
metabolites

H

OH

OH

Review

Overview of Metabolomic Analysis and the Integration with
Multi-Omics for Economic Traits in Cattle

Dan Hao 1,2,3, Jiangsong Bai 1,2,4, Jianyong Du 1,2,4, Xiaoping Wu 1,2, Bo Thomsen 3, Hongding Gao 5 ,
Guosheng Su 5 and Xiao Wang 6,*

����������
�������

Citation: Hao, D.; Bai, J.; Du, J.; Wu,

X.; Thomsen, B.; Gao, H.; Su, G.;

Wang, X. Overview of Metabolomic

Analysis and the Integration with

Multi-Omics for Economic Traits in

Cattle. Metabolites 2021, 11, 753.

https://doi.org/10.3390/

metabo11110753

Academic Editor: Cornelia Prehn

Received: 29 September 2021

Accepted: 28 October 2021

Published: 30 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Beijing Zhongnongtongchuang (ZNTC) Biotechnology Co., Ltd., Beijing 100193, China;
danhao@mbg.au.dk (D.H.); baijiangsong@163.com (J.B.); jianyongdu788@sohu.com (J.D.);
xpwu594419341@gmail.com (X.W.)

2 Shijiazhuang Zhongnongtongchuang (ZNTC) Biotechnology Co., Ltd., Shijiazhuang 052463, China
3 Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark;

bo.thomsen@mbg.au.dk
4 College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
5 Center for Quantitative Genetics and Genomics, Aarhus University, 8830 Tjele, Denmark;

hongding.gao@qgg.au.dk (H.G.); guosheng.su@qgg.au.dk (G.S.)
6 Konge Larsen ApS, 2800 Kongens Lyngby, Denmark
* Correspondence: xiaowangzntc@163.com

Abstract: Metabolomics has been applied to measure the dynamic metabolic responses, to under-
stand the systematic biological networks, to reveal the potential genetic architecture, etc., for human
diseases and livestock traits. For example, the current published results include the detected relevant
candidate metabolites, identified metabolic pathways, potential systematic networks, etc., for differ-
ent cattle traits that can be applied for further metabolomic and integrated omics studies. Therefore,
summarizing the applications of metabolomics for economic traits is required in cattle. We here
provide a comprehensive review about metabolomic analysis and its integration with other omics in
five aspects: (1) characterization of the metabolomic profile of cattle; (2) metabolomic applications in
cattle; (3) integrated metabolomic analysis with other omics; (4) methods and tools in metabolomic
analysis; and (5) further potentialities. The review aims to investigate the existing metabolomic
studies by highlighting the results in cattle, integrated with other omics studies, to understand the
metabolic mechanisms underlying the economic traits and to provide useful information for further
research and practical breeding programs in cattle.

Keywords: cattle; metabolomics; multi-omics; integrated analysis; economic trait; review

1. Introduction

The omics, such as genomics, transcriptomics, epigenomics, proteomics and metabolo-
mics, have emerged, whereas the terms genome, transcriptome, epigenome, proteome and
metabolome are used to address the objects of such studies, respectively [1–5]. The metab-
olome is a complete set of small-molecule types, such as endogenous intermediates,
metabolism products or metabolites that are applied by metabolomics to study the re-
sponse of biological systems, where metabolites are the final products of cellular regulatory
processes [6].

Currently, the applications of metabolomics have increased to measure metabolic
responses dynamically, identify biologically relevant candidate metabolic markers, reveal
potential genetic architecture and understand the systematic networks underlying the
economic traits for cattle [7–13]. For example, potential metabolic biomarkers, pathways
or networks were identified for milk protein yield (MPY) and feed efficiency traits in
dairy cattle using serum and plasma samples [8,9]. Hippuric acid, nicotinamide and
pelargonic acid out of 36 significant metabolites were identified to play the key roles in
MPY metabolism [8], whereas α-ketoglutarate and succinic acid were found in the network
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of feed efficiency [9]. Meanwhile, the metabolomic signatures associated with residual
feed intake (RFI) trait in beef cattle were also found using plasma, rumen fluid, muscle,
liver, etc., samples [7,10,12,13], where the retinol metabolism pathway is considered to
be associated with feed efficiency [12]. Furthermore, significant metabolites in different
tissues, such as in liver (citrate, isocitrate, glucose-6-phosphate, nicotinamide adenine
dinucleotide + hydrogen and creatine phosphate) and in muscle (choline, glycine, glycerol,
malonate, glucose-6-phosphate and 3-hydroxybutyrate), were studied to reveal useful
metabolic signatures for Nellore cattle [13].

Given the previous findings in different traits (e.g., production, reproduction, nutrition,
health, welfare), it is essential to summarize the major results of metabolomic analysis
for further research and applications in cattle, as well further ingratiation analysis with
other omics. Therefore, this review aims to investigate the existing metabolomic studies by
highlighting the results from five aspects in cattle, integrated by other omics studies, e.g.,
genomics, transcriptomics, epigenomics, microbiomics, etc., to understand the metabolic
mechanisms underlying the economic traits in cattle and to provide useful information for
further cattle research and practical breeding programs.

2. Characterizations of Metabolomic Profiles in Cattle

The diversities of metabolome characterization occurring in cattle depend on the
different breeds, traits, tissues, times, etc. To generate a better understanding of the
underlying metabolic mechanisms in cattle, candidate metabolic biomarkers for various
tissues and their enriched metabolic pathways are summarized in this review for important
economic traits, such as feed efficiency and disease.

2.1. Candidate Metabolic Biomarkers for Various Tissues Associated with Production and Healthy
Traits in Cattle Identified by Previous Studies

Based on previous studies, we found that researchers investigated the metabolomics of
plasma, serum, milk, rumen fluid for feed efficiency, body performance, disease, etc., traits
in cattle (Table 1). Feed efficiency is an important trait to produce more per feed that can be
measured by gross feed efficiency (GFE), feed conversion ratio (FCR) or RFI methods [14,15].
Archer et al. (1999) [16] demonstrated that the inherent metabolic differences between
animals can be reflected by the differences of RFI, while the RFI variation is underpinned
by a combination of factors including metabolism [17]. Table 1 presents 24 metabolites that
have been identified to be related to RFI, where citrate and succinic acid were repeatedly
detected by several studies [7,9,10]. In addition, some studies found 1,3-dihydroxyacetone
in association with fat, lactose and somatic cell score [18], but lysine and succinate in
association with growth trait and feed efficiency traits [7,9,10] (Table 1).

Metabolic disease is another important trait that affects efficient cattle production,
where metabolomic applications are helping to understand the mechanisms and define
the predictive metabolic biomarkers for incident diseases [19]. Many metabolomic stud-
ies are revealing the associated metabolites with such diseases (Table 1); for instance,
β-hydroxybutyrate is found to be mainly related to cattle disease traits that cause milk
problems [20–22], because its concentration in blood is the main reason for hyperketone-
mia, which can be used as the disease diagnosis [23]. Benedet et al. (2019) [23] suggested
that the thresholds of β-hydroxybutyrate concentration could be divided into three cate-
gories: ≤1.2 mmol/L as hyperketonemia indication; 1.2–2.9 mmol/L as subclinical ketosis;
≥3.0 mmol/L as clinical ketosis based on the other suggestions [24–28].
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Table 1. Summary of candidate metabolic biomarkers associated with production and health traits in cattle identified by the
previous studies.

Cattle Trait Sample Source Metabolic Biomarker Reference

Dairy cows (n = 1044) Left displaced
abomasum Serum β-hydroxybutyrate, Non-esterified

fatty acids
LeBlanc et al.

(2005) [20]
Holstein cows

(n = 2356)
Early lactation milk

loss Serum Non-esterified fatty acids,
β-hydroxybutyrate

Chapinal et al.
(2012) [22]

Holstein cows (n = 8) Barley grain diet Rumen fluid
Phenylalanine, Ornithine, Lysine,

Leucine, Arginine, Valine,
Phenylacetylglycine

Saleem et al.
(2012) [29]

Danish Holstein and
Jersey cows (n = 892) Somatic cell count Milk

β-hydroxybutyrate, Acetate, Butyrate,
Fumarate, Hippurate, Isoleucine,

Lactate

Sundekilde et al.
(2012) [21]

Holstein cows
(n = 1305) Fat content Milk

1,3-Dihydroxyaceton, Arabitol,
Aspartic acid, Galactitol, Glucaric

acid-1,4-lactone,
Myo-Inositol-1-phosphate,

Pyroglutamic acid

Melzer et al.
(2013) [18]

Holstein cows
(n = 1305) pH value Milk β-Alanine, Glycerol-2-phosphate,

Glycerol-3-phosphate, Glycine
Melzer et al.
(2013) [18]

Holstein cows
(n = 1305) Protein content Milk

Myo-Inositol-1-phosphate,
Phosphoenolpyruvic acid,

Pyroglutamic acid, Spermidine,
4-methyl-5-hydroxyethyl-Thiazole

Melzer et al.
(2013) [18]

Holstein cows
(n = 1305) Lactose Milk

1,3-Dihydroxyacetone, Glucaric
acid-1,4-lactone, Leucine, Methionine,

Phenylalanine, Tyrosine

Melzer et al.
(2013) [18]

Holstein cows
(n = 1305) Milk quantity Milk

Arabitol, 2-amino-Butanoic acid,
4-methylthio-2-oxo-Butanoic acid,

2-Piperidinecarboxylic acid

Melzer et al.
(2013) [18]

Holstein cows
(n = 1305) Somatic cell score Milk

1,3-Dihydroxyacetone,
2-hydroxy-Butanoic acid, Lactic acid,
Leucine, Methionine, Phenylalanine,

Tryptophan, Tyrosine, Uracil

Melzer et al.
(2013) [18]

Holstein cows (n = 20) Energy balance Milk & Serum
Unsaturated fatty acids,

Galactose-1-phosphate, Cholesterol,
Stomatin

Lu et al.
(2013) [30]

Holstein cows (n = 28) Hepatic lipidosis Serum

Glutamine, Glycine,
Phosphatidyl-cholines,

Sphingomyelins,
Hydroxy-sphingomyelins

Imhasly et al.
(2014) [31]

Crossbred beef cattle
(Angus, Simmental,

etc.) (n = 112)
Residual feed intake Plasma

Acetate, Betaine, Carnitine, Citrate,
Creatine, Formate, Glutamate,

Glycine, Hippurate,
Hydroxyisobutyrate, Lysine,

Phenylalanine, Threonine, Tyrosine

Karisa et al.
(2014) [7]

Crossbred beef cattle
(Angus, Simmental,

etc.) (n = 112)
Average daily gain Plasma Choline, Glutamate, Hippurate,

Isoleucine
Karisa et al.
(2014) [7]

Crossbred beef cattle
(Angus, Simmental,

etc.) (n = 112)
Average feed intake Plasma

Acetate, Dimethyglycine, Glycerol,
Glycol, Hippurate,

Hydroxyisobutyrate, Lysine,
Propylene, Succinate, Tyrosine

Karisa et al.
(2014) [7]

Crossbred beef cattle
(Angus, Simmental,

etc.) (n = 112)
Average body weight Plasma

Acetone, Formate, Glycerol,
Hippurate, Hydroxyisobutyrate,

Isopropanol, Lysine, Phenylalanine,
Lysine

Karisa et al.
(2014) [7]
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Table 1. Cont.

Cattle Trait Sample Source Metabolic Biomarker Reference

Holstein calves (n = 12) Systemic immune
response Plasma

Glycocholic acid, Glycine, Uric acid,
Biliverdin, Taurodeoxycholic acid,

Propionylcarnitine

Gray et al.
(2015) [32]

German Holstein cows
(n = 26) Metabolic transition Serum Acylcarnitines,

Glycerophospholipids, Sphingolipids
Kenéz et al.
(2016) [11]

Simmental cows
(n = 18)

Subacute rumen
acidosis Serum Non-esterified fatty acids Aditya et al.

(2018) [33]

Holstein cows (n = 40) Milk protein yield Serum Total cholesterol, Malonaldehyde Wu et al.
(2018) [8]

Danish Holstein and
Jersey cows (n = 20) Residual feed intake Plasma α-ketoglutarate, Succinic acid

Wang and
Kadarmideen

(2019) [9]

Beef steers (n = 29) Residual feed intake Rumen fluid

3,4-dihydroxyphenylacetate,
4-pyridoxate, Citraconate,

Hypoxanthine,
Succinate/Methylmalonate, Thymine,

Xylose

Clemmons et al.
(2020) [10]

Nellore and Angus beef
cattle (n = 30) Beef tenderness Meat

Acetyl-carnitine, Adenine,
Beta-alanine, Fumarate, Glutamine,

Valine

Antonel et al.
(2020) [34]

2.2. Revealed Metabolic Pathways in Cattle

For the feed efficiency trait, the enrichment of the retinol metabolic pathway was
revealed in beef cattle, where two metabolites in the pathway (a higher level of retinal
and a lower level of retinoate) were found in the low feed efficient animals [12]. However,
three important pathways that are the aminoacyl-tRNA biosynthesis, the alanine, aspartate,
and glutamate metabolism, and the citrate cycle (TCA cycle) pathways were also associated
with RFI in dairy cows using two types of pathway analysis [9]. In this review, we used the
metabolites associated with RFI (n = 24, Table 1) to conduct the over-representation analysis
(ORA) for metabolic pathway analysis. Fishers’ exact test for ORA was done by Metabo-
Analyst software (version 5.0) [35], and metabolic pathways using the Bos taurus library
were also realized to show the relative betweenness centrality against pathway impact
value. The results showed that nine significantly metabolic pathways (FDR < 0.05) were
revealed (Figure 1 and Supplementary Table S1), where the most significantly metabolic
pathway was the aminoacyl-tRNA biosynthesis, followed by the glyoxylate and dicarboxy-
late metabolism and the phenylalanine metabolism (Figure 1). Six metabolites (glutamate,
glycine, lysine, phenylalanine, threonine and tyrosine) were enriched in the aminoacyl-
tRNA biosynthesis pathway (Supplementary Table S1) and the metabolite connections in
the pathway were visualized in Supplementary Figure S1 using MetaboAnalyst software
(version 5.0) [35].

The aminoacyl-tRNA biosynthesis pathway is an amino acid metabolism and biosyn-
thesis related pathway that has been identified as associated with RFI in dairy cows [9]
and pigs [36]. This pathway is essential for normal growth and protein synthesis, and po-
tentially influences cellular physiology and development [37,38]. Alanine, aspartate and
glutamate metabolism, and the citrate cycle (TCA cycle)) pathways are also reported in
relationship with feed efficiency traits [9], whereas the alanine, aspartate and glutamate
metabolism is more sensitive to the diets and breed to affect the beef tenderness and meat
sensory acceptability [34,39]. The mechanism illustration of the aminoacyl-tRNA biosyn-
thesis pathway (bta00970) is shown in Figure 2, which is derived from the KEGG pathway
database (https://www.genome.jp/kegg/, accessed on 20 September 2021) of Bos taurus
species. It is suggested that the aminoacyl-tRNA biosynthesis pathway is mainly related
to the other nine pathways. They are the alanine, aspartate and glutamate metabolism
(bta00250), the glycine, serine and threonine metabolism (bta00260), the cysteine and me-
thionine metabolism (bta00270), the valine, leucine and isoleucine biosynthesis (bta00290),

https://www.genome.jp/kegg/
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the lysine biosynthesis (bta00300), the arginine and proline metabolism (bta00330), the his-
tidine metabolism (bta00340), the phenylalanine, tyrosine and tryptophan biosynthesis
(bta00400), and the tryptophan metabolism (bta00380) (Figure 2). It was found that the
alanine, aspartate and glutamate metabolism was in a close relationship with the aminoacyl-
tRNA biosynthesis pathway in terms of the mechanisms of feed efficiency regulation via
the alanine, aspartate and glutamate metabolites [9].

Figure 1. Pathway analysis for the metabolites associated with feed efficiency using Bos taurus as
the library. Note: the pathway impact value is calculated using the sum of importance measures
of the matched metabolites divided by the sum of the importance measures of all metabolites.
The sizes and colors of the circles indicate the matched metabolite ratio and the log (p-value) of each
pathway, respectively.
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Figure 2. The mechanisms of aminoacyl-tRNA biosynthesis pathway (bta00970).

3. Applications of Metabolomics in Cattle

Metabolomics has been applied in metabolic biomarker identification, genetic mecha-
nism revelation, genomic prediction, understanding nutritional physiology, etc., for differ-
ent economic traits of different species, which promotes the applications of metabolomics
in cattle.
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3.1. Revealed Biologically Genetic and Metabolic Related Mechanisms

The application of metabolomics and the other integrated omics data analysis lead to
the clear cognition of the complex metabolic mechanisms [40]; for example, metabolome
diversification occurs during different lactations [41,42]. Sun et al. (2017) [41] revealed
five functionally enriched pathways (gluconeogenesis, pyruvate metabolism, TCA cycle,
glycerolipid metabolism and aspartate metabolism) and suggested the TCA cycle, the gluta-
mate metabolism, and the glycine biosynthesis and degradation pathways as the potential
key metabolic mechanisms of lactation in the mammary gland. In fact, the aminoacyl-
tRNA biosynthesis, the alanine, aspartate and glutamate metabolism, and the TCA cycle
pathways also play key roles in the biochemical mechanisms in feed efficiency underly-
ing metabolic biomarker variations (Table 1 and Figure 1). Most importantly, Wang and
Kadarmideen [9] demonstrated one gene-metabolite network involved in the TCA cycle as
the potential mechanism for RFI that modulates protein synthesis and regulates energy
metabolism [43–46].

3.2. Improved Genomic Prediction for Complex Traits

Metabolomic-based genomic prediction has been conducted in plant species, such
as wheat and barley, to display the potentiality of metabolite application as the predictor
variables when no genotype is available [47–50]. Gemmer et al. (2020) [47] used the box-cox
power method [51] to transform the metabolic data and then designed three prediction
scenarios that are genomic prediction, metabolic prediction and the combined genomic-
metabolic prediction. They found that both single-nucleotide polymorphisms (SNPs)
and metabolites in the combined prediction scenario produced similar predictive abilities
compared to the pure genomic prediction [47], which is consistent with other studies [48].
Nevertheless, Tong et al. (2020) [49] and Guo et al. (2016) [50] still found the integration
of metabolites with genotypes significantly improved the prediction accuracies in maize
and Arabidopsis, respectively; however, such predictive abilities were trait specific, so the
metabolic information is suggested for use as predictors but to predict those traits directly
related to metabolism. In animal breeding programs, useful metabolic information has also
been suggested for incorporation into genomic prediction models or to be integrated with
phenotypes or to be considered as the alternative phenotypes [52,53].

3.3. Understood Nutritional Biochemical Physiologies

Diet-based rumen metabolomic analysis can help reveal the nutritional biochemical
physiology after feeding different diets [29,54]. For instance, when increasing propor-
tions of barley grain diets were fed to dairy cows, metabolites (glucose, alanine, maltose,
propionate, uracil, valerate, xanthine, ethanol, and phenylacetate) and methylamine concen-
trations in rumen increased as well, but the amount of 3-phenylpropionate decreased [54].
Similarly, Saleem et al. (2012) [29] explained more than 30% of grain diets influencing
the health of dairy cattle because the rumen toxic or inflammatory fluid concentrations
increased, such as putrescine, methylamines, ethanolamine and short-chain fatty acids.
Different cattle feeding systems (e.g., only perennial ryegrass, total mixed ration and peren-
nial ryegrass/white clover sward) could cause different metabolome profiles in milk and
the subsequent products, such as amino acid composition in milk, and metabolome in skim
milk and whey powders [55]. Sometimes, significant metabolome changes at different
ages were found to indicate the identified metabolites as the potential biomarkers for
early growing and fattening animals. Jeong et al. (2019) [56] revealed 19 metabolites and
3 metabolic pathways in beef cattle that assisted in a better understanding of cattle growth
physiology for appropriate feeding strategies.

4. Integrated Metabolomic Analysis with Other Omics

Metabolomic analysis integrated with other omics data could contribute to the better
understanding of the metabolomic complexity based on systems biology, but multiple
layer integration would cause the challenge of statistics under the appropriate hypoth-
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esis [57,58]. The current integration analysis primarily focuses on two-layer interplays
for the direct associations between two omics data that can be used to identify relevant
candidate biomarkers, such as SNPs, genes, proteins, cytosine and guanine dinucleotides
(CpGs), microbial communities, lipids, etc. It includes genomic−metabolomic analy-
sis, transcriptomic/proteomic−metabolomic analysis, epigenomic−metabolomic analysis,
microbiomic−metabolomic analysis and lipidomic−metabolomic analysis.

4.1. Genomics-Metabolomic Analysis

Metabolomics is the joint to connect genotypes with phenotypes [6], so their relation-
ships are currently interpreted by the metabolome genome-wide association study (mG-
WAS) using metabolites as the metabolic phenotypes. The integrated genomic−metabolomic
analysis is considered as a critical supplement to biology and physiology, as the metabo-
lites provide the details of physiological state that can drive genetic variant-associated
metabolites to display larger effect sizes, and then the quantitative trait loci (QTLs) affecting
metabolite concentrations can be identified [53,59–63].

The genome-metabolite network has been constructed in bacterial species [59,60]; for
example, large-scale metabolic models of iJL463 and iDZ470 were constructed for Riemerella
anatipestifer wild type strain CH-1 (RA-CH-1, serotype 1) and Riemerella anatipestifer wild
type strain CH-2 (RA-CH-2, serotype 2), respectively [59]. In beef cattle, Li et al. (2020) [61]
detected three significant SNP associations (rs109862186, rs81117935 and rs42009425) for
betaine, l-alanine and l-lactic acid, respectively; in addition, Wang and Kadarmideen
(2020) found 152 genome-wide significant SNPs associated with 17 metabolites in pigs [53].
System biology analysis based on mGWAS can unravel significant SNPs related genes
associated with metabolites and phenotypes. At the onset of puberty, Widmann et al.
(2013) [62] found that Gonadotropin-releasing hormone (GnRH) signaling is associated
with divergent growth in cattle.

The mGWAS is the direct association model between genomics and metabolomics to
test the candidate SNPs or QTLs related to metabolites. It can be analyzed in the tools that
are applied for GWAS, such as EMMAX (efficient mixed-model association eXpedited),
FaST-LMM (factored spectrally transformed linear mixed models), GCTA (genome-wide
complex trait analysis), GEMMA (genome-wide efficient mixed-model association) [64–67].
The mixed model is generally described as follows:

y = Wa + Xb + Zg + e, (1)

where y is the vector of phenotypes (e.g., metabolite values), W is the design matrix of
covariates for fixed effects (e.g., breed, RFI, PCAs for genomic control [65,66,68,69]), a is
the vector of fixed effects (i.e., corresponding coefficients) including the intercept, X is the
marker covariates (i.e., SNP indicators 0, 1 or 2), b is the additive effect (fixed effect) of
each marker to be tested, Z is the design matrix for g, g is the vector of polygenic effects
as random effects that are the accumulated effects of all markers (i.e., captured by genetic
relationship matrix (GRM) calculated using all SNPs) and e is the vector of residual effects.
The polygenic and residual variances are Var[g] = Go2

g and Var[e] = Iσ2
e, where G and I

are the GRM and identity matrix, respectively.

4.2. Transcriptomic-Metabolomic Analysis

The gene-metabolite interplay network can be constructed for transcriptomic-metabol-
omic analysis based on the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways
using MetaboAnalyst [70,71]; for example, one gene (2-hydroxyacyl-CoA lyase 1 (HACL1))
associated with two metabolites (α-ketoglutarate and succinic acid) was identified in
high-low feed efficient dairy cattle [9]. Likewise, web tools IMPaLA, Metabox (R based),
XCMS, etc., [72–75] also integrate metabolomic data with transcriptomics on the pathway
level. Interactions between genes and metabolites in different combinations of biological
networks can enhance our knowledge of underlying biological mechanisms by reflecting
the cellular regulations in different layers [72,73]. Based on the BioCyc [76], KEGG [77] and
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Uniprot [78] databases, the genes and proteins can be mapped on the predicted metabolic
pathways [73].

R package IntLIM [79] was used to integrate metabolomics and gene expression
data for feed efficiency traits in pigs [80], where the interactions of phenotypes and gene
expressions are fitted in the model [79]. The linear model that IntLIM [79] used is as follows:

m = β1 + β2g + β3 p + β4(g : p) + ε, (2)

where m, g and p are metabolite values (normalized), gene expression levels (log2-transformed)
and phenotypes (case-control designed), respectively. Here, g : p represents the statistical
interaction between gene expressions and experimental designed phenotypes, where a
significant two-tailed p-value indicates the gene-metabolite association is different from
the cases to the controls [79,81].

4.3. Other Two-Layer Omics−Metabolomic Analysis

For the two-layer omics data integration, epigenomic−metabolomic interactions could
discover novel molecular targets via epigenetic mechanisms regulating the expression lev-
els of metabolic genes and thereby altering the metabolome [82,83]. Wong et al. (2017) [82]
suggested that epigenetic drugs (e.g., DNMT and HDAC inhibitors) could be used to target
metabolic reprogramming in cancer cells. In their review, they also considered the combi-
nation of metabolism inhibitors and epigenetic modulators to achieve synergistic tumor
inhibition as the developmental approach [82]. On the other hand, Petersen et al. (2014) [83]
conducted an epigenome-wide association study for blood serum metabolites to investigate
the relationship between DNA methylation and metabolic traits. They found that the un-
derlying genetic effects or environmental effects mainly drove the methylome–metabotype
associations, and identified several CpG site-specific associations with metabolites; there-
fore, DNA methylation has an important role in regulating the metabolism [83].

So far, the analysis between microbiome and metabolome could predict which com-
pounds have been produced by a community of bacteria or the host in an R package
AMON [84]. However, another similar web tool MIMOSA [85] is a relatively quantita-
tive tool that determines the quantitative relationships between the relative abundance of
genes in a metagenome and the abundance of the particular compounds in a metabolome.
Moreover, Mallick et al. (2019) [86] developed the MelonnPan algorithm to predict the
unobserved metabolite features in the new microbial communities by incorporating biolog-
ical knowledge.

Lipidome is one subset of the metabolome as same to amino acids, sugars and nu-
cleic acids, but lipidomics has emerged as an independent field due to the functionally
structural diversity and high endogenous abundance of lipids resulting in the complexities
of the organismal lipidomes [87,88]. The integration analysis between metabolomics and
lipidomics are normally applied to understand the cellular mechanism and to reveal signa-
tures for human diseases [88,89]. Wang et al. (2019) [88] summarized the previous studies
on the roles of lipids and metabolites for diseases, and found that the integrated analysis of
metabolomics and lipidomics was critical for the revelation of cellular biology and disease
pathology. Acharjee et al. (2016) [89] used a machine learning approach to integrate the
metabolomics, lipidomics and clinical data. They pinpointed that lipidomics was the most
predictive data responding to different doses and then established the relationships of the
metabolic and lipidomic data with aspartate amino transaminase [89].

4.4. Multiple Integrated Omics−Metabolomic Analysis

In the previous study, transcriptomic, proteomic and metabolomic integrated analysis
was used to investigate the overexpression and inhibition of miR-223 affecting gene regu-
lation in the cytoplasm of the monocyte−macrophage cell line [90]. They characterized
the three-layer integrated metabolomic analysis with other omics responses to miR-223
modulation, and found that the miR-223 alteration changed the gene expressions (CARM-1,
Ube2g2, Cactin and Ndufaf6) during macrophage differentiation and osteoclastogenesis
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and the metabolic profile of cells to potentially influence the apoptotic and proliferative
states [90]. Jamil et al. (2020) [91] also proposed three levels of integration analysis for
transcriptomic−proteomic−metabolomic data that are element-based (e.g., correlation
and clustering), pathway-based (e.g., pathway and co-expression) and more complex
mathematical-based levels. Frau et al. (2019) [92] firstly integrated metabolome, micro-
biome and mycobiome data in Crohn’s disease (CD) with the aim of investigating the
correlation of fungi metabolites with fungal species in CD patients; finally, they understood
which microorganisms were likely active in CD and which microorganisms produced the
metabolites of interest.

5. Methods and Tools Applied in Metabolomics Analysis

The current metabolomics analysis methods and tools are widely applied for metabolic
biomarker detection, cluster classification, pathway and network identification, two-layer
data integration, etc., which is usually limited in the metabolomics category (Table 2).
Statistical methods and analyzing tools for multiple-layer integrations are still necessary
for the further integrated metabolomics analysis with other omics. The important features
and used environments of the current tools are listed in Table 2.

Generally, a linear regression model is considered to analyze metabolomics data for
significant metabolite identification by fitting phenotypes (e.g., RFI) as covariates [9,80].
Sometimes, the elastic net regularization model is also applied to fit microbial communi-
ties [86]. The analysis tools can be in a web environment or be directly used by the related
R packages, such as MetabR, glmnet, IntLIM, etc., [79,93,94].

In order to cluster the metabolites, principal component analysis (PCA), linear discrim-
inant analysis (LDA) and partial least squares discriminant analysis (PLS-DA) are normally
used in the R packages or other tools, such as MetaboAnalyst, VOCCluster [93,95]. Tools with
new features, such as interactive time-series cluster analysis (R package MetaboClust) [96],
automated hierarchical cluster (R package hcapca) [97] are also developed for clustering
analysis. Bayesian network method (BNM) can model the interactions of the metabolites
to identify important metabolites in the optimal network, which has been demonstrated
in the study of Rogers et al. (2014) [98]. The predictive accuracy of BNM with an area
under the curve convex hull (AUCCH) was higher than PLS-DA, as PLS-DA probably led
to overfitting that was indicated by the permutation test [99].

Notably, metabolomics data is complex and nonlinear, so machine-learning methods
are applied for the nonlinear data interpretation based on random forest, support vector
machine, artificial neural network algorithms, etc., [100–104]. For example, Ghaffari et al.
(2019) [105] employed the machine-learning methods to reveal 12 significant metabolites
and 2 meaningful pathways in normal versus over-conditioned cows. Such methods with
the developed tools can also be used for biomarker detection, classification, biochemical
pathway identification and multi-omics integration [103].

Some transcriptomic expression and co-expression analysis approaches are also avail-
able for metabolic data by considering the metabolite values as the expression levels to
perform the metabolite analysis and the interacted networks, such as using R package limma
and WGCNA [106–110]. WGCNA (weighted correlation network analysis) can construct
a similarity matrix by Pearson correlation coefficients to measure the profiles’ similarity
for the further network construction, and then identify the metabolically relevant key
modules [107].
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Table 2. Metabolomics analysis tools and their features.

Analysis Tool Environment Feature Reference

WGCNA R Weighted correlation network analysis Langfelder et al. (2008) [107]

MetaboAnalyst Web/R Statistical, biomarker, pathway,
joint-pathway, network, meta-analysis, etc.

Xia et al. (2009) [93]/Xia et al.
(2012) [111]/Xia and Wishart
(2016) [112]/Chong and Xia

(2018) [113]/Chong et al. (2019) [71]

glmnet R Statistical analysis in lasso or elastic net
model Friedman et al. (2010) [114]

MetabR R Statistical analysis in linear model Ernest et al. (2012) [94]

muma R
Step-wise pipeline for metabolomics
univariate and multivariate statistical

analyses
Gaude et al. (2013) [115]

limma R
Statistical analysis in linear model by

considering the metabolite values as the
expression data

Ritchie et al. (2015) [110]

MetabNet R Targeted metabolome-wide association
study for pathway and network mapping Uppal et al. (2015) [116]

MIMOSA Web

Quantitative relationships between the
relative abundance of genes in a

metagenome and the abundance of the
particular compounds in a metabolome

Noecker et al. (2016) [85]

IntLIM R Integration analysis of transcriptomic and
metabolomic data Siddiqui et al. (2018) [79]

MetaboClust R Interactive time-series cluster Rusilowicz et al. (2018) [96]

MetaboDiff R Exploration of sample traits in a
data-derived metabolic correlation network Mock et al. (2018) [117]

NormalizeMets R

Visualisation of metabolomics data using
interactive graphical displays and to obtain

end statistical results for clustering,
classification, biomarker identification
adjusting for confounding variables,

and correlation analysis

de Livera et al. (2018) [118]

AMON R
Prediction of compounds that could have
been produced by community of bacteria

or the host
Shaffer et al. (2019) [84]

MelonnPan R
Unobserved metabolite feature prediction

in new microbial communities by
incorporating biological knowledge

Mallick et al. (2019) [86]

hcapca R Automated hierarchical cluster Chanana et al. (2020) [97]

MetaboShiny R
Database- and formula-prediction-based

annotation and visualization for mass
spectrometry data

Wolthuis et al. (2020) [119]

MetENP Web/R

Species-specific pathway analysis, pathway
enrichment scores, gene-enzyme

information, and enzymatic activities of the
significantly altered metabolites

Choudhary et al. (2020) [120]

VOCCluster R
Untargeted feature cluster using gas
chromatography/mass spectrometry

(GC/MS) data
Alkhalifah et al. (2020) [95]

6. Implications and Further Potentialities

Metabolomic and integrated other omics data analysis are available for the measure-
ment of dynamically metabolic responses, identification of biologically metabolic markers,
revelation of potentially genetic architecture, understanding of systematic networks. In cat-
tle, the classified metabolome clusters, detected relevant candidate metabolites, identified
metabolic pathways, potential systematic networks have been studied to achieve promising
and meaningful results. We summarized the previous results of one-layer metabolomic
analysis and potential two-layer integration analysis that can be presented in Figure 3,
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as discussed above. We fully believe that the summarized results are useful for metabolomic
application in cattle farms.

Figure 3. Metabolomics analysis workflow and the integrated analysis with other omics data in cattle.

Multiple integrated omics analysis would become critical and favorable in a further
study, especially for the integration of genomics, epigenomics, transcriptomics, proteomics,
microbiomics and lipidomics to reveal the metabolic-related mechanisms, identify multiple-
layer biomarkers and improve genomic predictions, etc. Theoretically, metabolite QTLs,
DNA methylation QTLs, expression QTLs (eQTLs), protein QTLs (pQTLs), microbe QTLs
could be integrated on the genome level by constructing a multiple-omics network using
those QTLs as the joint. In the meantime, the annotated genes/proteins to QTLs affecting
metabolite concentrations that are regulated by the genetic/epigenetic variants could
be connected together based on the biological pathways (Figure 3). Thus, the network
construction of genomics, epigenomics, transcriptomics, proteomics, metabolomics with
the joints from the genomic level to the pathway level is derived, but possibly four-layer
integrations (QTLs−genes/proteins (CpG regulated) −pathways−metabolites) are difficult
and challenging to find out or to identify by the current relatively smaller sample sizes,
so larger populations are still necessary for further validation in cattle using one promising
economic trait.

7. Conclusions

In summary, this review concludes the useful metabolic information from the previous
research results including the characterizations of metabolomics profiles, metabolomics
applications, integrated metabolomics analysis with other omics, methods and tools in
metabolomics analysis, and the further potentialities and implications in cattle, which may
contribute to the production improvement, disease reduction, efficient farming for the
cattle economically important traits.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/metabo11110753/s1, Supplementary Table S1: Significantly metabolic pathways (FDR < 0.05)
for the metabolites associated with feed efficiency using Bos taurus as the library. Supplementary
Figure S1: The connections of the metabolites including glutamate, glycine, lysine, phenylalanine,
threonine and tyrosine (red color) enriched in the aminoacyl-tRNA biosynthesis pathway.
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