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ABSTRACT Sponges establish tight associations with both micro- and macroorgan-
isms. However, while studies on sponge microbiomes are numerous, nothing is cur-
rently known about the microbiomes of sponge-associated polychaetes and their re-
lationships with those of their host sponges. We analyzed the bacterial communities
of symbiotic polychaetes (Haplosyllis spp.) and their host sponges (Clathria rein-
wardti, Amphimedon paraviridis, Neofibularia hartmani, and Aaptos suberitoides) to as-
sess the influence of the sponges on the polychaete microbiomes. We identified
both eukaryote partners by molecular (16S and COI genes) and morphological fea-
tures, and we identified their microbial communities by high-throughput sequencing
of the 16S rRNA gene (V4 region). We unravel the existence of six Haplosyllis species
(five likely undescribed) associated at very high densities with the study sponge spe-
cies in Nha Trang Bay (central Vietnam). A single polychaete species inhabited A.
paraviridis and was different from the single species that inhabited A. suberitoides.
Conversely, two different polychaete species were found in C. reinwardti and N. hart-
mani, depending on the two host locations. Regardless of the host sponge,
polychaete microbiomes were species specific, which is a widespread feature in ma-
rine invertebrates. More than half of the polychaete bacteria were also found in the
host sponge microbiome but at contrasting abundances. Thus, the associated
polychaetes seemed to be able to select, incorporate, and enrich part of the sponge
microbiome, a selection that appears to be polychaete species specific. Moreover,
the bacterial diversity is similar in both eukaryotic partners, which additionally con-
firms the influence of food (host sponge) on the structure of the polychaete micro-
biome.

IMPORTANCE The symbiotic lifestyle represents a fundamental cryptic contribution
to the diversity of marine ecosystems. Sponges are ideal targets to improve under-
standing the symbiotic relationships from evolutionary and ecological points of view,
because they are the most ancient metazoans on earth, are ubiquitous in the marine
benthos, and establish complex symbiosis with both prokaryotes and animals, which
in turn also harbor their own bacterial communities. Here, we study the micro-
biomes of sponge-polychaete associations and confirm that polychaetes feed on
their host sponges. The study worms select and enrich part of the sponge micro-
biome to shape their own species-specific bacterial communities. Moreover, worm
microbiome diversity runs parallel to that of its food host sponge. Considering our
results on symbiotic polychaetes and previous studies on fishes and mammals, diet
appears to be an important source of bacteria for animals to shape their species-
specific microbiomes.
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Living in symbiosis (in its broader sense) is a general lifestyle across terrestrial and
marine ecosystems (1, 2), but it seems to be particularly remarkable in the latter

(3–5). Marine sedentary invertebrates, such as sponges and corals, are engineer organ-
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isms habitually used as a refuge by diverse mobile fauna. Among them, cnidarians,
crustaceans, mollusks, nematodes, and polychaetes are the most frequently reported in
association with sponges in temperate, cold, and tropical oceans (6–11).

Many tropical sponges provide refuge to polychaetes. In particular, endosymbiotic
species of Syllidae in sponges represent a paradigmatic model for the study of
symbiosis, as thousands of individuals of the same worm species colonize one (or a few)
sponge species (12–15), and all phases of the polychaete life cycle seem to occur inside
the host (13, 16). However, whether these associations are species specific, symbiotic,
mutualistic, or parasitic is under discussion (8, 13, 14, 17, 18). While these associations
are undoubtedly considered advantageous for the polychaete because sponges rep-
resent a food source and a clear refuge against predation (8), the potential benefits for
the sponge are more difficult to deduce. Polychaete predation does not seem to cause
detectable harm to the host sponges so that the nature of the association has been
interpreted as commensalism, mutualism, or “good” parasitism (8, 10, 12, 13, 19).

Indeed, sponge-polychaete associations represent multipartner symbioses as both
eukaryotes establish tight associations with multiple microbes (20). Eukaryote partners
harbor their own microbiomes, formed of hundreds of bacterial species interacting
among themselves and with their respective hosts. Bacteria have been decisive pro-
tagonists in the development of the eukaryote cell (21). Since then, they inhabit almost
every terrestrial and aquatic niche on our planet and accompany eukaryote organisms
along their complete life cycle (22). However, the potential role, if any, of microbiomes
in eukaryotic symbiotic associations has not yet been explored. While studies on
sponge microbiomes have proliferated in the last decades (23–26), nothing is currently
known about the microbiomes of symbiotic polychaetes, including syllids.

In the field of invertebrate-microbe symbioses, how symbiotic bacteria are acquired
by a host species remains under debate. Initially, the concept of true symbiont was
associated with a maternal inherence (vertically transmitted). Currently, the idea of a
species-specific selection of bacteria from the environment by the eukaryote host to
form its specific microbiome is gaining support (27–29), particularly since the host’s
bacterial composition does not directly reflect that of the environment (28, 30).

Our study identified the bacterial communities of four tropical sponges, Clathria
(Thalysias) reinwardti Vosmaer 1880, Amphimedon paraviridis Fromont 1993, Neofibu-
laria hartmani Hooper and Lévi 1993, and Aaptos suberitoides Brøndsted 1934, and
those of their respective polychaetes of the genus Haplosyllis in different locations of
Nha Trang Bay (central Vietnam), aimed at assessing the contribution of the host
sponges to the microbiome composition of their associated polychaetes. Considering
that syllid worms feed on their host sponges and that diet is known to influence the
feeder microbiome, at least in vertebrates (31–34), we hypothesized that polychaete
microbiomes would reflect to some extent the microbiomes of their host sponges. In
this case, one would expect to find a high degree of similarity between the bacterial
communities of the symbiotic partners, with the most abundant members of the
sponge microbiome also being major components of the polychaete microbiome.

RESULTS
Polychaete identification and associations with host sponges. All sponge spe-

cies were dominated by a single polychaete species at high abundance. Figure S1
shows individual worms extracted from a 3-cm3 sponge fragment. Six species of
Haplosyllis could be distinguished based on morphological (Fig. 1) and molecular
characteristics. Species identity could be confirmed only for Haplosyllis tenhovei Lattig,
Martin, and Aguado 2010, while the remaining five worms likely represented unde-
scribed species, whose formal description will be submitted to a specialized journal and
thus, is out of the scope of the present study.

Both 16S and COI sequences (see “Data availability” below for accession numbers)
differed among all identified species, except for Haplosyllis species 3 (sp3) and Haplo-
syllis sp4, whose sequences are identical despite showing enough morphological
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differences to be considered different species under traditional taxonomic criteria
(Fig. 1).

All respective replicates of Aaptos suberitoides and Amphimedon paraviridis were
constantly found in association with a single polychaete species, Haplosyllis sp1 and

FIG 1 Pictures of the sponges and their associated polychaetes. Scanning electron microscopy photos of the
mid-posterior chaetae and optical microscopy photos of the posterior acicula, which were considered diagnostic
characteristics for polychaete species differentiation. The locations where the sponges and associated polychaetes
were found are indicated in parentheses. Six Haplosyllis spp. (five likely undescribed [species 1 {sp1} to 5 {sp5}]) are
shown.
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Haplosyllis sp2, respectively (Fig. 1). Conversely, in Neofibularia hartmani and Clathria
reinwardti, two different polychaete species were found in each sponge, depending on
the geographical location. N. hartmani harbored Haplosyllis sp3 at Noc Island and
Haplosyllis sp4 at Hun Moon Island, while C. reinwardti harbored Haplosyllis sp5 at Hun
Moon Island and H. tenhovei at Dam Bay (Fig. 1).

In all cases, evidence of sponge spicules inside the worms confirmed that the
symbiotic polychaetes feed on the host sponges (data not shown).

Sponge and polychaete microbiomes. Host identity was the main factor struc-
turing the bacterial communities of both sponges and polychaetes (Fig. 2) (R2 �

0.62 and P � 0.001 by PERMANOVA [nonparametric permutation analysis of variance]).
Polychaete microbiomes had unique bacterial communities markedly different from
those of their host sponges and the surrounding seawater (Fig. S2), but they also
differed between the worm species.

On the basis of Bray-Curtis distances, bacterial communities were more similar to
each other in polychaetes than in host sponges (Fig. S3). Although highly different
(Bray-Curtis distances � 0.6), microbiome distances in specific associations (host
sponge versus its symbiotic polychaete) were significantly lower (P � 0.001 by Kruskal-
Wallis test) than in nonspecific associations (sponge versus polychaetes from all other
sponge species) (Fig. S3). The most similar microbiomes were found in N. hartmani and
Haplosyllis sp3 and in A. paraviridis and Haplosyllis sp2 (Fig. S4), while the most distant
were those of A. suberitoides and Haplosyllis sp1 (Fig. S4). Moreover, the microbiomes
of high-microbial-abundance (HMA) sponges (i.e., A. suberitoides and N. hartmani) were
associated with polychaete microbiomes with Shannon diversities higher than the
microbiomes of polychaetes associated with the low-microbial-abundance (LMA)
sponges (i.e., C. reinwardti and A. paraviridis) (Fig. 3).

Core microbiome communities. The core bacterial communities of both sponges
and polychaetes appeared to be large and represented more than 80% of the relative
abundance of the total microbiome in most species (Table S1). A total of 44 ZOTUs
(“zero-radius” operational taxonomic units) were detected in all polychaete samples,
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with the most abundant belonging to Vibrio, Litorimonas, Endozoicomonas, Pseudo-
alteromonas, Shewanella, and Alteromonas (Table S2). The results shown in the follow-
ing sections are based on core bacterial communities.

Taxonomic profiles of sponge and polychaete bacterial communities. The most
abundant orders in polychaete communities were Vibrionales (24.3%), Alteromonadales
(17.7%), Oceanospirillales (14.3%), Burkholderiales (7.6%), and Caulobacterales (4.3%),
whereas in sponges, they were Rhodobacterales (16.29%), Oceanospirillales (14.9%),
Nitrosononadales (8.9%), and PAUC34f unclassified (5.9%).

In most cases, sponges and their associated polychaetes showed highly different
bacterial communities (Fig. 4). In Haplosyllis sp1, the dominant Vibrionales and Altero-
monadales occurred at relative abundances lower than 0.5% than those in A. suberi-
toides, while in Haplosyllis sp2 and A. paraviridis, Oceanospirillales were highly abundant
in both partners. In N. hartmani and C. reinwardti, each polychaete species (two for each
sponge from different localities) inhabiting the same host sponge presented a unique
bacterial composition that also differed from the sponge bacterial community. In N.
hartmani, Vibrionales and Alteromonadales dominated the microbiome of Haplosyllis
sp4 (as in Haplosyllis sp1 from A. suberitoides), whereas Burkholderiales and Rhodobac-
terales dominated in Haplosyllis sp3. In C. reinwardti, Rhodobacterales were dominant,
whereas Vibrionales dominated in H. tenhovei and Sphingomonadales, Caulobacterales,
and Alteromonadales dominated in Haplosyllis sp5.

Bacterial communities shared between the eukaryotic partners. The number of
ZOTUs shared between the sponges and their polychaete symbionts varied among the
studied species. More than half of the polychaete ZOTUs were present in their host
sponge microbiomes, except for Haplosyllis sp4 (Fig. 5), with the most abundant
polychaete ZOTUs occurring at low abundances in the respective host sponges and
vice versa (Fig. 5). Indeed, the two most abundant ZOTUs of all polychaete microbiomes
were found at relative abundances lower than 0.5% in the microbiomes of the respec-
tive host sponges (Fig. 5).

Few ZOTUs showed similar relative abundances in both the polychaete and its
sponge host (Fig. 5). In the case of C. reinwardti, ZOTU 55 belonging to Shewanella was
also abundant in H. tenhovei, and ZOTU 21 (Endozoicomonas) and ZOTU 32 (Rhodobac-
teraceae) were both found at high abundances in Haplosyllis sp5 ZOTU 48 (Endozo-
icomonas), while ZOTU 81 (Shewanella) was abundant in both A. paraviridis and its
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associated polychaete Haplosyllis sp2. Finally, in the case of N. hartmani, ZOTU 11
(Endozoicomonas) was highly abundant in the sponge and in both of its associated
polychaetes, and ZOTU 19 (PAUC34f) and ZOTU 36 (Caldilineaceae uncultivated) were
also abundant in Haplosyllis sp3.

Haplosyllis sp1 (A. suberitoides) and Haplosyllis sp4 (N. hartmani) microbiomes were
mainly composed by ZOTUs that were rare or absent in their host sponges (Fig. 6). On
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the other hand, Haplosyllis sp2 (A. paraviridis) and Haplosyllis sp3 (N. hartmani) micro-
biomes had a greater proportion of ZOTUs that were either relatively abundant or
highly relatively abundant in their respective host sponges.

In all cases, polychaetes shared more ZOTUs with the sponges than with the
seawater bacterial communities (Fig. S5). Moreover, only a few of the ZOTUs having a
relative abundance of �0.05% in the polychaetes were found exclusively in seawater
and absent from the sponge (marked with an asterisk in Fig. S6).

DISCUSSION
The sponge-polychaete association. Observations of tropical worms associated

with sponges, most of them classified as Haplosyllis spongicola Grube 1855 have been
widely reported (35). However, there is little data available on the relationships be-

FIG 5 Legend (Continued)
between each sponge-polychaete system. Only ZOTUs with relative abundances higher than 0.5% in any
of the eukaryotic partners are shown in the bar plots.
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in the sponge

Highly Ab. (>1%)

Abundant (0.1-1%)

Rare (< 0.1%)

Absent

Haplosyllis sp1 (A. suberitoides) Haplosyllis sp2 (A. paraviridis)

H. tenhovei (C. reinwardti) Haplosyllis sp5 (C. reinwardti)

Haplosyllis sp4 (N. hartmani) Haplosyllis sp3 (N. hartmani)

FIG 6 Bacterial core communities of each polychaete species. Only ZOTUs with relative abundances higher
than 0.1 in the polychaete core are depicted in the pie charts. Each pie slice corresponds to a polychaete core
ZOTU, and its size is proportional to its relative abundance. Colors represent the categorical relative abundance
that each polychaete ZOTU is found in the sponge microbiome: highly abundant (dark gray), abundant (gray),
rare (light gray), and absent (white).
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tween these worms and their host sponges (8, 10, 13). Currently, H. spongicola is known
to be a species complex (36) that includes several misidentified species (17), and new
species of Haplosyllis are continuously discovered. Thus, it was not unexpected that five
out of the six species of Haplosyllis living in association with the four study sponge
species were also undescribed. The Vietnam area seems to be rich in symbiotic
polychaetes, according to the numerous species of Haplosyllis present there (10, 37),
although this can be related to the large number of studies carried out in this area.

We recorded the presence of host-specific spicules in representative samples from
all sponge-associated worms. This confirms a sponge-based diet for these symbiotic
syllids, as previously proposed for other species (10, 13, 16, 19) and suggests damage
to the host. However, the worms’ grazing does not seem to significantly harm their
hosts, since they are among the largest and most abundant sponge species in our study
area. The absence of negative effects on the hosts would confirm that these associa-
tions are commensalistic rather than parasitic, or even mutualistic as recently proposed
(10, 19).

On the basis of the study examples, the sponge-polychaete associations appeared
to be species specific, that is, all the sponge individuals of the same species in a given
area are colonized by the same polychaete species. However, in two cases, the same
sponge species harbored two different species of Haplosyllis depending on the geo-
graphical location. One example is that Haplosyllis nicoleae (instead of H. tenhovei in our
study) was found associated with C. reinwardti in Indonesia (14). On the other hand, ca.
8 of over the more than 30 known symbiotic species of Haplosyllis are reported to
colonize more than one sponge species (10). Thus, although these associations appear
to be species specific at first sight, they may also be ecologically modulated and
depend on the geographical/ecological distribution of the species involved. Chemical
metabolites released by the host (38, 39) may represent attractant cues for more than
one polychaete species (40), so that colonization by one or other might depend on the
most prevalent syllid species in a particular area. Colonization by symbiotic polychaetes
may be followed by rapid proliferation and complete niche occupation, which could
explain the dominance of a single symbiont species in most cases (8, 10, 41).

Bacterial communities from the eukaryote partners. Sponge-polychaete symbi-

oses involve many more than two partners, as both eukaryotes harbor particular
microbiomes formed by hundreds of bacterial species establishing a tight network of
potential interactions. Sponge microbiomes have been intensively investigated during
the past 15 years (23–25, 29, 42–44). Conversely, polychaete microbiomes are still
poorly known (45–47), with most studies focusing on worms inhabiting hydrothermal
vents (48). The microbiomes of the Haplosyllis species studied here were more closely
related to each other than those of their respective host sponges. Taking into account
that all the worms belong to the same genus, while the host sponges belong to
different orders (i.e., Suberitida, Poecilosclerida, Desmacellida, and Haplosclerida), we
suggest that this pattern may have an evolutionary component.

Polychaete microbiomes are species specific. In general, sponge microbiomes

tend to be species specific, and the same pattern has been reported for nematodes (49).
Our results also show a high species specificity of the polychaete bacterial communi-
ties, regardless of their host sponges. Species specificity of microbiomes seems to be
more common in invertebrates than previously thought and suggests the existence of
species-specific mechanisms of bacterial selection (50), pointing to a relevant role of the
associated microbes in invertebrate functioning.

Since polychaete microbiomes appear to be species specific, they may have a
diagnostic value in addition to morphological traits. This could be the case of the two
species of Haplosyllis found in N. hartmani, which were morphologically different but
molecularly cryptic, and harbor very different bacterial communities. In this sense,
microbiomes might inform on ongoing speciation processes even before being de-
tected by molecular markers (e.g., COI and 16S).
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Influence of diet (sponge) on the polychaete microbiomes. On the basis of
previous studies with other organisms, we hypothesized that polychaete microbiomes
would reflect those of their prey sponge species. If this were true, two polychaete
species feeding on the same sponge would have similar microbiomes. In contrast,
Haplosyllis sp3 and Haplosyllis sp4 feeding on N. hartmani and Haplosyllis sp5 and H.
tenhovei feeding on C. reinwardti have distinct bacterial communities. Our results
suggest that each polychaete species selectively incorporates and enriches specific
bacteria, even if these bacteria are rare members of its prey’s microbiome. Enrichment
of environmentally rare microbes has been reported for sponges (29, 51), mollusks (52),
fishes (30, 53), and amphibians (28). Microbiome diversity is positively related between
polychaetes and their food source (host sponges), which has also been reported for fish
larvae and their food source (34) as well as for the human gut and diet (33). Thus, our
results seem to agree with those reported for other organisms, pointing to what could
be a widespread pattern relating bacterial diversity of food and feeder. Recently, Cleary
et al. (54) also found a compositional similarity between certain sponge samples and
sponge denizens, suggesting that sponges may influence the prokaryote composition
of organisms that live on or within them or that feed on them.

Reliance of the polychaete microbiome on the sponge microbiome. When
analyzing the polychaete-sponge relationship from a microbial perspective, we con-
sidered that the higher the number of bacterial ZOTUs in the polychaete and absent
from the sponge, the lower the polychaete dependence on the sponge microbiome. In
this sense, Haplosyllis sp1 (from A. suberitoides) and Haplosyllis sp4 (from N. hartmani)
would depend less on the sponge microbiome to build up their own microbiome than
the remaining polychaete/sponge partnerships studied. The worm bacteria that were
not recorded in the host sponge microbiome may possibly correspond to vertically
transmitted bacteria (i.e., through sexual or asexual propagula). However, we cannot
fully discard some methodological constrains, i.e., if bacteria in the sponge escaped our
detection limits. We can also envisage some of these microbes being acquired hori-
zontally from environmental sources other than the host tissues (e.g., from seawater
[but see supplemental material]).

In most cases, more than half of the bacteria from a polychaete microbiome, which
probably correspond to the gut microbiome, were also found in the sponge, but at
contrasting abundances, suggesting different levels of between-partner dependency. It
would be interesting to assess to what extent the polychaetes maintain their micro-
biomes when associated with other sponge hosts with different bacterial communities.

The polychaete bacterial core. We have found a quite large core bacterial com-
munity in all species of Haplosyllis, indicating that polychaete bacteria might play
general metabolic or defensive roles (48). Among these core microbes, we found
representatives of Vibrionales, Caulobacterales, Alteromonadales, and Oceanospiralles.
Representatives of these groups have also been reported in other polychaetes such as
Vibrio in the filter-feeding Sabella spallanzanii Gmelin 1791 (47), Alteromonadales and
Oceanospiralles in deposit feeders Opheliids (45) and Oceanospiralles in the bone-eating
Osedax (55).

Polychaetes have been proposed as bioremediation agents in polluted waters due
to their ability to accumulate Vibrio species, which are well-known pathogens in
aquaculture (47, 56, 57). Conversely, high levels of nonpathogenic Vibrio strains have
been recently reported in shrimp guts (58), suggesting a possible beneficial role in the
invertebrate fitness. Moreover, different members of Vibrionaceae are also reported to
be extracellular polymeric substances (EPS) producers (59), which are important cell
protective agents (i.e., against environmental stressful conditions or from xenobiotic
substances) and allow them to capture nutrients (59). In turn, Alteromonadales in-
creased in abundance at sites affected by urbanization and eutrophication (45) due to
their purported tolerance to high copper levels (45, 60) and to other metals (45, 61).
Moreover, members of Alteromonadales are well-known EPS and biosurfactant (BS)
producers (48, 59), the latter being correlated with antimicrobial activity suggesting a
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defensive role against pathogens (48). Finally, Oceanospiralles are well-known hetero-
trophic degraders of complex organic compounds (55), which may also contribute to
increase the fitness of the associated polychaetes.

Conclusions. To summarize, the sponge-polychaete associations seem to be basi-
cally species specific but can be ecologically modulated, as different polychaete species
inhabited the same sponge species depending on the habitat. The microbiomes of
both the sponges and their associated polychaetes are also species specific, pointing to
the relevance of the microbial component on the invertebrate functioning. Our results
suggest that the associated polychaetes select, incorporate, and enrich a part of the
sponge microbiome to form their individual microbiomes, but the selection appears to
be species specific, possibly reflecting the specific polychaete needs. Diet appears to be
an important source of bacteria for invertebrates (this study) and vertebrates (previous
studies) to shape their specific microbiomes.

MATERIALS AND METHODS
Sponge and polychaete sampling and DNA extraction. A quantitative sampling method to

describe the sponge assemblages of Nha Trang Bay (central Vietnam) was conducted in April 2015 (29).
During that campaign, sponge species associated with polychaetes were surveyed. Four of them were
later selected for the present study due to their high abundance and density of associated polychaetes.
Among the selected species, A. suberitoides and N. hartmani belonged to high-microbial-abundance
(HMA) sponges, whereas C. reinwardti and A. paraviridis belonged to low-microbial-abundance (LMA)
species (29). Sponges containing polychaetes were collected in April 2016 by SCUBA diving between a
depth of 3 and 9 m in three neighboring locations �2 km apart (i.e., Dam Bay and Hun Mun and Nock
Islands) within Nha Trang Bay. Three samples of A. suberitoides (all from Nock Island), five samples of N.
hartmani (three from Nock Island, two from Hun Mun Island), five samples of C. reinwardti (two from Dam
Bay Island, three from Hun Mun Island), and five samples of A. paraviridis (all from Dam Bay) were
collected. Each sponge sample was kept in a 50-ml Falcon tube with native seawater from same depth
and sampling point and later replaced by 100% ethanol once the polychaetes left the host sponge (ca.
10 min). The released polychaetes were then cleaned from all remaining sponge tissues and allocated to
Eppendorf tubes containing 100% ethanol. Back in the lab, sponges were examined under the micro-
scope to extract any possible remaining polychaetes. In the case of A. suberitoides, only a few polychaetes
left the host sponge spontaneously, and thus, sponge dissection and careful examination were key to
extracting the sponge-associated polychaetes. Ethanol was replaced twice with fresh absolute ethanol to
ensure good sample preservation. DNA from sponge and polychaete samples was extracted by following
the DNeasy Blood & Tissue kit protocol (Qiagen).

Additionally, triplicate 2-liter water samples were taken from the three locations (ca. 50 cm apart from
the sponges) and sequentially filtered throughout 5-�m and 2-�m polycarbonate membranes. The size
fraction (5 to 2 �m) was processed for DNA extraction. The membranes were enzymatically digested with
lysozyme, proteinase K, and sodium dodecyl sulfate, and afterwards, DNA was extracted with phenol-
chloroform-isoamyl alcohol (25:24:1, vol/vol/vol) and chloroform-isoamyl alcohol (24:1, vol/vol). Purifica-
tion and concentration of the DNA was performed with Amicon Ultra 4 centrifugal filter units with
100,000 nominal molecular weight limit (NMWL) (Millipore).

Polychaete identification. Once the polychaetes were separated from their respective host sponges,
all polychaetes were carefully identified using a microscope. Anecdotal species (i.e., species other than
the most abundant one, present as 1 or 2 specimens per sample) were discarded. Only the dominant
symbiotic species from each sponge was considered for this study.

We identified polychaete species to the best possible taxonomic resolution by molecular markers and
morphological features. Fragments of the mitochondrial small subunit 16S rRNA gene (�650 bp) and the
cytochrome c oxidase subunit I (COI �680 bp) were amplified and sequenced. Primer pairs 16SarL/16SbrL
(62) and jgLCO1490/jgHCO2198 (63) were employed to amplify 16S rRNA and COI, respectively. PCR
amplifications were conducted in 50-�l reaction mixtures containing 1 ng of template genomic DNA, 5 �l
of 10� PCR buffer (containing 1.5 mM MgCl2), 2 �l of dNTP mix (10 mM), 1 �l of each primer (10 mM),
and 0.4 �l of Taq DNA polymerase (5 U �l�1). The temperature profiles to obtain the PCR products were
set by following the protocols of Álvarez-Campos et al. (64). Purification and sequencing were conducted
by an external service (Macrogen, Spain).

The morphology of the dominant polychaete species, all them belonging to the genus Haplosyllis,
was observed by using light and scanning electron microscopes following the procedures described by
Martin et al. (36). All relevant diagnostic morphological characteristics required for species identification
according to Lattig et al. (65) were recorded and then checked against the currently existing literature.

Verification of polychaete feeding behavior. From each sponge sample, 25 polychaete specimens
were carefully examined to ensure the absence of externally attached sponge spicules, dissolved in
boiling nitric acid to totally remove organic matter, and then examined with a light microscope (Leitz
Axioplan) to confirm the presence of host sponge spicules in the worm.

Bacterial 16S rRNA gene amplification, sequencing, and analyzing. PCR and high-speed multi-
plexed 16S rRNA gene Illumina MiSeq sequencing (next-generation sequencing [NGS]), were performed
following the methods of the genomic core facilities and the methods of MrDNA lab (Shallowater, TX,
USA). The variable V4 region of the bacterial 16S rRNA gene was amplified using the primers 564F
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(5=-AYTGGGYDTAAAGNG-3=) and 785R (5=-TACNVGGGTATCTAATCC-3=) (ca. 250 nucleotides [nt]) (66).
Raw rRNA gene sequences were processed separately using the UPARSE pipeline (67). A quality check
and dereplication were applied to our data set. Denoising (error correction) of amplicons was performed
by using the UNOISE pipeline (68). This algorithm removed chimeras, reads with sequencing errors, PhiX,
and low-complexity sequences due to Illumina artefacts, and generates ZOTUs (“zero-radius” operational
taxonomic units [OTUs]) with 100% identity sequences.

Taxonomic assignment was done with SINA v1.2.11 (69) using SILVA 128 database. Sequences with
low alignment quality (�75%) and sequences identified as mitochondria or chloroplasts were removed
from the analysis. To minimize biased effects for differences in sampling effort, the original bacterial
ZOTU table was rarefied at a minimum read threshold of 40,000, using QIIME (70). We normalized our
data set to the same read count, which means that all data on “bacterial abundance” refer to relative
abundance.

Bacterial community analyses of sponges and their associated polychaetes. Distance-based
multivariate analysis of the sponge and polychaete bacterial communities (at the ZOTU level) was
conducted using the vegan package in R (71). An nMDS (nonmetric multidimensional scaling) was used
to visualize the Bray-Curtis dissimilarity matrix. PERMANOVA (nonparametric permutation analysis of
variance), based on 999 permutations as implemented in adonis function, was used to test the effect of
host identity in the structuring of bacterial communities. We calculated the Bray-Curtis distances
between the following microbial communities: (i) polychaete species, (ii) sponge species, (iii) polychaetes
and their host sponge (specific), and (iv) polychaetes and nonhost sponges (nonspecific). Shannon
diversity (72) of the bacterial communities for each sponge and polychaete species was calculated in
vegan. The polychaete microbiomes reported here likely reflect the polychaete gut content bacteria more
than bacteria from other body regions. However, we were not able to separate the polychaete body
regions due to the small body size (�0.5 cm).

Core microbiomes (i.e., ZOTUs present in all species replicates) according to Turon et al. (29) were
used for comparing sponge microbiomes with those of their respective polychaete partners. The mean
relative abundance of bacterial orders was calculated for each sponge species and its associated
polychaete species, and the corresponding Venn diagrams of the shared core microbiomes were drawn
using eulerr package in R (73). Pie charts were used to represent the relative abundant ZOTUs (�0.1%)
in the core communities of each polychaete species and their relative abundance in the core microbiome
of the respective sponge hosts, categorized as highly relatively abundant (�1%), relatively abundant (0.1
to 1%), rare (�0.1%), and absent.

Comparisons with seawater bacterial communities were made and are presented as supplemental
material. An nMDS was used to visualize the Bray-Curtis dissimilarity matrix of each sponge species, its
associated polychaetes, and seawater. The shared microbiomes were represented by using Venn
diagrams. The mean relative abundances of shared bacteria between the three biotypes or between
polychaetes and seawater were represented as bar plots. Only ZOTUs with a relative abundance of
�0.05% in the polychaete microbiome were considered for these comparisons.

Data availability. The raw prokaryotic sequences analyzed during the current study are available in
the SRA archive under the project number PRJNA453898. Polychaete sequences are available under the
GenBank accession numbers MK532398 to MK532403 for the 16S rRNA gene and MK524577 to
MK524582 for the COI mitochondrial gene.
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