-2-propanol solution for wound healing [119]. All ratios
between 100% gelatin and 100% PU were spinnable. Contact angles decreased and water
uptake increased with increasing gelatin content, and degradation in PBS solution at
37 ◦C showed more remaining mass after 1–5 weeks for lower gelatin contents, while
all samples containing gelatin showed significant morphological changes. On the other
hand, the adhered cells stretched more easily on samples with higher gelatin content, and
proliferation rates were significantly increased with increasing gelatin content.

Similarly, blending gelatin with poly(lactic acid) (PLA) led to increased water stability,
as compared to pure gelatin, and on the other hand significantly higher hydrophilicity
and cell viability after 3 d and 7 d, as compared to pure PLA [120,121]. Similarly, blending
gelatin with poly(D,L-lactide-co-glycolide) (PLGA) resulted in a higher swelling ratio than
in pure PLGA nanofibers, larger fiber diameters with higher PLGA content, and again
improved adhesion and proliferation of cells for the blend fibers as compared to pure
PLGA nanofibers [122]. Electrospun gelatin/polyacrylonitrile (PAN) nanofiber mats were
found to be not only well suited as a precursor of carbon nanofibers with increased fiber
diameters due to adding gelatin to PAN [123] but also as scaffold for mammalian cell
growth [124,125]. Blending gelatin with a copolymer of poly(glycerol sebacate) (PGS),
a biodegradable and elastic polymer, and poly(methyl methacrylate) resulted in good
hydrophilicity and biocompatibility due to gelatin as well as a high proliferation of rat
PC12 cells on these electrospun nanofiber mats [126]. For electrospun gelatin nanofiber
mats blended with poly(l-lactic acid)-b-poly(ε-caprolactone) (PLLCL) in different ratios,
40 wt % PLLCL was found to be optimum in terms of cell proliferation, and at the same
time, it showed suitable tensile stress in dry and wet conditions [127].

As these examples show, blending gelatin with different water-stable polymers offers
many possibilities to combine the desired mechanical and hydrophilic properties to prepare
scaffolds well suitable for tissue engineering and generally the growth of mammalian cells.

7. Biomedical Applications of Crosslinked Gelatin Nanofiber Mats

In addition to the aforementioned possible applications of crosslinked gelatin nanofibers
mats for tissue engineering, cell growth, wound healing, and other biomedical applications,
this section gives some more examples of these applications without the previous restriction
to non-toxic crosslinking methods.

Jalaja et al. used crosslinking with dextran aldehyde to improve thermal and me-
chanical properties as well as the structural integrity in an aqueous solution [128]. The
nanofiber mat was found to be non-cytotoxic for mouse subcutaneous fibroblasts L-929 and
showed significantly higher cell proliferation as compared to glutaraldehyde crosslinked
nanofiber mats.

Using GT vapor crosslinking, Gui et al. compared human mesenchymal stem cell
growth on randomly oriented and highly aligned gelatin nanofiber mats and found more
effective proliferation on the oriented fibers [129]. Padrao et al. also used GA to crosslink
electrospun gelatin nanofiber mats and found no inhibition of MC-3T3-E1 cell adhesion
and proliferation in randomly oriented and aligned gelatin nanofiber mats [130]. With
genipin crosslinking of gelatin nanofiber mats, Gualandi found no cytotoxicity against
human primary chondrocytes, but oppositely the promotion of chondrocyte viability and
differentiation [109]. Chen et al. also found cell compatibility for mouse mesangial cells
grown on GA-crosslinked gelatin nanofibers [56].

Luo et al. compared gelatin nanofiber mats crosslinked with glutaraldehyde, genipin,
and EDC/NHS and found that they all supported adhesion, spreading, and proliferation
of MC-3T3-E1 cells, with a lower cell viability after GA crosslinking, while similar values
were found for genipin and EDC/NHS [131].

Ghassemi and Slaughter used DHT and EDC/NHS crosslinking on gelatin nanofiber
mats and suggested EDC/NHS crosslinked electrospun gelatin nanofiber mats as scaffolds
for cell-based assays [37].
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Hivechi et al. used NIH/3T3 mouse fibroblasts to investigate the influence of adding
cellulose nanocrystals to electrospun gelatin nanofibers [132]. They found a slightly in-
creased biodegradability of the fibers crosslinked by GA vapor and no effect on the cyto-
toxicity, cell growth, and proliferation.

Using GA vapor crosslinking, Laha et al. used gelatin nanofiber mats for oral drug
delivery with piperine as a model drug [52,133]. By modulating the pH value of the release
medium and the crosslinking efficiency, they could tailor the piperine release rate.

Del Gaudio et al. also used genipin-crosslinked electrospun gelatin nanofiber mats to
investigate loading with human vascular endothelial growth factor (VEGF) and long-term
release of VEGF [108]. Human mesenchymal stromal cells growing on these nanofiber
mats showed higher cell viability and endothelial differentiation when growing on these
VEGF-loaded nanofiber mats, with the bioactive and pro-angiogenic potential kept for
two weeks, showing that VEGF-loaded genipin-crosslinked gelatin nanofiber mats may be
suitable for the stimulation of angiogenesis in tissue engineering.

Bactericidal wound dressing was produced by adding poly([2-(methacryloyloxy)ethyl]
trimethylammonium chloride) (PMETAC) to the gelatin electrospinning solution and
crosslinking the obtained nanofiber mats with GA vapor [134]. Inal and Mülazimoglu
showed good cell attachment and proliferation and suggested using these antimicrobial,
biocompatible nanofiber mats as wound dressing.

Especially for postoperative surgical wounds, Rath et al. suggested gelatin nanofiber
mats loaded with cefazolin/zinc oxide nanoparticles as antimicrobial wound dressings [135].

As these few examples show, in addition to those given in the previous sections, the
main applications of crosslinked gelatin nanofiber mats in biomedicine are related to tissue
engineering and cell growth, but also for wound healing with tailorable drug delivery.

8. Conclusions and Outlook

Gelatin can be crosslinked to reach a defined water-stability and desired mechanical
properties by physical, chemical, or enzymatic methods as well as by blending with
other polymers. However, many of these methods are only scarcely investigated or not
reported at all for gelatin nanofiber mats. Especially the low-toxic or non-toxic crosslinkers
mostly necessitate more research to develop their full potential for crosslinking electrospun
nanofiber mats. Recently, none of the describe methods can be mentioned as the optimum
one, while some chemical methods such as EDC/NHS, phenolics such as tannic acid,
polydopamine, or saccharides provide already relatively good combinations of crosslinking
degree and low toxicity. A brief overview of water stability and crosslinking efficiency for
different methods is given in Table 1.

As this review shows, more research is necessary to transfer more methods from
crosslinking of macroscopic gelatin to nanofiber mats, especially due to the well-known
problem that nanofiber mats tend to containing a higher amount of water than bulk
materials due to their large specific surface, which may necessitate additional pretreatments
or crosslinking in a vacuum chamber. On the other hand, even this relatively small amount
of presented studies often showed contradictory results, which are apparently based on
different types and sources of gelatin, while other parameters, such as the solvent chosen
for electrospinning, the porosity of the nanofiber mat, etc. may also have a significant
impact. This shows that also many more systematic studies are necessary, varying one of
these parameters and investigating its impact on the crosslinking efficiency. It should be
also mentioned that images of the nanofiber mat morphology after inserting a crosslinked
mat in a fluid are highly encouraged, since some of the examples given here show strong
morphological modifications in addition to a loss of mass.
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Table 1. Effect of crosslinking for different crosslinking techniques after electrospinning.

Electrospinning Process Crosslinking Effect Ref.

Marine fish-scale gelatin spun from
acetic acid/water

UV crosslinker added in petri dish,
UV irradiation at 254 nm for 5–20 min

30% surface area lost after 14 day
in medium [30]

Alaska Pollock gelatin spun from
water/ethanol at 55 ◦C

UV irradiation at 185 nm and 254 nm
for 15–60 min without crosslinker

Increased burst strength and remaining
mass after 60–150 min in

collagenase solution
[32]

Gelatin type A and B spun from
formic acid Dehydrothermal treatment (DHT) 80% efficiency for type B, 55% for

type A [35]

Cold water fish skin gelatin spun
from acetic acid/water DHT Weight loss reduced to 15%, modified

fiber morphology [36]

Type B electrospun from acetic
acid/distilled water DHT Immersion in PBS or DMEM

dissolved fibers [37]

Type A from porcine skin spun
from acetic acid/water

Dielectric barrier discharge plasma in
air at room temperature

Increased mechanical properties and
morphological stability in

aqueous solution
[51]

Gelatin type A and B spun from
formic acid

Pulsed inductively coupled plasma in
argon atmosphere at 5 Pa Lower degree than DHT [35]

Type B from bovine skin spun from
acetic acid/water EDC/NHS Long-term stability in PBS and medium [63]

Type A from porcine skin spun
from acetic acid/water Tannic acid Increased tensile strength, reduced

elongation at break [71]

Type A from porcine skin from
2,2,2-trifluoroethanol (TFE)

Polydopamine + ammonium
carbonate vapor

Good retaining of the original
fiber morphology [73]

Type A spun from TFE Proanthocyanidin (procyanidine)
High remaining mass after enzymatic

degradation and retaining
morphology well

[90]

Type A spun from glacial acetic acid Glucose and glycerol
Strong modifications of surface

morphology, reduced degradation
in water

[97]

Cold water fish gelatin spun from
water + sugar

Fructose and other sugars at 100 ◦C
for 4 h

Nearly unaltered sample mass after 10
days for fructose crosslinking [98]

Type A from porcine skin sun from
acetic acid/water Genipin >90% for optimized parameters [106]
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