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Abstract

Event-related potentials (ERPs) are used extensively to investigate the neural mecha-

nisms of attention control and selection. The univariate ERP approach, however, has

left important questions inadequately answered. We addressed two questions by

applying multivariate pattern classification to multichannel ERPs in two cued visual

spatial attention experiments (N = 56): (a) impact of cueing strategies (instructional

vs. probabilistic) on attention control and selection and (b) neural and behavioral

effects of individual differences. Following cue onset, the decoding accuracy (cue left

vs. cue right) began to rise above chance level earlier and remained higher in instruc-

tional cueing (�80 ms) than in probabilistic cueing (�160 ms), suggesting that unilat-

eral attention focus leads to earlier and more distinct formation of the attention

control set. A similar temporal sequence was also found for target-related processing

(cued target vs. uncued target), suggesting earlier and stronger attention selection

under instructional cueing. Across the two experiments: (a) individuals with higher

cue-related decoding accuracy showed higher magnitude of attentional modulation

of target-evoked N1 amplitude, suggesting that better formation of anticipatory

attentional state leads to stronger modulation of target processing, and (b) individuals

with higher target-related decoding accuracy showed faster reaction times (or larger

cueing effects), suggesting that stronger selection of task-relevant information leads to

better behavioral performance. Taken together, multichannel ERPs combined with

machine learning decoding yields new insights into attention control and selection that

complement the univariate ERP approach, and along with the univariate ERP approach,

provides a more comprehensive methodology to the study of visual spatial attention.
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1 | INTRODUCTION

Covert orienting of visual spatial attention can facilitate the

processing of stimuli appearing at the attended location compared to

that appearing at the unattended locations (Posner, 1980). The under-

lying neural mechanisms have been extensively studied by applying

the event-related potential (ERP) technique to attention cueing para-

digms (Dale, Simpson, Foxe, Luks, & Worden, 2008; Eimer, 2014;
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Eimer, van Velzen, & Driver, 2002; Grent-'t-Jong, Boehler,

Kenemans, & Woldorff, 2011; Harter, Miller, Price, Lalonde, &

Keyes, 1989; Hong, Sun, Bengson, Mangun, & Tong, 2015; Hopf &

Mangun, 2000; Jongen, Smulders, & Van der Heiden, 2007; Kelly,

Gomez-Ramirez, & Foxe, 2009; Lasaponara et al., 2018; Nobre,

Sebestyen, & Miniussi, 2000; Yamaguchi, Tsuchiya, & Kobayashi,

1994). A series of cue-evoked slow ERP components have been iden-

tified by measuring the difference in voltage between electrodes con-

tralateral and ipsilateral to the attended location, including early

directing-attention negativity (EDAN), anterior directing-attention

negativity (ADAN), late directing-attention positivity (LDAP), and

biasing-related negativity (BRN). These ERP components respectively

reflect early shift of attention, activation of attention control pro-

cesses in frontal cortex and formation of facilitatory activity in target-

specific visual cortex (Eimer, 2014; Grent-'t-Jong et al., 2011; Hopf &

Mangun, 2000; Kelly et al., 2009; Lasaponara et al., 2018). Similarly,

for target processing, the amplitude of several ERP components,

including P1, N1, Nd1, Nd2, late positive deflection (LPD), and steady

state visually evoked potentials was enhanced for targets appearing at

the cued location than that appearing at the uncued location, and this

enhancement is thought to reflect the selection of task relevant

stimuli by attention for prioritized processing (Curran, Hills,

Patterson, & Strauss, 2001; Eimer, 1996; Eimer, 1998; Hong et al.,

2015; Mangun & Buck, 1998; Mangun, Buonocore, Girelli, &

Jha, 1998; Mangun & Hillyard, 1991; Muller, Teder-Salejarvi, & Hillyard,

1998; Rajagovindan & Ding, 2011; Talsma, Mulckhuyse, Slagter, &

Theeuwes, 2007).

The univariate ERP approach, despite having generated a wealth

of insights into the neural mechanisms of attention control and selec-

tion, has left some important questions inadequately addressed. For

example, upon receiving the attention-directing cue, how long does it

take to form the attention control set? Do different cueing strategies

(i.e., probabilistic vs. instructional) impact the timing of attention con-

trol? Predefined analysis windows used in previous univariate ERP

research to measure the effect of attention vary significantly from

study to study and do not yield precise answers to these questions.

The impact of cueing strategies remains largely unexplored. In addi-

tion, there are significant individual differences in attention control

and selection. Does stronger cue-triggered preparatory attention con-

trol lead to more effective selection of attended information? To what

extent the attention selection of task-relevant stimuli is related to

behavioral performance? Univariate ERP studies attempting to link

cue-related ERPs with target-related ERPs (e.g., N1) and to link target-

related ERPs with behavior (e.g., reaction time [RT]) have again

yielded mixed results (Dale et al., 2008; Grent-'t-Jong et al., 2011;

Harter et al., 1989; Talsma et al., 2007).

These issues may stem from the fact that univariate ERPs from

single electrodes are not able to reflect the contributions of multiple

neural processes taking place in distributed brain regions that collec-

tively influence the subsequent neural or behavioral events in spatial

attention (Eimer, 1998; Lasaponara et al., 2018; Mangun &

Buck, 1998). For example, ADAN and LDAP both appear around

400–500 ms post-cue, but they each index different processes of

preparatory attention and have distinct scalp topographies (Hong

et al., 2015; Hopf & Mangun, 2000; Jongen et al., 2007; Lasaponara

et al., 2018; Nobre et al., 2000). A multivariate approach taking into

account the contribution of distributed neural processes that occur

concurrently may provide a path forward to overcome the limitations

of the univariate approach. Instead of treating different electrodes

singly as in the univariate EEG/ERP approach, the multivariate pattern

analysis/classification (also referred to as decoding) approach treats

measurements from multiple ERP channels as a pattern representing

the cognitive variable to be analyzed (Grootswagers, Wardle, &

Carlson, 2017; Parra, Spence, Gerson, & Sajda, 2005). To date, EEG-

based decoding analysis has been applied to face detection (Cauchoix,

Barragan-Jason, Serre, & Barbeau, 2014), working memory (Bae &

Luck, 2018), and decision-making (Bode et al., 2012; Philiastides,

Ratcliff, & Sajda, 2006; Philiastides & Sajda, 2006). Here, we sought to

apply this approach to understand the neural mechanisms of visual

spatial attention control and selection. Our goal was to establish and

compare the entire time courses of decoding for both cue-related

(cue left vs. cue right) and target-related (cued target vs. uncued tar-

get) brain states across cueing strategies, and to link individual differ-

ences in decoding accuracy with attention enhancement of target

processing and behavioral response.

Two cueing paradigms were considered in this study: probabilistic

cueing (Mangun & Hillyard, 1991; Posner, 1980; Yamaguchi et al.,

1994) and instructional cueing (Bengson, Kelley, & Mangun, 2015;

Hopfinger, Buonocore, & Mangun, 2000; Snyder & Foxe, 2010;

Worden, Foxe, Wang, & Simpson, 2000). The classic example of prob-

abilistic cueing is the Posner paradigm in which the subject is encour-

aged to pay attention to a location where the target will be more

likely to occur, but is required to respond to targets that are presented

in both cued (valid targets) and uncued (invalid targets) locations

(Posner, 1980). In this paradigm, there is strategic motivation to divide

attention between both the cued location and the uncued location

(Snyder & Foxe, 2010). In contrast, in instructional cueing, subjects

are instructed to pay full attention to the cued location and respond

only to targets appearing at the cued location (ignoring targets pres-

ented in the uncued location). Instructional cueing is expected to pro-

duce stronger attentional facilitation at the cued location compared

with probabilistic cueing. This notion has been suggested but

supporting evidence from quantitative comparisons between these

two cueing strategies within one study is still lacking (Hong

et al., 2015; Hopfinger et al., 2000; Liu, Bengson, Huang, Mangun, &

Ding, 2016; Snyder & Foxe, 2010; Worden et al., 2000). Given the

possible differences between these two cueing strategies, we expect

that decoding accuracy as a function of time during the cue-target

interval and during the target processing would rise above chance

level sooner and reach higher levels for instructional cueing than for

probabilistic cueing. We further predict that across individuals, the

decoding accuracy during the cue-target interval (cue left vs. cue right),

reflecting the strength of attention control, is positively associated with

attention selection of the target and the decoding accuracy during target

processing (cued target vs. uncued target), reflecting the strength of

attention selection, is positively associated with behavioral performance.
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2 | MATERIALS AND METHODS

2.1 | Participants

The experimental protocols were approved by the Institutional Review

Board of Shanghai Mental Health Center (No. 2017-05R). Sixty-one

healthy college students with normal or corrected-to-normal vision gave

written informed consent and participated in this study. In traditional

visual spatial attention studies using univariate ERP analysis, the typical

sample size is between 15 and 20 subjects (Grent-'t-Jong et al., 2011;

Hong et al., 2015; Kelly et al., 2009; Nobre et al., 2000). However, since

this study was an attempt to apply a novel multivariate decoding

approach and perform between-subject correlation analysis between

decoding accuracy and target-related ERPs/behavior, we increased our

sample size to the range of �30 subjects for each experiment. There

were two experiments: Experiment 1 (N = 32) utilized instructional cue-

ing and Experiment 2 (N = 29) utilized probabilistic cueing. Two partici-

pants were excluded in Experiment 1 due to poor data quality (i.e., less

than 50% of trials remained after preprocessing). Three participants were

excluded in Experiment 2 due to (a) poor task performance (N = 1; accu-

racy <50%) and (b) hardware issues (N = 2; responses were not recorded

correctly). Thirty participants were included in final analysis for Experi-

ment 1 (10 females, aged between 18 and 25 years, all right-handed) and

26 participants were included in final analysis for Experiment

2 (10 females, aged between 20 and 24 years, all right-handed).

2.2 | Stimuli and procedures

In both experiments, each trial began with an arrow cue (Experiment

1:2.24 × 1.62�; Experiment 2:2.29 × 1.62�) presented centrally for

200 ms, which pointed to either the left or right with equal probabil-

ity. The cue was then replaced by a central fixation point (Experiment

1: a crosshair, 1.38 × 1.38�; Experiment 2: a dot, 0.57 × 0.57�) where

subjects were required to maintain their fixation throughout each trial.

Upon seeing the cue, subjects were instructed to shift their attention

covertly to the cued direction. Two location markers (Experiment 1:

squares, 2.39 × 2.39�, located 9.05� from the vertical meridian and

7.2� below the horizontal meridian; Experiment 2: dots, 0.57 × 0.57�,

located 8.87� from the vertical meridian and 7.06� below the horizon-

tal meridian) were presented in the left and right visual fields through-

out the trials. After a cue-target interval of 1,000–1,200 ms, a target

stimulus (Experiment 1:1.67 × 1.67�; Experiment 2:1.72 × 1.72�),

either a plus sign or the letter “x” with equal probability, was pres-

ented at one of the location markers. The target lasted for 200 and

100 ms in Experiment 1 and Experiment 2, respectively. In

Experiment 1 (instructional cueing), the target was presented at the

cued or uncued location with equal probability. Subjects were

instructed to totally ignore the uncued location and respond only to

the plus sign appearing at the cued location. In Experiment 2 (probabi-

listic cueing), subjects were instructed to respond to the plus sign

presented at both the cued (valid trials, 73.3%) and the uncued (invalid

trials, 13.3%) locations. The remaining 13.3% trials in Experiment

2 were neutral trials with bilateral arrow cues, which did not provide

any information about the location of forthcoming targets. The neutral

trials were included for testing the behavioral effects of attention cue-

ing and not included in the following ERP or decoding analysis. In both

experiments, the intertrial interval between the target offset and the

cue onset of next trial was set at 2600 ms. Response to the plus sign

was made by pressing a button on the response box with the right

index finger as quickly and accurately as possible. Only responses

made within 1,600 ms after the target offset were considered as

valid.

In Experiment 1, all stimuli were in black and presented in a white

background (Figure 1a). In Experiment 2, all stimuli were in white and

presented in a black background (Figure 1b). In both experiments, the par-

adigms were compiled and executed in the E-Prime 2.0 toolkit

(Psychology Software Tools, Inc., Sharpsburg, MD), and all stimuli were

presented on a 19-in. LCD monitor positioned 60 cm in front of the sub-

ject. Each trial block consists of 60 trials lasting for about 4–5 min. Sub-

jects were first shown the experimental instructions, and then trained for

at least one block to get familiarized with the task. After that, each subject

finished eight blocks, with a 2–3 min break between successive blocks.

2.3 | EEG recording

EEG data were recorded using the BrainAmp MR Plus amplifier and

EasyCap (Brain Products GmbH, Gilching, Germany). In Experiment 1,

EEG signals were recorded from 32 electrodes (Fp1, Fp2, F3, F4, F7,

F8, AFz, Fz, FCz, FC1, FC2, FC5, FC6, C3, C4, Cz, T7, T8, CP1, CP2,

CP5, CP6, P3, P4, P7, P8, Pz, O1, O2, Oz, TP9, TP10), in which AFz

and FCz were used as recording ground and reference, respectively.

The sampling rate was set at 1,000 Hz and the online anti-aliasing fil-

ter was set at 0.016–100 Hz. To monitor ocular activity, two addi-

tional electrodes were placed on the outer left ocular canthus and

above the right eye recording horizontal and vertical electrooculo-

grams (HEOG and VEOG). In Experiment 2, EEG signals were

recorded from 65 electrodes (Fp1, Fp2, F3, F4, C3, C4, P3, P4, O1,

O2, F7, F8, T7, T8, P7, P8, AFz, Fz, FCz, Cz, Pz, FC1, FC2, CP1, CP2,

FC5, FC6, CP5, CP6, FT9, FT10, TP9, TP10, F1, F2, C1, C2, P1, P2,

AF3, AF4, FC3, FC4, CP3, CP4, PO3, PO4, F5, F6, C5, C6, P5, P6,

AF7, AF8, FT7, FT8, TP7, TP8, PO7, PO8, Fpz, CPz, POz, Oz), in which

AFz and FCz were used as recording ground and reference, respec-

tively. The sampling rate was set at 1,000 Hz and the online anti-

aliasing filter was set at 0.016–250 Hz. One additional electrode was

placed below the right eye. In the offline analysis, we calculated the

difference between this additional electrode below the right eye and

Fp2 as the bipolar VEOG derivation, and the difference between FT9

and FT10 as the bipolar HEOG derivation.

2.4 | EEG preprocessing

EEG preprocessing was conducted offline using EEGLAB and ERPLAB

toolboxes, following the same general steps for both experiments.
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Specifically, continuous EEG data were first band-pass filtered

between 0.1 and 40 Hz using a two-way Butterworth filter with zero

phase shift (roll-off slope: 12 dB/oct). The power line noise was

suppressed by a Parks McClellan notch filter at 50 Hz. Other artifacts

including ocular artifacts were then corrected by independent compo-

nent analysis (ICA) using the Infomax algorithm (Jung et al., 2000). The

EOG channels were included in the ICA to aid the removal of the ocu-

lar artifacts. Independent components (ICs) were manually identified

according to their time courses and scalp topographies. Typically, for

each subject, one IC was identified as related to eye movements and

one IC to eye blinks. The ICs that are related to eye movements tend

to have a scalp map showing strong contribution from anterior frontal

channels (see Figure 2 for representative examples). ICs corres-

ponding to artifacts were rejected and EEG data were reconstructed

by adding together the nonartifact ICs. Artifacts-corrected EEG data

were then re-referenced to the average of the two mastoid electrodes

(TP9, TP10). The original recording reference electrode was

recalculated as FCz. After that, continuous EEG data were down-

sampled to 250 Hz and then segmented into two types of epochs:

one was time-locked to cue onset (from −1,000 ms pre-cue to

1,400 ms post-cue) and the other was time-locked to target onset

(from −500 ms pre-target to 1,000 ms post-target). It is worth noting

that we extracted longer epochs than the periods we were interested

in, so that we can minimize the filtering-related edge artifacts by trim-

ming the two ends of the epoch (i.e., first and last 200 ms in both cue-

related and target-related epochs; see below).

Epochs meeting one or more of the following criteria were

rejected: (a) the maximal voltage difference in any EEG channel

exceeded 150 μV within any of the moving windows (width:

200 ms; step: 50 ms) throughout the epoch, which was examined by

a peak-to-peak (maximum minus minimum) function, (b) the absolute

value of voltage at any time point throughout the whole epoch in

any EEG channel exceeded 100 μV, which was examined by a simple

voltage threshold function, (c) epochs with any overt eye move-

ments as detected by a moving window step function (width:

400 ms; step: 10 ms; threshold: 40 μV) based on HEOG amplitude,

and (d) epochs with any overt eye blinks around the cue or target

stimuli presentation period (−200 to 200 ms) as detected by a mov-

ing window peak-to-peak function (width: 200 ms; step: 10 ms;

threshold: 50 μV) based on VEOG amplitude. Instead of finding the

maximal peak-to-peak difference, the step function measures the

difference in mean amplitude between the first half of the window

and the second half of the window (i.e., between the first 200 ms

and the last 200 ms of a 400-ms window), and has been shown as

an effective method to detect small eye movements recorded in an

HEOG channel (Luck, 2014). As indicated above, EOG channels

F IGURE 1 Experimental paradigms for the Instructional cueing dataset (a) and Probabilistic cueing dataset (b). In both paradigms, an arrow
cue was first presented, directing the subject to covertly shift attention to either the left or the right lower visual field. Fixation was required
throughout. After a random cue-target interval, a visual target (the letter “x” or the plus sign) was presented in one of the location markers, and
the subject responded to the target according to the paradigm requirements. In the instructional cueing paradigm, the subject was told to respond
only to targets appearing at the cued location and totally ignore targets presented at the uncued location (50% probability). In the probabilistic
cueing paradigm, the subject needed to respond to targets presented in both cued (73.3% probability, valid trials) and uncued (13.3%, invalid
trials) locations. In the remaining 13.3% trials (neutral trials) in the probabilistic cueing paradigm, the cue was uninformative, consisting of a
bilateral arrow. See Section 2.2 for more details
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F IGURE 2 Removal of eye movement confounds. Independent components related to eye movements are shown for three representative
subjects in each dataset. The decoding analysis was based on channels F7 and F8 which were near the eyes. Without independent component
analysis (ICA) correction, the decoding is above chance-level during the late cue-target interval. Chance level performance (0.5) is indicated by the
horizontal dash lines. Gray areas indicate clusters of time points in which the decoding was significantly greater than chance after the false
discovery rate (FDR) correction for multiple comparisons. The blue shading indicates ±1 SEM. After removing eye movement-related ICA
component, the decoding accuracy returns to chance level
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were included for the ICA correction, which aided the removal of

the ocular artifacts. Since trial-wise artifact rejection was performed

after ICA correction and artifact rejection steps (Criteria 3 and 4)

relied on the uncorrected EOG channels, we replaced the ICA-

corrected EOG channels with the uncorrected ones before per-

forming artifact rejection. In addition, grand-averaged HEOG activity

during the cue-target interval after artifact rejection was shown in

Figure S3 in Supplemental Materials. The difference in cue-related

eye movements was measured at <2 μV in HEOG amplitude. This

difference corresponded to a difference of <0.2� in eye position

(Lins, Picton, Berg, & Scherg, 1993).

The trial rejection rates across subjects (mean ± SD) of cue-

related epochs were 17.73 ± 14.00% (cue left) and 17.48 ± 14.02%

(cue right) for Instructional cueing dataset, and 19.75 ± 14.69%

(cue left) and 19.86 ± 15.50% (cue right) for Probabilistic cueing

dataset. There were no significant differences in trial rejection rates

between cue left and cue right in either dataset (both p > .7, paired

sample t test). The trial rejection rates of target-related epochs

were 7.27 ± 7.59% (attended targets) and 8.13 ± 7.88% (ignored

targets) for Instructional cueing dataset, and 11.89 ± 12.92% (valid

targets) and 11.64 ± 13.32% (invalid targets) for Probabilistic cueing

dataset. There were no significant differences in trial rejection rates

between cued (attended or valid) and uncued (ignored or invalid)

targets in either dataset (both p > .4, paired sample t test). Only

epochs with correct behavioral performance that were also artifact-

free after correction in all channels were included in the following

analysis.

2.5 | Univariate ERP analysis

Conventional univariate ERP analysis was performed by averaging

EEG epochs of the same condition triggered either by the cue or by

the target. Specifically, cue-related epochs were averaged according

to the cue direction (left, right) with pre-cue interval (−200, 0 ms) as

baseline, yielding cue-related ERPs for each condition, electrode, and

participant. Target-related epochs were averaged according to the tar-

get location (left, right) and attention (cued, uncued) with pre-target

interval (−200, 0 ms) as baseline, yielding target-related ERPs for each

condition, electrode and participant.

The attention facilitation of target processing was measured by

comparing the N1 amplitude elicited by attended (valid) targets with

that elicited by ignored (invalid) targets (Grent-'t-Jong et al., 2011;

Hong et al., 2015; Mangun & Hillyard, 1991). Two posterior regions of

interest (ROIs) were defined: left hemisphere (P3, P7, O1 in Instruc-

tional cueing dataset, and P1, P3, P5, P7, PO3, PO7, O1 in Probabilis-

tic cueing dataset) and right hemisphere (P4, P8, O2 in Instructional

cueing dataset, and P2, P4, P6, P8, PO4, PO8, O2 in Probabilistic cue-

ing dataset). Target-related N1 amplitudes were then obtained by

averaging the ERP voltages within 170–210 ms post-target interval in

the contralateral ROI (left hemisphere ROI for targets presented in

the right visual field, and vice versa).

2.6 | Multivariate pattern classification/decoding

2.6.1 | Overview

We examined whether multichannel patterns of ERPs can be used to

reveal neural representation of visual spatial attention. Since single-

trial EEG data are noisy and attention-related ERPs have small ampli-

tudes (e.g., typically less than 1 μV for EDAN, ADAN and LDAP), it

would be difficult to decode their patterns based on single-trial EEG

data. However, averaging across trials can substantially improve the

signal-to-noise ratio, and thus increase decodability (Grootswagers

et al., 2017; Luck, 2014). Thus, we applied a recently proposed ERP-

based decoding approach (Bae & Luck, 2018, 2019), in which multiple

EEG epochs from a given cue or target condition were first averaged

to yield the ERPs at each channel, and decoding was then performed

on multichannel patterns of ERPs rather than on single-trial data, as is

often the case in EEG-based decoding studies. Decoding accuracy

was computed based on the average of a test set of epochs with the

same condition that was not in the training set used to define the

classifier.

In addition to ERPs that are phase-locked to the event of interest

(cue onset or target onset), EEG data also contain nonphase-locked

activity related to visual spatial attention, such as alpha (8–13 Hz) lat-

eralization (Jia, Fang, & Luo, 2019; Liu et al., 2016; Worden

et al., 2000). However, alpha lateralization was not the focus of this

study. To ensure that our decoding was driven by ERP activity rather

than alpha oscillations, we applied low-pass filtering at 8 Hz before

decoding using a two-way least-squares FIR filter implemented in

eegfilt() routine in EEGLAB. The filter order was set as 3 × (srate/

locutoff), where srate referred to the sampling frequency (250 Hz in

this case), and locutoff referred to the cutoff frequency (8 Hz in this

case). The filtering was applied to epoched EEG before averaging and

decoding. The first and last 200 ms in both cue-related and target-

related epochs were removed to minimize edge artifacts due to filter-

ing. It should be noted that, however, low-pass filtering at 8 Hz may

not completely eliminate all activity >8 Hz, as filters always have a

gradual transition around the cut-off frequency. To assess if our find-

ings of ERP decoding were driven by alpha activity, we performed an

additional set of analysis by decoding different attention conditions

(cue left vs. cue right) using alpha (8–13 Hz) power during the cue-

target interval. Results are included as Figure S4 in Supplemental

Materials. It can be found that the weight maps of alpha decoding cor-

respond to classical alpha lateralization, which, however, differ signifi-

cantly from that of ERP decoding (see Figure 4). Furthermore, we

correlated the accuracy of alpha decoding with attentional modulation

of target-related N1 using the same approach as that for ERP

decoding (see Section 2.7.1). As shown in Figure S5 in Supplemental

Materials, no significant correlations were found between cue-related

alpha decoding and attentional modulation of target-related N1, in

contrast to the ERP-based decoding results to be presented below.

Together, such findings suggest that our ERP decoding was not signif-

icantly impacted by alpha.
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To increase the efficiency of decoding analysis and reduce com-

putation time, we further down-sampled the data to 50 Hz (1 data

point every 20 ms). For cue-related epochs, we obtained a four-

dimensional data matrix for each participant, with dimensions being

time (100 time points), cue direction (cue left vs. cue right), trial, and

electrode site (29 electrodes for Instructional cueing dataset, 60 elec-

trodes for Probabilistic cueing dataset). For target-related epochs, we

also obtained a four-dimensional data matrix for each participant, with

dimensions being time (55 time points), attention condition (cued tar-

get vs. uncued target), trial, and electrode site. Target-related epochs

were collapsed across the left and right visual fields for the decoding

analysis. That is, left-target preceded by left-cue and right-target pre-

ceded by right-cue were combined as cued target, and left-target pre-

ceded by right-cue and right-target preceded by left-cue were

combined as uncued target. In addition, we noted the reasons for

combining left and right targets in the decoding procedure. First, our

goal of target-related decoding was to determine whether the pat-

terns related to attentional modulation can tell cued from uncued tar-

gets irrespective of their laterality. The significant above-chance

decoding accuracy suggests that classifiers trained on collapsed target

data can accurately tell whether a single instance of a left-target or

right-target was cued or not, suggesting there is an overall attentional

modulation pattern that is independent of laterality. Second, although

the lateralized patterns of early sensory components (i.e., N1) were

not taken into account, the attention effect would not be masked by

the combination, and it is common in attention research to combine

hemispheres to highlight the attentional modulation of ERP compo-

nents. Third, if cued and uncued targets in the left and right visual

fields were separately decoded, the number of trials became low to

obtain reliable ERP patterns, especially for probabilistic cueing where

the uncued targets consisted of only 13.3% of the total number of

trials.

2.6.2 | Support vector machine classifier

The classifier was based on linear support vector machine (SVM) and

trained through the MATLAB fitcsvm() function. The decoding proce-

dure at a given time point included a training phase and a testing

phase. Training and testing phases were based on different trials. Spe-

cifically, a threefold cross-validation procedure was applied at each

time point. The data from two-third of the trials (randomly selected)

were used to train a classifier (training), and then the performance of

the classifier was assessed with the data from the remaining one-third

of trials (testing). For the cue period, we first organized cue-related

epochs with respect to the cue direction (left vs. right) and then

divided all trials of the same condition into three equal-sized groups.

One or two trials from each cue direction was omitted if the trial num-

ber is not evenly divisible by 3. The trials in each group were averaged

to yield a scalp distribution of ERPs for the time point being analyzed

(a matrix of 3 groups × 2 cue directions × 29/60 electrodes). It should

be noted that the accumulation of slow voltage drifts as time passed

from the baseline period might result in overall decodable voltage

differences that are not related to attention effects between classes

(cue left vs. cue right). We thus performed z-score normalization

across channels at each time point to minimize possible overall volt-

age differences between classes (Wen, Duncan, & Mitchell, 2019).

This normalization was performed within each class and each ERP pat-

tern (averaged within each trial group). The data from two of the three

groups served as a training dataset, which were used to train a SVM

classifier, and the data from the remaining group served as a testing

dataset. The trained SVM classifier was then used, with the help of

the MATLAB function predict(), to predict the direction of visual spa-

tial attention for the testing dataset. The output of this function pro-

vided a predicted cue direction for each observation in the testing

dataset. Decoding accuracy was then computed by comparing the true

labels of cue direction with the predicted labels. Decoding was consid-

ered correct only if the classifier correctly determined the direction of

cued attention (left or right). The chance performance was 50%.

This decoding procedure was repeated three times, once with

each of the three groups of data serving as the testing dataset. The

entire procedure as described above was iterated 20 times, each time

with a new random assignment of trials into three groups. This itera-

tion could help to minimize idiosyncrasies associated with trial assign-

ments, and thus yield a more stable result. After that, decoding

accuracy was collapsed across 2 cue directions, 3 cross-validations,

and 20 iterations, yielding an averaged decoding accuracy for a given

time point based on 120 decoding attempts (2 cue directions × 3

cross validations × 20 iterations). After this procedure was applied to

each time point from −800 to +1,200 ms (relative to cue onset), the

averaged decoding accuracy values were smoothed across time points

to minimize noise using a five-point moving window (for a given time

point, the five-point window was centered at that point with two

points on the left and two points on the right, which was equivalent

to a time window of ±40 ms).

For the target period, SVM was again used to classify the atten-

tion condition (cued target vs. uncued target) based on the spatial dis-

tribution of target-related ERP signals over the scalp. The decoding

procedure was identical to that for the cue period, except that the

time period of analysis was the 55 time points from −300 to +800 ms

(relative to target onset). Decoding was considered correct only if the

classifier correctly determined the attention condition (cued target or

uncued target). The chance performance was 50%.

In addition to decoding accuracy, we also examined the extent to

which different channels drove the classifier performance by

reconstructing the spatial distribution of the transformed classifier

weights, namely, the activation patterns or weight maps. This was

obtained by multiplying the classifier weights with the covariance

matrix of the original data, yielding the weight maps for the classifier

at each time point (Haufe et al., 2014).

2.6.3 | Statistical analysis of decoding accuracy

If the multivariate ERP patterns across electrodes contain information

about the two conditions being compared (cue left vs. cue right for
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cue-related activity; cued target vs. uncued target for target-related

activity), then the decoding accuracy should be greater than chance

level, which was 50%. We tested whether the group-level decoding

accuracy at each time point was above chance level by performing

one-tailed signed rank test against the chance level of 50%. False dis-

covery rate (FDR) was used for correcting the multiple comparison

problem with q < 0.05. Furthermore, to control for possible isolated

time points that might have high decoding accuracy by chance, we

removed time windows with less than three contiguous time points

that survived FDR correction.

2.6.4 | Minimizing the impact of eye movements

As discussed earlier, two steps were applied to remove ocular arti-

facts: ICA-based artifact correction and rejecting trials with overt eye

movements. Past work has suggested that ICA may not be sufficient

to remove eye movement-related artifacts for the purpose of

decoding (Quax, Dijkstra, van Staveren, Bosch, & van Gerven, 2019).

We tested this in our data by conducting an additional set of decoding

analyses to check whether eye movement-related artifacts were still

detectable in the preprocessed data. Two anterior prefrontal EEG

channels near the eyes (i.e., F7 and F8) were chosen as proxies of eye

movements for decoding analysis. Given that these two channels con-

tain minimal contribution from the posterior regions of the brain

underlying the control of spatial attention, above-chance level

decoding from F7 and F8, especially during the late cue-target inter-

val, would suggest that there were still decodable eye movement-

related artifacts in EEG. By contrast, chance level decoding from these

two channels would suggest that there were no substantial eye

movement-related artifacts left in EEG data after artifacts removal.

These results demonstrated that ICA correction is an important

step. Without ICA, the decoding accuracy from the two frontal chan-

nels was above chancel level during the cue-target interval in both

datasets (Figure 2), indicating that systematic eye movements could

contribute to EEG decoding even after excluding trials contaminated

by overt eye movements. After ICA correction, however, the decoding

accuracy from the two frontal channels was at chance level through-

out the cue-target interval in both datasets, suggesting that the ICA

correction for eye movements was successful and the decoding analy-

sis reported below was not adversely impacted by eye movements.

2.7 | Correlating decoding accuracy with
attentional modulation of target processing and
behavior

2.7.1 | Cue-related period

The target-related N1 component (�170 ms after stimulus onset) is

one of the most extensively reported electrophysiological measures

of visual spatial attention (Hillyard & Anllo-Vento, 1998; Hong

et al., 2015; Luck, Woodman, & Vogel, 2000; Mangun &

Hillyard, 1991). In this study, we calculated the differences of N1

amplitudes between cued target and uncued target (with the negative

sign maintained) as the index of attention modulation, and correlated

it with the decoding accuracy in the cue-target interval using Pearson

correlation (two-tailed). This correlation analysis was performed at

each time point from 0 to +1,200 ms (relative to cue onset) to yield a

time course of r values and corresponding p values.

Although the paradigms of the two experiments differed in terms

of whether or not targets presented in the uncued location required

response, subjects were expected to voluntarily shift their attention

to the cued location in both paradigms. In other words, the general

attention orienting process during the cue-target interval is the same

between the two datasets, and the cue-target interval is also of the

same duration in the two datasets (1,000–1,200 ms). When appropri-

ate, we performed a meta-analysis by combining the p values from

the two datasets using the Liptak–Stouffer meta-analysis, a well-

validated method for combining multiple datasets (Huang &

Ding, 2016; Liptak, 1958; Liu et al., 2017). Specifically, the p value of

correlation at each time point was converted to its corresponding

Z-score using the equation: Zi = Φ−1 (1 − pi), where Φ is the standard

normal cumulative distribution function and i represents the ith

dataset. Here, i = 1 (Instructional cueing dataset) or 2 (Probabilistic

cueing dataset). Next, a combined Z-score for the correlation at each

time point was calculated using the Liptak–Stouffer formula:

Z =

P2
i=1wiZiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP2
i=1wi

2
q ,

where Z is the meta-analysis Z-score across the two datasets, Zi is the

Z-score of the ith dataset, wi =
ffiffiffiffiffi
Ni

p
is the weight of the ith dataset,

and N is the number of subjects in the ith dataset. Finally, the com-

bined p value was identified from the meta-analysis Z-score at each

time point.

Next, we assessed the statistical significance of the correlation

results from the above procedure by performing a cluster-based per-

mutation test. Specifically, we first found clusters of contiguous time

points for which the combined single-point correlation was significant

(meta-analysis p < .05) and computed the cluster size (numbers of

contiguous time points). The minimal cluster size was set as 1. We

then asked whether a given cluster size was greater than the size that

would be expected by chance through permutation tests. This con-

trols the Type I error rate at the cluster level, yielding a probability of

.05 that one or more clusters would be significant if true decoding

accuracy was at chance (Groppe, Urbach, & Kutas, 2011). To deter-

mine whether a cluster size was larger than expected by chance, we

generated a null distribution of cluster size values via permutation

tests. The permutation was performed at the stage of between-

subject correlation rather than at the stage of within-subject SVM

training or testing. Specifically, after obtaining the mean decoding

accuracy and N1 modulation of each subject, we shuffled the indices

of subjects before performing the Pearson correlation in each itera-

tion of the permutation. This was designed to generate the correlation
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results that would be obtained by chance if the decoding accuracy

was not related to N1 modulation. It should be noted that we

applied the same shuffled indices of subjects for all the time points

in a given iteration, instead of using different shuffled indices for

each time point independently. This was implemented to preserve

the temporal auto-correlation of the continuous EEG data (Bae &

Luck, 2019; Linkenkaer-Hansen, Nikouline, Palva, & Ilmoniemi,

2001). In each iteration, the above permutation was performed in

each dataset separately, and the p values at each time point from

the two datasets were then combined using the Liptak–Stouffer

meta-analysis introduced above. After that, we computed the cluster

size for which the combined single-point correlation was significant

(p < .05) based on the meta-analysis p values for that permutation

iteration. If we observed more than one cluster with significant com-

bined p values, we then took the largest cluster size as the size for

that iteration.

The above procedure was iterated 1,000 times to produce a null

distribution for the cluster size. To compute the p value for a given

cluster size observed in the actual datasets, we simply found where

this p value fell within the null distribution of cluster size. The p value

for a given cluster was then set based on the nearest percentiles of

the null distribution. If the obtained cluster size is larger than the max-

imum of permuted cluster size, we then reported p < .001. If an

observed cluster size was in the top 95% of the null distribution, we

rejected the null hypothesis and concluded that the correlation was

significant for that observed cluster.

Finally, to see whether univariate ERPs during the cue-target

interval were able to predict the attentional modulation of target

processing, we performed the same correlation analysis between uni-

variate ERPs and attentional modulation of target-related N1, and

used the same permutation test to assess the statistical significance.

This was performed on the basis of ERP difference waves (cue left

minus cue right) for each channel separately. FDR correction was

applied to correct for multiple comparison across channels. The

corrected p values were then used for find clusters of contiguous time

points. Since the channel numbers differed between the two datasets,

we reported the results (the cluster-level p value and mean r value in

each cluster) for each dataset separately instead of combining the

results using meta-analysis.

2.7.2 | Target-related period

To reveal the functional significance of ERP-based decoding during

the target-related period, we correlated the mean decoding accuracy

with behavioral performance. For the Instructional cueing dataset,

due to the lack of behavioral cueing metrics, we used the mean RT to

attended targets as the behavioral measure. For the Probabilistic cue-

ing dataset, we calculated the differences in RT between valid and

invalid (invalid minus valid) trials as the behavioral measure. Because

the behavioral metrics were different between the two datasets, we

reported the results for each dataset separately instead of combining

them through meta-analysis.

The correlation analysis and permutation test for statistical signifi-

cance were the same as that used in the cue-related period, except

that we used different time windows for the correlation analysis. Spe-

cifically, this correlation analysis was performed at each time point

from 0 to +560 ms (relative to target onset) in the two datasets sepa-

rately, yielding an r value and a p value at each time point in each

dataset. The reason we chose this time period was because the aver-

age RT was around 470 ms in the Instructional cueing dataset, and

the average RT to valid targets was around 500 ms in the Probabilistic

cueing dataset. Thus, 0–560 ms provided adequate coverage of the

neural processes leading from target processing to behavioral

response.

Finally, like the cue-related period, we performed the same corre-

lation analysis between univariate ERPs and behavioral performance,

and used the same permutation test to assess the statistical signifi-

cance. This was performed on the basis of ERP difference waves (cued

target minus uncued target) for each channel separately. The FDR-

corrected p values were used to find clusters of contiguous time

points; the same approach was used for cue-related ERP analysis.

Because the channel numbers and behavioral metrics used differed

across the two datasets, we reported the results (the cluster-level

p value and mean r value in each cluster) for each dataset separately

instead of combining the results using meta-analysis.

3 | RESULTS

3.1 | Behavioral results

3.1.1 | Instructional cueing dataset

Accuracy and RT were analyzed separately for the cue left and cue

right trials. Accuracy was defined as the percentage of correctly per-

formed trials, and RT was averaged across all correctly performed tri-

als that required responses. Paired sample t test suggested no

differences in accuracy (mean ± SEM; cue left: 99.55 ± 0.08% vs. cue

right: 99.49 ± 0.11%; t(29) = 0.504, p = .618, Cohen's d = 0.092) or RT

(left targets: 467.85 ± 9.91 ms vs. right targets: 471.38 ± 10.01 ms;

t(29) = −1.038, p = .308, Cohen's d = 0.189) between cue left and cue

right trials. These results demonstrated no differences in the level of

attention deployed to the left and to the right visual fields.

3.1.2 | Probabilistic cueing dataset

Accuracy and RT were calculated in the same way as in the Instruc-

tional cueing dataset. Paired sample t test suggested no differences in

accuracy between different types of trials (valid: 98.04 ± 0.67%, inva-

lid: 98.54 ± 0.51%, neutral: 97.89 ± 0.72%; valid vs. invalid: t(25) =

−2.006, p = .056, Cohen's d = 0.393; neutral vs. valid: t(25) = −0.532,

p = .599, Cohen's d = 0.104; neutral vs. invalid: t(25) = −1.657, p = .11,

Cohen's d = 0.325). The analysis of RT (valid: 501.76 ± 17.88 ms, inva-

lid: 566.81 ± 22.04 ms, neutral: 512.13 ± 18.14 ms) suggested that
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subjects responded more slowly in invalid trials than in valid trials

(valid vs. invalid: t(25) = −5.587, p < .001, Cohen's d = 1.096). Further-

more, the RT in neutral trials was longer than that in valid trials (neu-

tral vs. valid: t(25) = 2.426, p = .023, Cohen's d = 0.476), and shorter

than that in invalid trials (neutral vs. invalid: t(25) = −5.437, p < .001,

Cohen's d = 1.066). These results, consistent with previous reports,

demonstrated that the subjects deployed visual spatial attention

according to the paradigm design.

3.2 | Attentional modulation of target-related N1

3.2.1 | Instructional cueing dataset

We conducted a two-way analysis of variance (ANOVA) with Atten-

tion (attend vs. ignore) and Target Location (left vs. right) as within-

subject factors on target-related N1 amplitudes. We observed the

main effect of Attention (F(1,29) = 60.114, p < .001, η2p = 0.675),

suggesting that attention significantly modulated the sensory

processing of targets (see Figure 3a). No main effect or interaction

was observed for the factor of Target Location.

3.2.2 | Probabilistic cueing dataset

A similar two-way ANOVA was carried out with Attention (valid

vs. invalid) and Target Location (left vs. right) as within-subject factors

on target-related N1 amplitudes. Again, we observed the main effect

of Attention (F(1,25) = 8.418, p = .008, η2p = 0.252), suggesting a signif-

icant attentional modulation of the sensory processing of targets (see

Figure 3b). No main effect or interaction was observed for the factor

of Target Location.

3.2.3 | Comparing N1 modulation between the
two datasets

We compared the magnitude of attentional modulation of N1 amplitudes

(cued target minus uncued target) between the two datasets using t test.

Results showed that N1 modulation was stronger in Instructional cueing

dataset than in Probabilistic cueing dataset (−1.23 ± 0.16 μV

vs. −0.65 ± 0.22 μV, t(54) = −2.159, p = .035, Cohen's d = 0.573).

3.3 | Decoding attention control in the cue-related
activity

3.3.1 | Decoding accuracy

Instructional cueing dataset

As Figure 4a illustrates, the decoding accuracy began to rise above

chance level (50%) shortly after the cue onset, and more specifically, a

signed rank test (FDR-corrected) indicated that the decoding was

significantly greater than chance level starting at �80 ms and

remaining significant until the end of the cue-target analysis interval.

The weight maps showed a frontally-posteriorly lateralized distribu-

tion during the 400–600 ms interval, which then diminished as time

progressed, and became a centrally lateralized distribution in the later

cue-target interval (1,000–1,200 ms). These weight maps were similar

to the ERP topographical maps in corresponding time windows (See

Figure S1 in Supplemental Materials).

Probabilistic cueing dataset

As Figure 4b illustrates, the decoding accuracy began to rise above

chance level (50%) at �160 ms after the cue onset according to a signed

rank test (FDR-corrected), and remained significant until the end of the

cue-target analysis interval. Overall, the weight maps from probabilistic

cueing were consistent with that from instructional cueing, except that in

the later cue-target interval (1,000–1,200 ms), the weight maps from

probabilistic cueing were more anteriorly distributed.

Comparing the onset of above chance decoding between the two

datasets

We used bootstrap resampling (100 times) across subjects to compute a

distribution of decoding onset times for each dataset. A t test suggested

that the decoding onset time was significantly earlier in Instructional cue-

ing dataset than in Probabilistic cueing dataset (64.8 ± 3.4 ms

vs. 161.4 ± 3.5 ms, t(198) = −19.706, p < .001, Cohen's d = 2.787).

Comparing the decoding accuracy between the two datasets

We divided the cue-target interval after decoding onset into two

equal-sized time windows, that is, 200–700 ms (early) and

700–1,200 ms (late), and averaged the decoding accuracy within each

window for each subject and dataset. These two time windows

roughly corresponded to the shift and the maintenance stage in visual

spatial attention, respectively (Dale et al., 2008; Muller et al., 1998;

Rihs, Michel, & Thut, 2009). A two-way ANOVA with Dataset

(Instructional vs. Probabilistic) as a between-subject factor and Win-

dow (early vs. late) as a within-subject factor revealed a main effect of

Dataset (F(1,54) = 4.649, p = .036, η2p = 0.079), suggesting significantly

higher decoding accuracy for Instructional cueing dataset than for

Probabilistic cueing dataset. No other main effect or interaction was

observed for this ANOVA.

3.3.2 | Linking decoding accuracy and attentional
modulation of target processing

As with any other neurophysiological variables, decoding accuracy

varies significantly across individuals. We take that as an opportunity

to examine the functional significance of decoding accuracy. For cue-

related decoding accuracy, we correlated it with the magnitude of the

attentional modulation of the target-evoked N1 component, the clas-

sic marker of attention selection. The correlation coefficients

(r values) and corresponding p values for Instructional cueing dataset

and Probabilistic cueing dataset are shown in Figure 5a,b as functions
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of time. We observed negative correlations (i.e., higher decoding accu-

racy predicts larger N1 attentional modulation) during the cue-target

interval for both datasets, and such correlation reached statistical sig-

nificance around �500 ms; this finding was consistent across the two

datasets. For Probabilistic cueing dataset, the direction of this correla-

tion was reversed briefly around �900 ms, but the same was not

observed in Instructional cueing dataset.

The correlation results from the two datasets were further com-

bined through the Liptak–Stouffer meta-analysis. The correlation

between decoding accuracy within the 460–660 ms post-cue window

(see Figure 5c, red region) and attentional modulation of target-related

N1 was negative, that is, higher decoding accuracy predicted greater

attentional modulation of target-related N1. Further permutation test

confirmed that the correlation during this �200 ms length window

was statistically significant (p = .037) (see Figure 5d, red line). There

was another shorter window (1,020–1,060 ms post-cue) showing sig-

nificant correlation (see Figure 5c, green region). However, permuta-

tion test suggested that the correlation during this �40 ms length

window was not significant (p = .443) (see Figure 5d, green line).

Next, we examined whether cue-related univariate ERPs

predicted the N1 attention effect. The univariate ERP difference

waves (cue left minus cue right; see Figure S1 in Supplemental Mate-

rials) were correlated with the attentional modulation of N1, and the

results were shown (0–1,200 ms post-cue) in Figure 6. FDR correction

F IGURE 3 Target-related event-related potentials (ERPs) and attentional modulation on N1 amplitudes in the Instructional cueing dataset
(a) and Probabilistic cueing dataset (b). Target-related ERPs were constructed over posterior scalp regions that were contralateral to target
location (i.e., left hemisphere for right targets, right hemisphere for left targets), then averaged across left and right hemispheres

3910 HONG ET AL.



was first applied to correct for multiple comparison across channels,

and permutation test was then applied to find significant clusters of

contiguous time points. No significant cluster was identified for either

dataset. Thus, unlike the decoding accuracy derived from multichannel

ERPs, individual differences in univariate ERPs showed no relation to

that in attentional modulation of N1.

Finally, we also explored whether cue-related decoding accuracy

was correlated with behavior using the same approach as that for the

correlation between target-related decoding accuracy and RT or RT

difference (see Section 2.7.2). However, no significant results were

found for either dataset (see Figure S6 in Supplemental Materials).

3.4 | Decoding attention selection in the
target-related processing

3.4.1 | Decoding accuracy

Instructional cueing dataset

After the target onset, as Figure 7a illustrates, the decoding accu-

racy began to rise above chance level (50%) at �100 ms, and

remained significantly above chance level for the remainder of

the analysis period (mean RT was �470 ms). The weight maps

showed a frontal distribution during the 200–400 ms interval, and

F IGURE 4 Mean accuracy of event-related potential (ERP)-based multivariate decoding for cue-related neural processing (cue left vs. cue
right) in the Instructional cueing dataset (a) and Probabilistic cueing dataset (b). Chance level performance (0.5) is indicated by the horizontal dash
lines. Gray areas indicate clusters of time points in which the decoding was significantly greater than chance after the false discovery rate (FDR)

correction for multiple comparisons. The blue shading indicates ±1 SEM. Weight maps from successive time points within the indicated windows
were averaged and shown on the right
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F IGURE 5 Results of between-subject correlation between cue-related event-related potential (ERP)-based decoding accuracy and
attentional modulation of target-related N1 in Instructional cueing dataset (a) and Probabilistic cueing dataset (b). The p values from the two
datasets were combined by the Liptak–Stouffer meta-analysis (c). The p = .05 and r = 0 are indicated by the horizontal dash lines. Panel (d) shows
the results of permutation tests for the two consecutive time windows identified in Panel (c). The null distribution was estimated from 1,000
permutations of the data, by randomly pairing one subject's decoding accuracy with another subject's N1 modulation. If the window length from
the observed data (red and green lines) falls within the top 5% of values from the null distribution (indicated by the yellow area), the observed
window is considered to be significant
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became more parietal-distributed as time progressed. These

weight maps were similar to the ERP topographical maps from

corresponding time windows (See Figure S2 in Supplemental

Materials).

Probabilistic cueing dataset

Similarly, as Figure 7b illustrates, the decoding accuracy began to rise

above chance level (50%) at �160 ms after the target onset. The

decoding accuracy gradually decreased after reaching its peak at

�300 ms, but still remained significant until 740 ms (mean RT in inva-

lid trials was �566 ms). Similar to the ERP topographical maps (See

Figure S2 in Supplemental Materials), the weight maps showed a fron-

tal distribution during the 200–400 ms interval, which then dimin-

ished as time progressed.

Comparing the onset of above chance decoding between the two

datasets

We used bootstrap resampling (100 times) across subjects to compute

a distribution of decoding onset times for each dataset. A t test

suggested that the decoding onset time was significantly earlier in

Instructional cueing dataset than in Probabilistic cueing dataset

(85.8 ± 3.0 ms vs. 156.0 ± 4.1 ms, t(198) = −13.734, p < .001, Cohen's

d = 1.942).

Comparing decoding accuracy between the two datasets

We divided the target analysis interval after decoding onset into two

equal-sized time windows, that is, 200–500 ms (early) and

500–800 ms (late), and averaged the decoding accuracy within each

window for each subject and dataset. The splitting point, that is,

F IGURE 6 Results of between-subject correlation between cue-related univariate event-related potential (ERP) difference waves (cue
left minus cue right) and attentional modulation of target-related N1 in Instructional cueing dataset (a) and Probabilistic cueing dataset (b).
The p = .05 and r = 0 are indicated by the horizontal dash lines. Five channels with the smallest averaged p values within 0–1,200 ms

interval were shown. All p values were false discovery rate (FDR)-corrected for channels at each time point. No significant effects were
found
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500 ms, roughly corresponded to the mean RT (to attended or valid

targets) in the two experiments, and thus such separation would help

to reveal possible differences before and after behavioral responses.

A two-way ANOVA with Dataset (Instructional vs. Probabilistic) as a

between-subject factor and Window (early vs. late) as a within-subject

factor revealed a main effect of Dataset (F(1,54) = 187.032, p < .001,

η2p = 0.776), suggesting significantly higher decoding accuracy for

Instructional cueing dataset than for Probabilistic cueing dataset. A

main effect of Window (F(1,54) = 39.033, p < .001, η2p = 0.420)

suggested that decoding accuracy significantly declined in the late

window than in the early window. No interaction was observed.

3.4.2 | Linking decoding accuracy with RT

To examine the functional significance of decoding accuracy following

the target onset, we correlated individual differences in decoding accu-

racy at each time point within 0–560 ms post-target interval with indi-

vidual differences in behavioral performance (RT to attended targets

for Instructional cueing dataset, RT difference between invalid and

valid trials for Probabilistic cueing dataset). The correlation coefficients

(r values) and corresponding p values for Instructional cueing dataset

and Probabilistic cueing dataset are shown as functions of time in

Figure 8a,b. From 180 to 560 ms, the correlation between decoding

F IGURE 7 Mean accuracy of event-related potential (ERP)-based multivariate decoding for target-related epochs (cued vs. uncued) in
Instructional cueing dataset (a) and Probabilistic cueing dataset (b). Chance level performance (0.5) is indicated by the horizontal dash lines. Gray
areas indicate clusters of time points in which the decoding was significantly greater than chance level after the false discovery rate (FDR)
correction for multiple comparison problem. The blue shading indicates ±1 SEM. Weight maps from successive time points within the indicated
windows were averaged and shown on the right

3914 HONG ET AL.



accuracy and RT was statistically significant (p < .001) for Instructional

cueing dataset, according to a permutation test (see Figure 8a, red line).

The negative r values suggested that individuals with higher decoding

accuracy had faster responses to attended targets. For Probabilistic

cueing dataset, the correlation between decoding accuracy and RT

difference was statistically significant (p = .004) from 60 to 340 ms,

according to a permutation test (see Figure 8b, red line). The positive

r values suggested that individuals with higher decoding accuracy

exhibited larger RT differences between invalid and valid trials

(i.e., stronger benefits from attention cueing).

F IGURE 8 Results of between-subject correlation between target-related event-related potential (ERP)-based decoding accuracy and
reaction time (RT) effects ((a): RTs to attended targets; (b): invalid RTs minus valid RTs) in Instructional cueing dataset (a) and Probabilistic cueing
dataset (b). The p = .05 and r = 0 are indicated by the horizontal dash lines. For each dataset, the null distribution was estimated from 1,000
permutations of the data, by randomly pairing one subject's decoding accuracy with another subject's RT effect. If the window length from the
observed data (red line) falls within the top 5% of values from the null distribution (indicated by the yellow area), the observed window is
considered to be significant
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Next, we correlated the univariate ERP difference waves (cued target

minus uncued target, with left and right targets combined; see Figure S2

in Supplemental Materials) with RT or RT difference across subjects in

each dataset. The correlation analysis was performed at each time point

within the 0–560 ms post-target interval (Figure 9). FDR correction was

first applied to correct for multiple comparison across channels, and per-

mutation test was then applied to find significant clusters of contiguous

time points. No significant cluster was identified for either dataset.

Finally, it should be noted that the mean RT was used in the pre-

sent study as the behavioral measure for target processing. This makes

our findings more comparable with previous visual spatial attention

studies in which the mean RT was typically reported. However, RT dis-

tributions are known to be non-Gaussian and left-skewed, and there-

fore the median RT might be a better estimator than the mean RT as

the summary statistic of the distribution. We performed an additional

set of correlation analysis with the median RT as the behavioral mea-

sure for target processing, that is, median RT to attended targets for

Instructional cueing dataset, and difference in median RT between

valid and invalid trials (invalid minus valid) for Probabilistic cueing

dataset. As shown in Figure S7 in Supplemental Materials, the results

were generally similar to that observed using mean RT.

4 | DISCUSSION

We applied machine learning approaches to multichannel ERP data to

examine the dynamics and functional significance of neural represen-

tations of attention control and selection in two cued visual spatial

F IGURE 9 Results of between-subject correlation between target-related event-related potential (ERP) difference waves (cued target minus
uncued target) and reaction time (RT) effects (Panel (a): RTs to attended targets; Panel (b): invalid RTs minus valid RTs) in Instructional cueing
dataset (a) and Probabilistic cueing dataset (b). The p = .05 and r = 0 are indicated by the horizontal dash lines. Five channels with the smallest
averaged p values within 0–560 ms interval were shown. All p values were false discovery rate (FDR)-corrected for channels at each time point.
No significant effects were found
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attention experiments (probabilistic cueing vs. instructional cueing).

SVM-based multivariate decoding was performed at each time point

in the cue-related time period (cue left vs. cue right) and in the target-

related time period (cued target vs. uncued target). We found that fol-

lowing cue onset, the decoding accuracy began to rise above chance

level at �80 ms for the Instructional cueing dataset, and at �160 ms

for the Probabilistic cueing dataset. Across subjects, decoding accu-

racy between �460 and �660 ms post-cue predicted the magnitude

of attentional modulation of subsequent target processing indexed by

the target-evoked N1 component, indicating that the attentional set

or template implemented between �460 and �660 ms directly

affected the attention selection of the target. During target

processing, the decoding accuracy began to rise above chance level at

�100 ms for the Instructional cueing dataset, and at �160 ms for the

Probabilistic cueing dataset. Across subjects, decoding accuracy over

a broad post-target time window predicted RT (or RT cueing effect),

suggesting that the distinctness of neural representations of attended

information affected subsequent behavioral performance. In contrast,

univariate ERP analysis failed to provide an association between ERP

attention effects during the cue-target interval and the attentional

modulation of target-evoked response or between ERP attention

effects during target processing and subsequent behavioral perfor-

mance. Together, these findings suggest that multivariate decoding

analysis of ERPs is a powerful approach, and along with the conven-

tional univariate ERP analysis, offers more comprehensive insights

into the neural mechanisms of attention control and selection in visual

spatial attention.

4.1 | Decoding attention control in anticipatory
attention

Consistent with our hypothesis that instructional cueing is associated

with earlier formation of the attentional set, the decoding accuracy

(cue left vs. cue right) began to rise above chance level at �80 ms fol-

lowing the onset of instructional cue, but at a much delayed time of

�160 ms following the onset of probabilistic cue. EDAN, an early ERP

component thought to mark the initial attention shift toward the

attended location (Harter et al., 1989; Hopf & Mangun, 2000), often

appears at �200 ms post-cue (sometimes earlier at �160 ms, see

Nobre et al. (2000)) in previous ERP analysis of the spatial cueing par-

adigms. The timing difference between above-chance-level decoding

onset (�80 or �160 ms) and EDAN latency (�200 ms) suggested that

the attention shift was initiated earlier than previously thought.

Although no study has explicitly compared the onset latency of EDAN

between instructional cueing and probabilistic cueing, the �80 versus

�160 ms timing difference in the onset of decodability between

instructional cueing and probabilistic cueing, along with the higher

decoding accuracy in instructional cueing than in probabilistic cueing,

while not unexpected, was demonstrated here for the first time. This

suggests that unilateral attention orienting (instructional cueing), com-

pared with attention spread across both visual hemifields (probabilistic

cueing), facilitate the early formation and enhance the distinctness of

attentional set. One might argue that the sensory difference

(i.e., different physical properties between left and right arrow cues)

might underline the early decodability of the data. For example,

Jongen et al. (2007) reported a possible positive ERP component

related to the physical shape of arrows between 150 and 250 ms

post-cue over posterior cortex. See also van Velzen and Eimer (2003).

If this were the case, the decoding accuracy should rise above chance

level equally early for both instructional cueing and probabilistic cue-

ing, since similar arrow cues were used in both paradigms. Our finding

that the onset of above-chance decoding was �80 ms earlier in

instructional cueing than in probabilistic cueing appears to suggest

that this is not the case. In the same vein, the correlation between

cue-related decoding accuracy and attentional modulation of target-

related N1 may also have been sensory-driven, namely, the subjects

who had stronger ERP differences between a leftward versus right-

ward arrow also had stronger differences between attended and

unattended N1s. Our result that significant correlation started around

460 ms post-cue (the time of LDAP, see the discussion below), rather

than the early parts of cue processing, appears to rule out such sen-

sory confound. Despite the foregoing, how to more thoroughly disam-

biguate the ERP effects due to differences in stimuli and to

differences in the cognitive processes that these stimuli evoke

remains a question to be addressed by future studies.

As time progressed, the decoding accuracy (cue left vs. cue right)

continued to rise and reached a local maximum around �300 ms in

both datasets, and then declined slightly, but remained well above

chance level until the end of the cue-target interval. This temporal

pattern suggests that the subject, following instructions, was able to

maintain a state of covert attention until the onset of target

processing. In contrast to the relatively stable multivariate decoding

dynamics, univariate ERP analysis showed that ADAN, an ERP com-

ponent reflecting supramodal mechanisms of attentional engagement

in frontal areas (Eimer et al., 2002), appeared at �350 ms in both

datasets, whereas LDAP, an ERP component indexing increase in the

excitability of occipital cortical neurons (Hopf & Mangun, 2000; Kelly

et al., 2009), started to appear at �400 ms in Instructional cueing

dataset and at �450 ms in Probabilistic cueing dataset (see Figure S1

in Supplemental Materials). Both ADAN and LDAP vanished after

�700 ms, and a contralateral pretarget negativity with a frontal con-

centration became the dominant ERP phenomenon. Although previ-

ous studies have already reported contralateral negativity

throughout the pretarget period, the scalp distribution of this nega-

tivity varied across studies, that is, within the occipital-parietal area

(i.e., BRN) (Grent-'t-Jong et al., 2011; Grent-'t-Jong & Woldorff,

2007), the frontal area (Hopf & Mangun, 2000) or a broader area

including frontal and parietal regions (Dale et al., 2008). This indi-

cated that multiple neural processes might underlie the late negativ-

ity, making it insufficient to examine these processes in a univariate

ERP approach. Despite this uncertainty, our multivariate decoding

analysis suggested that the distinctness of neural representation of

the attentional set during this late cue-target interval (>700 ms) did

not significantly decline compared to the early cue-target interval

(<700 ms).
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Decoding accuracy (cue left vs. cue right) is an indicator of how

well attended information is represented in the brain. As such, it is

reasonable to expect that better representation of attended informa-

tion in the cue-target interval will result in stronger attentional modu-

lation of target processing. We tested this hypothesis by correlating,

across subjects, the decoding accuracy derived from multivariate clas-

sification analysis with attentional modulation of target-evoked N1.

As shown in Figure 5, during the time period of 460–660 ms,

decoding accuracy is positively correlated with the size of attentional

modulation of target-evoked N1 component. In visual spatial atten-

tion, this time period was often regarded as the critical stage in the

implementation of the attention control state for the representations

of task-relevant locations (Dale et al., 2008; Grent-'t-Jong &

Woldorff, 2007; Hopf & Mangun, 2000). Our results thus suggest that

the anticipatory attentional state that was implemented at this time

can directly impact subsequent attention selection of behaviorally rel-

evant stimuli, and more importantly, this attentional state was indexed

as a whole brain ERP pattern instead of univariate ERP amplitudes

based on any single electrode, as our univariate ERP analysis did not

reveal any correlation between ERP amplitudes and attentional modu-

lation of target-evoked N1. The weight maps of the classifier during

400–600 ms post-cue interval showed a frontal-posterior pattern that

corresponded with a combined ADAN and LDAP topography (see

Figure 4), suggesting that these ERP components jointly, rather than

singly, influence the attentional modulation of target-related ERPs.

This may explain why univariate ERP analysis was not able to predict

the magnitude of attentional modulation of target-evoked N1. During

the latter part of the cue-target interval (>700 ms), although the

decoding accuracy did not significantly decline, it no longer predicted

attentional modulation of N1. This contrasts with previous reports

that late negativity within the occipital-parietal area (Grent-'t-Jong

et al., 2011) or the frontal area (Dale et al., 2008) alone predicted

attentional modulation of N1. On one hand, the relatively easy dis-

crimination task used in our experiments, compared with a more diffi-

cult task, could substantially decrease the amplitudes of the late

negativity (Grent-'t-Jong et al., 2011), which might then reduce the

decodability during the late cue-target interval. On the other hand, in

the late cue-target interval, the neural representation involving multi-

ple neural processes captured by the multivariate decoding analysis

may not have the same simple relationship with attentional modula-

tion of N1. The above two aspects may underlie the reason that

above chance level decoding in the late cue-target interval did not

predict attentional modulation of N1.

4.2 | Decoding attention selection during target
processing

Following the onset of the target stimulus, the decoding accuracy

(cued target vs. uncued target) began to rise above chance level at

�100 and �160 ms for the Instructional and Probabilistic cueing

datasets, respectively. This again illustrated that attention exerted an

earlier influence on target processing under instructional cueing than

under probabilistic cueing. Although no study has explicitly compared

the onset of attention effects between instructional cueing and prob-

abilistic cueing using univariate ERP analysis, previous studies have

shown that attention selection of sensory processing occurred as

early as P1 component at �100 ms after stimulus onset (Hillyard &

Anllo-Vento, 1998; Luck et al., 2000). In this study, significant atten-

tion effect for P1 component was not observed in the univariate ERP

analysis, but the multivariate decoding analysis shows that attention

effects are represented in multivariate patterns during the same time

period. Moreover, the higher decoding accuracy in instructional cue-

ing relative to probabilistic cueing was again as expected, suggesting

that unilateral attentional focus facilitates the attention selection of

the target stimulus. As time progressed, further differences between

the two paradigms emerged. In Instructional cueing dataset, the

decoding accuracy remained relatively high (>0.8) after reaching

the peak at �300 ms (Figure 7a), while in Probabilistic cueing dataset,

the decoding accuracy gradually declined after reaching the peak at

�300 ms, and became nonsignificant near the end of the analysis

period (Figure 7b). This pattern was also expected from the paradigm

requirements. In the probabilistic cueing experiment, subjects needed

to orient their attention from the cued location to the uncued location

upon seeing targets in the uncued location, which caused a gradual

decrease of the decodability between valid and invalid targets,

whereas in the instructional cueing experiment, no such attention

shift was needed to complete the task, and the subject's attention

focused on the cued location even after the target stimulus appeared

in the uncued location (such target stimuli were ignored). Utilizing the

individual differences in decoding accuracy and behavioral perfor-

mance, the functional significance of decoding accuracy was examined

by correlating decoding accuracy during target processing and RT

(or RT cueing effect) across subjects. Significant correlation was

observed soon after target onset (see Figure 8), and this correlation

remained significant until the response was made, lending support to

the notion that stronger attention selection of the target stimulus

leads to better behavioral performance.

It is worth noting that from decoding analysis it is not easy to dis-

cern the individual contribution of distributed cognitive processes

activated by target onset. Univariate ERP analysis has revealed atten-

tional modulation of neural activity at multiple stages of information

processing, including ERP differences following early sensory compo-

nents (e.g., P1 and N1) as well as prior response execution (e.g., Nd1,

Nd2, and LPD) (Curran et al., 2001; Eimer, 1996; Eimer, 1998; Man-

gun & Buck, 1998; Mangun & Hillyard, 1991). Although the precise

functional correlates of these late ERP activities are still not clear, they

should reflect perceptual, cognitive, and motor consequences of spa-

tial attention (Mangun & Buck, 1998). More interestingly, the maxi-

mum decoding accuracy at �300 ms roughly corresponds with the

latency of Nd2 which is part of the broader LPD (Curran et al., 2001;

Eimer, 1996; Eimer, 1998), indicating that the decoding accuracy

might be primarily driven by Nd2. This inference was further

supported by the similarity between the SVM weight maps (see

Figure 7) and ERP topographical maps (see Figure S2 in Supplemental

Materials). Despite these important findings, univariate ERP
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differences between cued target and uncued target at single electrode

did not predict behavioral performance (see Figure 9). One reason

may be that the ERP patterns over the scalp could differ between dif-

ferent stages of information processing in spatial attention. By con-

trast, the decoding analysis can capture the ERP pattern over the

whole scalp, which appeared to be a reliable predictor for behavioral

performance in spatial attention tasks.

One limitation of the present study is that two different cohorts

participated in the two experiments. When comparing the results

between the two experiments, such between-subject design generally

has lower power compared with within-subject design, leading to ele-

vated chances of false positives. Another limitation in the present

study is that the duration of the target stimulus differed between the

two experiments (200 vs. 100 ms), which might impact the early sen-

sory activities elicited by the target. However, previous research

reported no differences in either the amplitude or the latency of N1

due to differences in stimulus duration (50, 150, and 250 ms) (Busch,

Debener, Kranczioch, Engel, & Herrmann, 2004). Thus, the attentional

modulation of target processing, indexed by the difference in N1

amplitude between cued and uncued targets, is unlikely to be

impacted by the differences in target duration.

4.3 | Conclusions

In the present study, we applied a machine learning approach to ana-

lyze neural representations of attention from multichannel ERP pat-

terns over the whole scalp in two independent visual spatial attention

experiments. Across the two experiments, the direction of covert

attention can be decoded, and the decoding accuracy during the cue-

target interval (�460–660 ms post-cue) in which anticipatory atten-

tion set was implemented predicted the attentional modulation of

target-related N1 amplitude. Also across the two experiments, after

target appearance, attended targets can be decoded from unattended

(or less attended) targets, and the decoding accuracy predicted behav-

ioral performance (RT or RT cueing effect). However, no brain-

behavior association was observed when the correlation analysis was

based on univariate ERP analysis, that is, ERP amplitudes from single

channels. Therefore, our findings suggest that top-down attentional

control and its modulation on target processing is more comprehen-

sively represented in multichannel ERP patterns over the whole scalp,

rather than ERP amplitudes measured in specific channels, and that

naturally occurring individual differences in neural and behavioral vari-

ables enable the study of the functional significance of decoding accu-

racy derived from multivariate classification in attention control and

selection.
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