
Introduction
Th e adoption of copy number variation (CNV) analysis 
by the clinical diagnostic laboratory has had a major 
eff ect on the fi eld of medical genetics. It has helped refi ne 
genotype-phenotype relationships in known disorders 
and has led to the discovery of new syndromes [1]. 
Systematic CNV analysis in large populations has begun 

to reveal the frequency and the eff ect of this variation in 
the human genome.

CNV within the genome is widely recognized as a 
source of disease. CNVs that involve genomic fragments 
containing one or more dosage-sensitive genes can result 
in genetic disorders and complex diseases, including 
autism, cancer, immune defi ciency, and neuro degenera-
tive and neuropsychiatric disorders [2-8]. However, 
apparently healthy individuals also have a signifi cant 
number of CNVs within the human genome that seem to 
have no association with adverse phenotypic outcomes 
[8-18].

Th e term copy number variation refers to a diff erence 
in the dosage of genes or genomic fragments when com-
pared with a reference human genome. It was originally 
used to describe genomic fragments that ranged in size 
from at least one kilobase to several million bases and 
had a variable copy number [12,19]. Higher resolution 
CNV analysis has revealed the existence of increasingly 
smaller CNVs (100 to 1,000  bp) in the human genome 
[20,21]. CNVs usually result from structural genomic 
altera tions such as a deletion (loss), a duplication (gain), 
an insertion (usually a gain) or unbalanced transloca-
tions/inversions that may lead to either loss or gain of 
sequences near the breakpoints [12].

Both recurrent and unique (non-recurrent) CNVs are 
described and each class of CNV is mediated by a diff er-
ent rearrangement mechanism. Recurrent CNVs are 
usually fl anked by low copy number repeats or segmental 
duplications. Th is allows for recombination between 
large, identical blocks of sequences (duplicons) by a 
process referred to as non-allelic homologous re com-
bination [22-24]. Non-recurrent CNV formation is less 
well understood, although breakpoint analysis in several 
non-recurrent CNVs has suggested the involve ment of 
non-homologous end joining, and replication-based 
mechanisms such as fork stalling and template switching 
[25-28].

Microarray-based CNV detection has been universally 
adopted in clinical diagnostics owing to the compre-
hensive nature of genome-wide analysis [29]. Despite the 
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great advances made in CNV detection technologies, 
there are still several limitations to genome-wide CNV 
analyses that may affect their clinical utility. In this 
review we discuss the advantages and limitations of CNV 
discovery in the clinical diagnostic laboratory with 
specific emphasis on the impact of CNV analysis on the 
clinician in both the prenatal and the postnatal setting.

Variation in healthy individuals and in disease
The role of CNVs in genetic syndromes has long been 
recognized, with recurrent microdeletion/microduplica-
tions detected in syndromes such as Prader-Willi [30], 
Smith-Magenis [31] and Williams-Beuren [32]. However, 
initial studies utilizing microarray-based analysis focused 
on phenotypically normal individuals and identified large 
CNVs that did not appear to be associated with a genetic 
disease [9,10]. The recent expansion of microarray-based 
CNV analysis has led to a better appreciation of the 
extent of CNV-based variation within the genomes of 
apparently healthy individuals. These initial studies using 
microarrays with limited coverage predicted as many as 
ten CNVs per individual [9,10,16], but, as the resolution 
of the detection technology has improved, the number of 
CNVs detected within an individual’s genome has 
continued to grow. Thus, more recent studies have esti-
mated that individuals are hemizygous for approximately 
30 to 50 deletions larger than 5 kb [11] and the frequency 
of CNVs may be greater than 100 per individual [12,15]. 
The accumulating CNV data from healthy controls has 
led to the establishment of public databases such as the 
Database of Genomic Variants and NCBI’s Database of 
Genomic Structural Variation (Box 1).

There are a number of ways by which CNVs can result 
in a disease phenotype. In the most common scenario, a 
deletion or duplication alters the genomic copy number 
of dosage sensitive gene(s) [33,34]. Alternatively, a 
deletion either within or encompassing a gene sensitive 
to haploinsufficiency can have the same effect as a 
disruptive point mutation within the gene. Further, CNVs 
may result in monogenetic diseases by altering the 
expressions of genes flanking the CNV due to the disrup-
tion of regulatory elements [35,36]. CNVs have also been 
shown to be a source of mutation in autosomal recessive 
disorders, in which a deletion of one allele of the gene in 
combination with a point mutation on the other allele 
results in the disease phenotype. Recently, three 
individuals with unexplained intellectual disabilities (IDs) 
were found to have Cohen syndrome, an autosomal 
recessive disorder, after CNV analysis. All three patients 
had a CNV that deleted the COH1 gene and a second 
pathogenic point mutation was subsequently identified 
on the other allele [37]. All of these possibilities can lead 
to difficulty in differentiating a pathogenic from a benign 
CNV, further complicating CNV data interpretation.

Over the past decade, based solely upon the increased 
clinical use of microarray-based CNV analysis, the list of 
recurrent and non-recurrent CNVs associated with 
disease phenotypes has continued to grow. This has led 
to the discovery of many new microdeletion and micro-
duplication syndromes, such as 1q21.1 micro deletions 
[38-40] and 15q13.3 microdeletion/microduplication 
[41-45]. These novel syndromes, combined with the ever-
expanding literature on rare, one-off CNVs associated 
with disease phenotypes, highlight the significant 
involvement of CNVs as a causative mutation in genetic 
diseases. Clinically relevant CNVs can be found in data-
bases such as DECIPHER, ECARUCA and the Inter-
national Standards for Cytogenomic Arrays Database 
(Box  1). As clinical laboratories adopt CNV analysis, 
these resources will become invaluable for the clinician 
to discriminate pathogenic from non-disease associated 
CNVs.

CNV detection by high-resolution microarray
A number of technologies can detect copy number gains 
and losses throughout the human genome and their 
resolution is continuously increasing. These are either 
targeted assays for specific genomic regions or known 
disease genes using techniques such as real-time PCR 
[46-48], multiplex amplifiable probe hybridization [49,50], 
multiplex ligation-dependent probe amplification [50-52] 
or genome-wide assays using high-density microarrays 
[24,29], and more recently high-throughput sequencing 
(HTS) technologies [53,54].

High-resolution microarray-based CNV analysis pro-
vides a method to detect structural genomic altera tions. 
It is useful for uncovering microdeletions and micro-
duplications as well as novel CNVs that are undetectable 
by standard karyotype analysis or fluores cence in situ 
hybridization (FISH) [55]. CNV analysis is typically 
performed using two types of microarray: either array-
based comparative genomic hybridization (aCGH) or 
SNP-based microarrays (SNP-arrays) (Table  1). aCGH 
and SNP-arrays are both efficient tools for researchers 
and clinicians. To decide which is most suitable for a 

Box 1. Web resources

The URLs for websites referred to herein are as follows:

Database of Genomic Variants http://projects.tcag.ca/variation/

NCBI Database of genomic structural variation (dbVar)  
http://www.ncbi.nlm.nih.gov/dbvar/

DECIPHER http://decipher.sanger.ac.uk

ECARUCA http://umcecaruca01.extern.umcn.nl:8080/ecaruca/
ecaruca.jsp

International Standards for Cytogenomic Arrays Database  
https://www.iscaconsortium.org
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certain application, several factors need to be considered, 
including resolution desired and ability to customize 
probe content.

Both aCGH and SNP-arrays can detect low-level 
mosaicism, which would be missed by traditional cyto-
genetic testing and may provide a more accurate measure-
ment of mosaicism level [56-58]. Although mosaicism 
can also be identified through FISH analysis, typically it 
has to be suspected before FISH analysis is performed. 
Thus, microarray-based analysis is especially useful in 
cases when mosaicism is not clinically suspected and 
therefore would not have been screened for by FISH with 
an increased number of metaphase counts. Furthermore, 
SNP-arrays have an additional advantage that they may 
help determine whether the mosaic cell line originated 
from a meiotic or mitotic event [59,60].

In addition to determining copy number alterations, 
the genotype information provided by SNP-arrays allows 
the identification of copy number neutral loss of hetero-
zygosity (LOH). This helps in identifying regions that are 
homozygous due to segmental uniparental disomy or 
parent of common origin effect, both of which can result 
in a disease phenotype if a disease gene within the seg-
ment is mutated or silenced by imprinting [61,62]. LOH 
has also been successfully used to identify candidate genes, 
especially in families with known consanguinity, as seg-
ments of homozygosity by descent may indicate a region 
containing a gene with a homozygous mutation [63-65].

Limitations
Despite the proven utility of microarryas in CNV detec-
tion, there are noted limitations in the clinical appli-
cation. Pathogenic duplications are less commonly 
identi fied through clinical microarray-based testing than 

pathologic deletions. This may be due partially to 
technical limitations of identifying small duplications 
[66,67], although duplications are also associated with 
milder phenotypes, which may not result in CNV 
analysis, and duplications are often inherited from one 
parent and may be assumed to be benign as a result [68]. 
It is likely that this contributed to the dogma that deletion 
of genomic material is more likely to result in disease, 
and may have also introduced a bias that has probably led 
to an underestimation of copy number gains.

Further, microarray-based analysis will not detect 
genomic alterations that do not result in changes in the 
amount of genetic material (copy neutral alterations), 
such as balanced translocations and inversions. Inver-
sions can be directly associated with disease such as the 
inversion in the F8C gene, which is found in approxi-
mately 50% of individuals with hemophilia A [69,70]. 
Such disease-causing inversions will not be identified 
through CNV analysis. Inversions can also predispose to 
genomic rearrangements. Inversions have been noted at 
an increased frequency in parents of children with 
Williams-Beuren syndrome [71] and in the mothers of 
children with Angelman syndrome [72].

As discussed above, an important disease mechanism 
in any CNV is the possible interruption of a critical gene. 
This is true of both small CNV and large genomic 
alterations. Balanced translocations can also result in a 
disease phenotype if the breakpoints of translocation 
reside within a coding region or ultraconserved element. 
Although the mechanism for disease may be similar, due 
to the neutral copy number change associated with a 
balance translocation, the etiology for disease will go 
unrecognized by microarray-based CNV analysis. In a 
study of 36,325 patients with idiopathic ID, 0.78% of 

Table 1. Array-based comparative genomic hybridization versus single nucleotide polymorphism array

 aCGH SNP-array

Probes Traditionally, the probes are long oligonucleotides (50 to 
70 bases) solely designed for copy number analysis. Newer 
platforms have added SNP-based probes for limited regions of 
the genome mainly to detect UPD (for example, Agilent CGH + 
SNP arrays)

SNP-based oligonucleotides designed for SNP genotyping. Copy 
number can be inferred by additional analysis. Newer platforms 
have added long oligonucleotides designed solely for copy number 
analysis to improve resolution (for example, Affymetrix SNP 6.0, 
Illumina 1M)

Experimentation Genomic DNA from the patient and a control are labeled with 
different fluorophores and hybridized to the same array. The 
differences in signal intensity between the patient and control 
samples, which is converted to a log2 ratio, indicates a difference 
of copy number

In SNP-arrays the patient sample is hybridized to the microarray by 
itself. Copy number is determined by comparing the signal intensity 
data obtained from the patient sample with a collection of controls 
previously analyzed and incorporated into the analysis software

Resolution Probes can be tiled to provide very high resolution. More 
flexibility and customization of probe content and density. Single 
exon resolution possible

The placement of probes is dependent on location of SNPs limiting 
resolution. Less flexibility in way of customization of probe content

Applications Can only be used for copy number analysis. Will not detect UPD 
or consanguinity unless SNP probes are specifically added. Will 
also detect low-level mosaicism of CNVs

Will detect UPD, consanguinity, as well as copy number variations. 
Will also detect low-level mosaicism of CNVs

aCGH, array-based comparative genomic hybridization; CNV, copy number variation; SNP, single nucleotide polymorphism; SNP-array, SNP-based microarray; UPD, 
uniparental disomy.
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individuals were found to carry copy-number-neutral 
genomic alterations. These deleterious genomic altera-
tions were identified through chromosome analysis and 
were not detected through microarray-based testing [73]. 
Important disease mechanisms may go undiagnosed and 
may be underestimated if only microarray-based CNV 
analysis is performed. Other strategies, such as karyotype 
analysis, may be needed to rule out translocations and/or 
inversions as the underlying mechanism of disease 
etiology.

Examples of the utility and impact of clinical CNV 
analysis
Improvements in traditional cytogenetic techniques have 
helped identify a number of cytogenetic anomalies asso-
ciated with ID [74,75]. Yet in comparison with traditional 
cytogenetic analysis, CNV arrays have a significantly 
increased diagnostic yield [76,77] and studies using 
microarray testing have identified pathogenic CNVs in 
approximately 10% to 20% of individuals with idiopathic 
ID [73,78-80]. The clinical laboratory has quickly adopted 
microarray-based CNV analysis as the recommended 
first tier of testing for individuals with non-syndromic 
ID, autism spectrum disorders (ASDs), and multiple 
congenital anomalies (MCA) [29,81].

The use of microarray testing in individuals with ASD 
and MCA has significantly increased the rate of identi-
fication of an underlying genetic etiology. In a study of 
852 subjects with ASD, an underlying diagnosis was 
established in 0.46% of cases through fragile X testing, 
2.23% through karyotype analysis, and 7.0% through 
microarray analysis [82]. Similar to the studies of indivi-
duals with ID and ASD, detection of genomic alterations 
in MCA through microarray analysis was significantly 
higher than in traditional cytogenetic analysis [83,84]. 
Establishing a genetic diagnosis is important as it can 
lead to appropriate referrals for therapy, surveillance for 
other organ involvement, end the diagnostic odyssey and 
provide accurate information for genetic counseling 
[85,86].

The use of CNV analysis has extended beyond the 
diagnosis of ID, ASD and MCA, allowing for a broader 
understanding of known disorders and the identification 
of new syndromes. Before microarray-based analysis, the 
diagnosis of microdeletion or duplication syndromes 
required either a visible submicroscopic deletion, such as 
in Miller-Dieker syndrome [87], or disease-specific FISH 
analysis. Recognition of disparate phenotypes within a 
specific syndrome remains a difficult challenge for the 
clinician. The unbiased nature of CNV analysis has 
allowed the diagnosis of known microdeletion and dupli-
cation syndromes with a wide phenotypic spectrum, 
which may have otherwise gone undiagnosed [88]. One 
example is Potocki-Lupski syndrome, which results from 

a duplication of 17p11.2 and is characterized by develop-
mental delay and variable congenital anomalies. Although 
Potocki-Lupski syndrome was clinically characterized 
previously [89], the use of microarray-based testing has 
greatly improved the characterization of phenotypic 
spectrum and molecular analysis of the duplications 
found in the syndrome [90].

With the increased utilization of CNV analysis, new 
microdeletion and duplication syndromes have been 
identi fied. For example, screening of more than 10,000 
patients with developmental disabilities through CNV 
analysis revealed seven patients with a similar phenotype 
(dysmorphic features, midline defects, seizures and 
develop mental delay) and a microdeletion at 1q41q42 
[91]. Isolated cases were previously reported with a 
similar microdeletion [92,93], although microarray-based 
CNV analysis provided a means to appreciate the pheno-
type and insight into pathophysiology of the recurrent 
microdeletion [94-97].

Clinical CNV analysis typically includes known micro-
deletion and duplication syndromes, although it can also 
be designed to include single gene disorders. Exonic or 
multiexonic CNVs within dosage-sensitive genes repre-
sent a significant percentage of mutations in monogenetic 
disorders [98]. As a result, exonic arrays (microarrays 
designed to evaluate CNV within transcribed regions) 
have been designed to target the exon of a single gene, 
exons within a group of specific disorders, or genome-
wide exonic coverage [99,100]. Intragenic deletions/
dupli cations have been identified in a number of 
autosomal dominant, X-linked recessive and X-linked 
dominant disorders, many of which would have been 
missed by non-exon targeted arrays and traditional 
sequencing methods [21].

Although CNV analysis is often used to evaluate a non-
discrete phenotype such as ID, the high frequency of 
CNVs within monogenic disorders allows researchers to 
use microarray-based platforms for candidate gene 
selection. CHARGE syndrome has a distinct phenotype, 
follows an autosomal dominant inheritance pattern, and, 
until recently, had an unknown genetic etiology. A 
number of strategies were used to identify a candidate 
gene [101] and aCGH analysis in a patient with CHARGE 
syndrome revealed a microdeletion containing the CHD7 
gene [102]. Similar strategies have been used to identify 
candidate genes in other diseases, such as NBPF23 in 
neuroblastoma [103], TCTE3 in congenital diaphragmatic 
hernia [104], TUSC3 in non-syndromic ID [105], and 
MTUS1 in familial breast cancer [106].

Challenges in interpretation of CNV analysis
CNV analysis is now routinely utilized for the diagnosis 
of an individual or family and the results are used for 
genetic counseling and clinical management [107]. 
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Findings from clinical CNV analysis can often provide 
results that are unintended or difficult to interpret. The 
ability to detect CNVs has far outpaced our ability to 
discern their role in disease.

Initially, clinical CNV analysis was designed to limit the 
number of ambiguous findings and maximize the rele-
vancy of results. This included limiting genomic coverage 
to known deletion and duplication syndromes [108-110], 
as well as using probes, such as bacterial artificial 
chromo somes (BACs), that could be confirmed through 
traditional cytogenetic and molecular techniques 
[111,112]. Although there may still be a role for such 
targeted arrays, the majority of clinical laboratories have 
adopted platforms with increasing genomic coverage, 
which increased detection of both deleterious CNVs and 
variants of unknown significance.

As discussed above, CNVs can result in disease 
pathology through multiple mechanisms. This makes the 
interpretation of novel CNVs difficult, and there appears 
to be wide variability in reporting the clinical significance 
of CNV results. In one study, 13 CNVs (from both BAC 
and oligo arrays) were sent to 11 different clinical labora-
tories. The laboratories designated each CNV as one of 
the following: normal, likely benign, uncertain clinical 
significance or abnormal. In none of the 13 cases was 
there unanimous agreement over the clinical significance 
of the CNV [113]. A number of guidelines are available to 
aid clinical laboratories in reporting the clinical signifi-
cance of CNVs [111-113], and these include consideration 
of known contiguous gene syndromes, the size, dose and 
inheritance pattern of the CNV, genomic content within 
the CNV, and comparison of the medical literature and 
CNV databases.

As for any sequence or genomic variant, it is important 
to determine whether a CNV is inherited or de novo 
[114], and many clinical CNV analyses utilize parental 
samples or testing of relatives when possible [115]. In 
general, microduplications are more likely to be inherited 
than microdeletions [116], although simply being inherited 
does not indicate that a CNV is benign. Inherited CNVs 
may have different and unrecognized breakpoints and 
mechanisms such as mosaicism, incomplete penetrance 
and variable expression, which can result in inherited 
CNVs having significantly different impacts among 
individuals [115]. For example, both deletions and 
duplications of 1q21.1 are associated with varying levels 
of ID, microcephaly, dysmorphic features and congenital 
anomalies, despite the 1q21.1 CNV being inherited from 
both mildly affected and unaffected parents [38,39].

Clinicians and clinical laboratories often rely on 
available databases and medical literature that examine 
the phenotype and frequency at which the CNV has been 
identified. Yet ambiguity remains about the possible 
patho genic effects of a number of CNVs. The 15q11 

region is prone to unequal recombination events 
(mediated by low copy number repeats) leading to 
deletion, duplication and triplication of the genomic 
region. Duplications and triplications of 15q11 have been 
associated with autism [117-120], drug-resistant epileptic 
seizures [120-123] and schizophrenia [123-125]. Despite 
a number of studies reporting the pathogenic nature of 
the 15q11 duplication, researchers have also refuted that 
increased dose of 15q11 alone is sufficient for a disease 
phenotype [44,116]. Whether a parent of origin effect or 
other epigenetic factors contribute to a disease pheno-
type has yet to be discerned.

Prenatal CNV analysis
Studies evaluating the efficacy of microarray-based CNV 
analysis have mainly been performed in pediatric 
populations, although CNV analysis has been performed 
in spontaneous miscarriages [109], in fetuses terminated 
for MCA [126,127] and for prenatal diagnosis [128-132]. 
Indications for pursuing prenatal CNV analysis are 
similar to the indications for pediatric CNV analysis, and 
they include an increased risk for chromosomal abnor-
malities [128,129] and a family history of an intragenic 
CNV [133]. Unique to prenatal testing, CNV analysis is 
also performed as a result of advanced maternal age, an 
abnormal fetal ultrasound or parental anxiety [134].

Initial concerns over the use of prenatal CNV analysis 
have faded with the experience of clinicians and the 
laboratory. Similar to postnatal microarray studies, the 
use of prenatal microarray analysis has resulted in a 
significant increase in the identification of genomic 
alterations. In a recent meta-analysis by Hilleman et al., 
prenatal aCGH appears to increase the detection rate of 
fetal chromosomal imbalances by 3.6% over traditional 
karytoype analysis [135], and, similar to postnatal MCA 
studies, prenatal CNV analysis will identify a significantly 
increased rate of chromosomal abnormalities when a 
structural fetal anomaly is present [135,136].

Currently, CNV analysis is not recommended to 
replace traditional prenatal cytogenetic testing [137], 
although it is often used as a first-tier option for invasive 
prenatal testing [138,139]. Prenatal diagnosis allows 
potential parents to make informed decisions about 
reproduction. Prenatal CNV analysis extends parental 
autonomy to decisions over microdeletion or duplication 
syndromes as well as chromosome abnormalities. 
Whether microarray analysis is utilized as first-tier 
testing or in limited circumstances such as fetal anomalies, 
genetic counseling is a necessary component of prenatal 
CNV testing [140-142].

Genetic counseling
CNV analysis has provided an ability to identify disease-
causing alterations in an unprecedented number of 
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diseases and phenotypes. Despite the promise of CNV 
analysis, testing may reveal a variant of unknown 
significance, CNVs with incomplete penetrance or 
variable expressivity, or unanticipated findings such as 
misattributed paternity. As a result, an emphasis has 
been placed on the genetic counseling of patients and 
families undergoing testing.

As noted above, CNV analysis may identify results that 
are relatively ambiguous, which may make the inter-
pretation of results relatively complicated. This difficulty 
is intensified in the prenatal setting, as the decision to 
continue a pregnancy is often made after the results of 
prenatal CNV analysis are available. Prenatal aCGH 
analysis may increase the number of variants of unknown 
significance by 1% to 2% compared with prenatal karyo-
type analysis alone [135,138]. The potential of indeter-
minate results has led many to question the utility of 
CNV analysis in prenatal diagnosis [143] and has raised 
concerns on the possible emotional harm on the expect-
ant parents [144]. As a result, informed consent and 
genetic counseling are paramount prior to undergoing 
pre natal CNV analysis.

Although delivery of counseling will differ among 
clinicians, genetic counseling should inform patients and 
families undergoing CNV analysis of the potential benefit 
of testing as well as the potential risks of testing, such as 
variants of unknown significance [128,141]. Genetic 
coun selors, geneticists and medical geneticists are 
familiar with discussing such issues, which are not 
unique to CNV analysis. Genetic counseling remains 
integral to providing clinical CNV analysis whether it is 
performed in the postnatal or prenatal setting.

Ethical concerns
The unbiased genomic nature of microarray-based CNV 
analysis is both a benefit and a concern for the clinician. 
CNV analysis may also discover information that was not 
intended, such as CNVs that predispose for adult-onset 
disorders, regions associated with neoplasia and mis attri-
buted paternity. In evaluating patients for developmental 
delay and/or congenital anomalies, individuals have been 
noted to have CNVs in cancer predisposition syndromes 
such as familial adenomatous polyposis [145], Peutz-
Jeghers syndrome and Li-Fraumeni syndrome [146].

There is significant debate over disclosing incidental 
findings in genetic research, although the moral obliga-
tion to disclose information about pre-symptomatic 
conditions or neoplasia syndromes is distinct from dis-
closing misattributed paternity [147,148]. Genetic 
counsel ing for CNV analysis should include the possi-
bility of unintended or incidental results. Prior to under-
going testing it is important to discuss both policies 
about disclosure of unintended results and how results 
will be relayed with the patient. Rarely, CNV analysis may 

reveal results that have legal consequences. SNP-arrays 
will also identify consanguinity as a result of LOH. 
Depending on the age of the parent and degree of relation, 
consanguinity may indicate sexual abuse [140,149,150], 
and laboratories should have institutional policies 
concerning the possible legal implications of such testing.

The ethical issues surrounding CNV analysis and HTS 
technologies are not dissimilar from those of genetic 
testing in general. The importance of informed consent 
and minimizing the risk of privacy violations are empha-
sized due to the vast amount of genetic information 
generated by CNV analysis. Informed consent for CNV 
analysis may be difficult due to the nature of the testing 
as opposed to informed consent for the testing of one 
single gene. Although it is important to include specific 
information such as the possibility of identifying pre-
symptomatic conditions, informed consent should 
address both the goal and general methodology of the 
testing and not every possible result [151].

There has been a recent shift in both clinical testing 
and research testing to share genetic results and pheno-
typic data. In part this is due to the need of large data sets 
to differentiate between benign and pathogenic CNVs. 
The potential harm of loss of privacy or confidentiality 
may be increased due to the sharing of data, although the 
actual risk of privacy violations is hard to estimate [152]. 
It is also important for the clinician to make the patient 
aware of the laboratory’s policy on data sharing. Potential 
mistrust of the clinician may occur if the patient is 
unaware of the potential risk of loss of privacy and 
discovers that the clinical laboratory shares genetic and 
phenotypic data [151].

Towards the future: high-throughput sequencing 
technologies
Although microarray technology is the current mainstay 
of the clinical cytogenetic laboratory, HTS technologies 
are a powerful tool for the analysis of genetic variation as 
well as mutation detection in patient cohorts. The 
strength of HTS is its potential ability to detect all forms 
of variation, including single nucleotide variations), small 
(<50  bp) insertions/deletions, CNVs and copy neutral 
structural variations on a single platform. HTS tech nolo-
gies hold great promise as the future method of choice 
for detection of all forms of genomic variation, including 
CNVs.

Structural variation may be underrepresented regard-
less of whether microarray analysis or HTS technology is 
utilized. Currently no single platform or strategy 
identifies all forms of genomic variation and the choice of 
method for identifying CNVs may ultimately limit results 
[153]. The understanding of the benefits and limitations 
of each technology becomes paramount as use in clinical 
practice is expanding. We suggest a testing algorithm to 
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identify genomic variation in clinical samples based on 
available technologies for mutation detection and the 
clinical presentation of the patient (Figure 1).

Conclusion
CNV analysis is a powerful tool for gene discovery, 
evaluating pathogenic effects of genomic alterations and 
establishing a diagnosis for patients with a number of 
phenotypes. The goal of clinical CNV analysis is designed 
to identify structural alterations that would establish a 
genetic diagnosis in an individual or family. A genetic 
diagnosis may aid in the clinical management of an 
individual and allows for accurate genetic counseling, 
including providing recurrence risks and prenatal testing 
options, and a genetic diagnosis may relieve the family’s 
anxiety surrounding the etiology of disease.

Despite the noted benefit of CNV analysis, it is often 
difficult to determine the pathogenic effects of a CNV. 
This ambiguity may create an added burden of un-
certainty, which is often shared between the laboratory, 
the clinician and the family. Appropriate genetic 
counseling helps inform the family of possible outcomes, 

including a normal result, variants of unknown signifi-
cance and the possibility of incidental findings. As the 
ability to detect CNVs continues to increase so must the 
ability to discern the pathogenic effects of CNVs. A 
current framework exists to investigate the possible 
effects of CNVs in the human genome. Continued colla-
boration between researchers, clinicians and families is 
imperative to both maximize the benefit of CNV analysis 
as well as minimize the risk to patients undergoing 
testing.
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Figure 1. Clinical copy number variation analysis algorithm. Whole genome or exome copy number variation (CNV) analysis is an accepted 
first-line screening tool for the evaluation of patients with complex clinical presentations, and also intellectual disability (ID), autism spectrum 
disorder (ASD) or multiple congenital anomalies (MCA). If negative, whole exome/clinical exome analysis is now clinically available for subsequent 
analysis. CNVs detected by array-based comparative genomic hybridization (aCGH) or SNP-based microarray (SNP-array) may lead to a diagnosis 
or point to a coexisting mutation in the affected gene(s) in autosomal recessive (AR) traits. Targeted exonic CNV analysis can similarly be applied to 
identify deletions in genes with a heterozygous mutation detected by DNA sequencing. The emergence of whole genome DNA sequence analysis 
on a clinical basis will allow for integrated whole exome CNV/whole exome sequence analysis in the near future. ARMLPA, multiplex ligation-
dependent probe amplification; NGS, next-generation high-throughput DNA sequencing; qPCR, quantitative PCR.
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