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ABSTRACT
Background: Diabetic kidney disease (DKD) and membranous nephropathy (MN) are the two
major causes of end-stage renal disease (ESRD). Increasing evidence has shown that intestinal
dysbiosis is associated with many diseases. The aim of this study was to explore the composition
of the gut microbiome in DKD and MN patients.
Methods: 16S rRNA gene sequencing was performed on 271 fecal samples (DKD ¼ 129 and MN
¼ 142), and taxonomic annotation of microbial composition and function was completed.
Results: We observed distinct microbial communities between the two groups, with MN samples
exhibiting more severe dysbiosis than DKD samples. Relative increases in genera producing
short-chain fatty acids (SCFAs) in DKD and a higher proportion of potential pathogens in MN
were the main contributors to the microbiome alterations in the two groups. Five-fold cross-val-
idation was performed on a random forest model, and four operational taxonomic unit (OTU)-
based microbial markers were selected to distinguish DKD from MN. The results showed 92.42%
accuracy in the training set and 94.52% accuracy in the testing set, indicating high potential for
these microbiome-based markers in separating MN from DKD. Overexpression of several amino
acid metabolic pathways, carbohydrate metabolism and lipid metabolism was found in DKD,
while interconversion of pentose/glucoronate and membrane transport in relation to ABC trans-
porters and the phosphotransferase system were increased in MN.
Conclusion: The composition of the gut microbiome appears to differ considerably between
patients with DKD and those with MN. Thus, microbiome-based markers could be used as an
alternative tool to distinguish DKD and MN.
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Introduction

As the common cause of primary or secondary glom-
erular disease worldwide, membranous nephropathy
(MN) and diabetic kidney disease (DKD) have similar
clinical manifestations characterized by nephrotic syn-
drome [1,2]. The incidence of DKD has become an epi-
demic in the past decade, mainly driven by the
increasing global prevalence of diabetes mellitus (DM)
[3]. Increasing evidence has revealed that DKD is the
leading cause (approximately 50%) of the progression
of chronic kidney disease (CKD) to end-stage renal dis-
ease (ESRD) worldwide [4], followed by MN at 30% [5].
Although clinical indicators relying on the excretion of
urinary albumin and the course of DM (including those

described in our previous study) have played a key role
in DKD identification and prognostic prediction, the
deficiency in early diagnosis and lack of specificity in
differential diagnosis of DKD still urgently need to be
remedied [6,7]. Renal biopsy cannot be performed fre-
quently in DKD cases due to its invasiveness, which
results in damage to patients [8]. Likewise, many cases
of MN (approximately 20%) cannot be identified,
as they are associated with negative responses to
phospholipase A2 receptor (PLA2R)- and thrombospon-
din type 1 domain-containing protein 7 A (THSD7A)-tar-
geted antigens [9–11]. Thus, this study attempts to
explore a new approach to DKD/MN identification that
offers broader coverage.
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Recent studies have reported gut-microbiome-asso-
ciated advances in the diagnosis, pathogenesis and
treatment of DM [12,13] and DKD [14–17]. For instance,
a gut-microbiota-targeted fiber diet could reduce insu-
lin resistance and improve hyperglycemic status in peo-
ple with diabetes [18,19]. In a mouse model of DKD, Li
and his colleagues demonstrated that the genus Blautia
had a protective effect on renal function progression
from microalbuminuria to macroalbuminuria [20].
Inhibition of the synthesis of phenol sulfate, produced
by fermentation of tyrosine in the gut, could lower the
level of urinary protein in mice with DKD [21]. Notably,
Tao’s study proposed the idea of gut-microbiome-
based biomarkers in differential diagnosis of DKD and
DM with high accuracy [22]. Although the role of the
gut microbiome in a DKD mouse model has been
studied, its function still needs to be verified in human
subjects. Furthermore, the role of the intestinal flora in
MN remains unclear.

Currently, kidney biopsy is the gold standard for dis-
tinguishing these two diseases. However, renal biopsy
cannot be performed on a substantial number of
patients due to contraindications, such as blood coagu-
lation disorders. In addition, a subset of patients are
unwilling to undergo kidney biopsy. In this circum-
stance, there is no effective way to provide diagnostic
evidence to differentiate DKD patients from
MN patients.

Our research group previously performed a prelimin-
ary exploration of microbial differences among 22
patients with diabetic nephropathy (DN) and 22
patients with MN (unpublished data). However, the
diagnostic potential for microbial markers to identify
DN from MN could not be confirmed due to a limited
sample size. Thus, in the current study, we character-
ized compositional and functional changes in the gut
microbiomes of 129 DKD patients and 142MN patients
and tried to establish an accurate discrimination index
for DKD and MN.

Material and methods

Study cohort

One hundred twenty-nine patients with clinically diag-
nosed DKD and 142 patients with pathologically diag-
nosed MN were recruited from the First Affiliated
Hospital of Zhengzhou University from January to
December 2019. In accordance with the Declaration of
Helsinki, our study was approved by the Institutional
Review Board of the First Affiliated Hospital of
Zhengzhou University (2019-KY-361). All participants
signed an informed consent before sample collection.

The diagnostic criteria of DKD were based on at least
two clinical indexes: more than 5 years history of dia-
betes and a ratio of urinary protein to creatinine
�30mg/g [23,24]. These patients also had diabetic ret-
inopathy. All the MN cases were confirmed by renal
biopsy [25]. Both groups excluded patients with gastro-
intestinal, tumor-associated diseases, viral hepatitis, car-
diovascular or central nervous system diseases and
other autoimmune diseases such as antineutrophil cyto-
plasmic antibody (ANCA)-associated vasculitis. Patients
treated with antibiotics, prebiotics or nephrotoxic drugs
within 6months or with a history of surgery were also
excluded. In addition, DKD patients with positive
expression of PLA2R antibody were excluded. The
biopsy results were assessed by two pathologists. All
the participants enrolled were randomly divided into a
discovery cohort and a validation cohort, as
described below.

Fecal sample collection and DNA extraction

At least 1 g of fresh, solid intestinal excretion was pro-
vided by individuals within 2 h, deposited into sterile
tubes and frozen at �80 �C for further analysis. Fecal
DNA was extracted as previously described [26]. Briefly,
790 mL sterile lysis buffer (containing 5% N-lauroyl
sarcosine-0.1mmol/l phosphate buffer [pH 8.0], 500 mL;
4mmol/L guanidine thiocyanate, 250 mL; 10% N-lauroyl
sarcosine, 40mL) was added to fecal samples with the
same mass; the mixture was incubated at 70 �C for 1 h
after vigorous vortexing; the samples were beaten for
10min with 1 g of glass beads to fully lyse the mem-
branes of the cells and nuclei; final bacterial DNA
extraction was completed using the E.Z.N.A. Stool DNA
Kit (Omega Bio-tek, Inc., GA) following the manuscript’s
protocols. The total obtained DNA was quality-con-
trolled for PCR amplification.

PCR amplification and 16S rRNA gene
sequencing analysis

The V3-V4 region of the extracted DNA was amplified
for DNA library construction and MiSeq sequencing.
The general primers were as follows: F1, 50- CCTAC
GGGNGGCWGCAG �30, and R2, 50-GACTACHVGGGTA
TCTAATCC-30. PCR was performed with the following
program: 3min of predenaturation at 95 �C; followed by
21 cycles of 0.5min denaturation at 94 �C, 0.5min
annealing at 58 �C, and 0.5min elongation at 72 �C; and
a final 5min extension at 72 �C. The purified PCR prod-
ucts were mixed for MiSeq sequencing by Shanghai
Mobio Biomedical Technology Co., Ltd. Sequences with
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zero mismatches were extracted for further quality fil-
tering. Sequences with overlap lower than 50 bp, error
rate of overlap higher than 0.1 and merged length
lower than 400 bp were discarded using USEARCH
8.0 [27].

OTU clustering and annotation

Quantity-controlled sequences obtained from the DKD
and MN samples were separately sorted by abundance
to identify representative sequences using the UPARSE
pipeline [28]. The gene sequences were clustered into
OTUs at 97% identity, and the phylogenetic affiliation
of each OTU was annotated with RDP Classifier [29]
against the Silva (SSU123)16S rRNA database [30] with a
70% confidence threshold.

Bioinformatic and statistical analysis

We used rarefaction curves and species accumulation
curves to ensure that the sample size or sequencing
depth had reached saturation in our study. Bacterial
a-diversity in the discovery cohort was shown by the
Ace/Chao-based richness index and Shannon/Simpson-
based diversity index. Principal coordinate analysis
(PCoA) and nonmetric multidimensional scaling (NMDS)
plots were generated to visualize the weighted UniFrac
distances using Quantitative Insights into Microbial
Ecology (QIIME) [31]. Corresponding statistical signifi-
cance was determined by analysis of similarities
(ANOSIM) and Adonis. Compositional differences
between the two groups from the phylum to genus
level were tested with a nonparametric Mann-Whitney
U test. Variation at the taxonomic level was determined
by Linear Discriminant Analysis (LDA) Effect Size (LEfSe)
(LDA score >2.0).

The Wilcoxon rank-sum test was used to identify
markedly different OTUs between DKD and MN, based
on which 397 OTUs (p< 0.05) were incorporated into a
random forest model to evaluate importance. Five trials
with fivefold cross-validation were used to identify opti-
mal combinations of microbial markers using 45 key
OTU-abundance profiles from the discovery cohort
(OTU importance >0.001). As a result, 96 DKD and
98MN samples were randomly divided into the training
set, and the remaining participants were incorporated
into the testing set. Based on this diagnostic model, the
possibility of disease (POD) of each sample was calcu-
lated to construct a receiver operating characteristic
curve (ROC) for the two sets. Identification markers with
an area under the ROC curve (AUC) greater than 0.7
were considered successful.

The potential bacterial metabolism in the two
groups was predicted with Phylogenetic Investigation
of Communities by Reconstruction of Unobserved
States (PICRUSt) [32]. Significant differences in Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathways
between DKD and MN were evaluated with LEfSe (LDA
> 2.0 and P value < 0.05). All of the above analyses
were completed in R (<seurld>http://www.R-project.
org/</seurld>).

Results

Study cohort

A total of 129 patients with clinically diagnosed DKD
and 142 patients with biopsy-proven MN were enrolled
and incorporated into the discovery cohort (Figure 1).
16S rRNA gene sequencing data were obtained to char-
acterize compositional and functional changes in the
gut microbiome in both groups. Microbial markers with
predictive power for DKD and MN were screened by a
combination of a random forest model and fivefold
cross-validation. POD-based ROC curves were com-
pleted in the training set (96 DKD and 98MN samples)
and testing set (33 DKD and 44MN samples) to evalu-
ate the diagnostic potential of the markers. A statistical
analysis of the participants’ clinical data is shown in
Table S1. Comparing the baseline characteristics of the
two groups, we found that the eGFR in the DKD group
was higher than that in the MN group (p< 0.001).
Meanwhile, age, Cr, Alb, T/Cr, and T-CHO were lower in
the DKD group (p< 0.05).

Increased microbial diversity in the gut of
DKD patients

The rarefaction curve indicated that the sequencing
depth of each sample approached the expected level,
with an average of 30399 reads (maximum: 61603; min-
imum: 11285) (Figure S1A and Table S2). As shown by
the rank-abundance/species-accumulation curves, esti-
mated OTU richness and evenness were lower in DKD
than in MN (Figure S1B, C). To visualize the structural
diversity of the gut microbiome in the discovery group,
we used PCoA/NMDS plots based on the unweighted
UniFrac distances. The corresponding statistical signifi-
cance of the beta diversity was measured separately by
Adonis and ANOSIM. The results showed a significant
difference in the gut microbiome in both groups
(Adonis for PCoA: R2 ¼ 0.06052, ANOSIM for NMDS:
R¼ 0.2205, p< 0.001; Figure 2(A) and Figure S2A–C).
Fewer total OTUs in the DKD group than in the MN
group were observed in the Venn diagram (Figure 2(B)):
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Figure 1. Study design. DKD, diabetic kidney disease; MN, membranous nephropathy; OTUs, operational taxonomic units.

Figure 2. Microbial diversity. (A) PCoA analysis of the unweighted UniFrac distances revealed clustering of patients with DKD or
MN (Adonis analysis: R2¼ 0.06052, p¼ 0.001). (B) Venn diagram showing a considerable overlap of observed OTUs in both
groups. The a diversity between the MN (n¼ 202) and DKD (n¼ 101) samples was estimated by (C) the Chao richness index, (D)
the Shannon diversity index, and (E) the average number of observed OTUs. PCoA, principal coordinate analysis.
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202 of 1280 OTUs were unique to MN, and 101 of 1179
OTUs were unique to DKD. The bacterial diversity in
both groups was further estimated by the Ace/Chao-
based richness index, Shannon diversity index and OTU
index (P values ¼ 0.0101/0.0077, 0.0492 and 0.0047,
respectively; Figure 2(C–D) and Figure S2D). That is, the
bacterial richness and diversity of DKD were signifi-
cantly higher than those of MN.

Altered microbial composition in DKD and MN

The microbial profile of each sample at the phylum and
genus levels is shown in Figure S3. As shown in Figure
3(A), the phylum-level microbial comparison identified
eight differentially enriched gut microbiome phyla
between the two groups, among which Proteobacteria
was higher in MN (24.24% vs. 18.13%), Bacteroidetes

Figure 3. Variations in microbial profiles in the gut of DKD or MN patients. Differentially abundant microbial taxa at the phylum
level (A) or genus level (B) by disease status are shown. At the phylum level, a Bacteroidetes-dominated microbial distribution
was more common in DKD, and a Proteobacteria-dominated microbial distribution was more common in MN. The relative abun-
dances of 33 among a total of 53 genera increased in DKD, and the remaining 20 were more abundant in MN. (C) LEfSe analysis
based on the microbial taxonomic distributions of both groups (LDA > 2.0). LDA scores were logarithm-transformed. LEfSe, linear
discriminant analysis (LDA) effect size.
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was higher in DKD (16.88% vs. 7.82%), and the ratio of
Firmicutes/Bacteroidetes was lower in DKD (3.31 vs.
7.84). The relative abundances of 53 genera differed
according to the Wilcoxon rank-sum test. Of the genera
enriched in DKD patients, Peptostreptococcus was classi-
fied as a potential pathogen, while 32 other genera rep-
resented probiotics. Conversely, the results in MN
showed a higher abundance of pathobionts such as
Peptostreptococcaceae_incertae_sedis, Clostridium_ sen-
su_stricto_1, Streptococcus, Veillonella, Haemophilus and
others, as well as several beneficial bacteria such as
Bifidobacterium, Lactococcus and Faecalibacterium
(Figure 3(B), Table S3). Microbial variation at the class,
order, and family levels is shown in Figure S4.

To further validate these results, a LEfSe analysis of
the bacterial community was performed on the
sequencing data obtained from the discovery cohort.
We confirmed that 93 gut microbiome taxa showed dif-
ferential abundances; 39 of these taxa were abundant

in DKD, and 53 were abundant in MN. Again, enrich-
ment of various pathogens was observed in MN.

OTU profiling of DKD and MN samples

We further performed OTU profiling of the DKD and
MN samples to investigate potential microbiome-based
markers that could best distinguish DKD from MN. The
relative abundances of the top 50 OTUs in each sample
are presented in Figure S5 and showed no significant
difference between DKD and MN. Next, significantly dif-
ferent OTUs (with a P value < 0.05) were incorporated
into the random forest model, which was used to iden-
tify key OTUs with the Wilcoxon rank-sum test. As a
result, 44 key OTUs were selected and showed a sym-
metric distribution between DKD and MN (Figure 4 (A)).
Finally, after five trials of fivefold cross-validation were
performed on the selected OTUs, the combination of
microbiome-based markers with the fewest OTUs

Figure 4. Identification of important microbial signatures for diagnostic model establishment. As shown in panel (A), the distribu-
tions of 45 key OTUs selected by the random forest model were strikingly different in the two disease groups. (B) Of these, four
microbial OTUs were designated as putative markers to separate DKD from MN through fivefold cross-validation. OTUs belonging
to g_Sphingomonas and g_Granulicatella were more enriched in MN, while OTUs belonging to g_Blautia and g_Akkermansia were
more enriched in the DKD group. Notably, the distributions of these 4 OTUs in 22 samples (18 DKD and 4MN) were excluded
because they were undetectable.
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(n¼ 4) and the minimum CV error rate were identified.
The distribution of these 4 OTUs in each sample is
shown in Figure 4(B). We noticed that two OTUs
belonging to opportunistic pathogens,
g_Sphingomonas and g_Granulicatella, were enriched in
the MN group, while two other OTUs classified as bene-
ficial bacteria, g_Blautia and g_Akkermansia, were rela-
tively abundant in DKD samples.

Evaluation of the diagnostic accuracy of the
microbial markers

To assess the diagnostic potential of the microbial bio-
markers selected above, an ROC curve was constructed
to distinguish DKD from MN. As mentioned above, the
relative importance of the four microbiome-based
markers was assigned by a random forest model
(Figure 5(A)). We found that OTU900 could significantly
improve predictive performance and had the highest
importance (stability index: mean decrease of Gini
>40.0, Figure S6). Using these 4 OTUs as biomarkers to
separate 96 DKD samples from 98MN samples, the AUC
was 92.42% (95% confidence interval: 88.42%–96.42%;
Figure 5(B)). Correspondingly, the POD index for MN
was significantly higher than that for DKD in the train-
ing set (Figure S6B). Consistent with these results, 33
DKD and 44MN samples were randomly partitioned
into a testing set to validate the diagnostic potential of
the markers for DKD and MN. The average POD value in
patients with MN was significantly higher than that in
patients with DKD (Figure S6C). The AUC in the testing
set was 94.52%, and the 95% confidence interval (CI)
was 89.74%�99.31% (Figure 5(C)). All these results indi-
cated that microbiome-associated markers could be
used as an alternative tool for distinguishing DKD from
MN with high accuracy.

Altered microbial functions in DKD and MN

We used LEfSe analysis to identify significant functional
differences between DKD and MN using KEGG catego-
ries. PICRUSt identified 45 differentially abundant meta-
bolic pathways between all 129 DKD and 142MN
samples (all LDA scores > 2.0, p< 0.05). Of these, we
found overexpression of membrane transport involving
ABC transporters and the phosphotransferase system
(PTS) in the microbiome of MN compared to DKD; these
pathways are related to the transportation of sugar and
vitamin B12. Pentose and glucoronate interconversion
were also highly enriched in MN. Furthermore, func-
tional modules related to the metabolism of amino
acids, such as alanine, aspartate, glutamate and histi-
dine, were increased in the DKD microbiome.
Additionally, greater enrichment of carbohydrate
metabolism (amino sugar and nucleotide sugar metab-
olism), energy metabolism (oxidative phosphorylation)
and lipid metabolism pathways were observed in DKD
versus MN (Figure 6(A,B), Table S4).

Discussion

Here, we applied the 16S rRNA sequencing technique
to a large cohort consisting of 129 DKD and 142MN
samples to explore host-microbial interactions.
Microbial analysis revealed that dysbiosis of the gut
microbiome played a key role in the pathogenesis of
DKD or MN. These significant differences in gut
microbes could provide solid evidence for the classifica-
tion of DKD and MN, exemplifying the concept of
‘microbial markers’ [22,33]. This study is the first to link
the gut microbiome with DKD and MN, and here, we
first attempt to use a noninvasive tool based on intes-
tinal flora to distinguish DKD from MN.

Figure 5. Differential predictive power of the microbial markers. (A) The relative importance of the four predictive markers was
negatively correlated with the value of the mean decrease in accuracy. The ROC curves based on the microbial markers show the
discrimination rates for DKD and MN in both the training (B) and testing sets (C). The AUC, 95% CI and P value are listed in the
graph. ROC, receiver operating characteristic; AUC, area under the curve; CI, confidence interval.
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Increasing evidence has suggested that gut micro-
biota composition and metabolism could be used as a
diagnostic tool for diabetes [13], cardiovascular diseases
[34] and other diseases [35]. For instance, Karlsson FH
and his teammates developed a mathematical model
based on microbial shotgun sequencing data to diag-
nose type-2 diabetes mellitus (T2DM) in European
women and suggested a regional limitation of this
model in the Chinese population [36]. Although a
causal role of the gut microbiome in relation to micro-
bial composition or metabolism in patients with ESRD
or CKD has been reported many times [37], predictive
tools based on genomic profiles have not been pro-
vided. In a previous study, DKD was reported as the
leading cause of death in patients with ESRD, followed
by MN, with a 40% contribution to ESRD-related mortal-
ity [4,5]. Moreover, the limitation of proteinuria in the
early diagnosis of DKD [6,7] and the lack of options for
PLA2R-negative MN identification need to be addressed
further [11]. Undoubtedly, the analysis of the intestinal-
microbiota in this study provides new insight into the
identification and classification of DKD and MN. Here,

we provided solid evidence that microbial markers
based on 4 OTUs could separate MN samples from DKD
samples with a high accuracy of 92.42%, strongly sup-
ported by the 94.52% AUC in the interval valid-
ation cohort.

We found that bacterial alpha diversity was
increased in patients with MN compared to those with
DKD. Either the relative increase in beneficial bacteria
producing SCFAs in the DKD group or the relative
depletion of such probiotics in MN could explain this
alteration. For instance, patients with DKD exhibited
significantly higher proportions of the genera
Bifidobacterium, Parabacteroides and Butyricimonas
compared with MN patients (Table S3). Recent studies
have reported that the gut microbiome could promote
disease development, which was characterized by
reduced diversity [17,38–40]. In a metagenomewide
association study of patients with diabetes, microbial
dysbiosis could be summarized as a depletion of some
butyrate-producing bacteria [12]. Analogous to the
results in diabetes, the greater bacterial richness or
diversity observed in DKD was likely to suggest a

Figure 6. Prediction of the metabolic potential of the gut microbiome in DKD or MN. (A) PICRUSt revealed the taxonomic distri-
bution of metabolic functions between DKD and MN. (B) A histogram of LDA scores showed 45 functional changes between DKD
and MN. Of these, 34 were overexpressed in DKD, and 11 were overexpressed in MN. LDA, linear discriminant analysis.

RENAL FAILURE 1107

https://doi.org/10.1080/0886022X.2020.1837869


greater reduction of beneficial bacteria in MN rather
than an increase in DKD. Additionally, SCFAs provide an
energy source for intestinal epithelial cells [41], a
decrease in which could promote intestinal mucosal
injury, thereby providing a mechanism for the involve-
ment of bacteria in the initiation of DKD/MN [42–44].
The proportions of opportunistic pathogens such as
Peptostreptococcaceae_incertae_sedis, Clostridium_ sen-
su_stricto_1, Streptococcus, Veillonella, Haemophilus and
others were increased in MN. These bacteria, accompa-
nied by their production of lipopolysaccharides (LPS),
could be translocated to the bloodstream through the
impaired gut, further activating the NF-jB pathway,
triggering the release of proinflammatory factors (e.g.
TNF, IL-1, IL-6), and thereby promoting the develop-
ment of inflammatory diseases [27,42,45]. In summary,
a depletion of SCFA-producing genera and an increase
in pathobionts suggested more severe immune impair-
ment in patients with MN. Notably, compensatory
increases in mucin-degrading bacteria such as
Akkermansia [46–48] and beneficial bacteria
(Lactococcus, Faecalibacterium and Pseudobutyrivibrio) in
DKD were also observed in our study.

There was no significant difference in the abun-
dance of the phylum Firmicutes between the groups,
while the relative abundances of Proteobacteria and
Bacteroidetes were increased in MN and DKD, respect-
ively. Firmicutes plays a key role in SCFA production
and could be considered a therapeutic target to
inhibit the development of T2DM [18,49].
Proteobacteria and Bacteroidetes, major bacterial phyla
that produce LPS, were enriched, indicating an
unhealthy host status. The ratio of Firmicutes/
Bacteroidetes (F/B) was also calculated and compared
between the two groups (DKD vs. MN: 3.31 vs. 7.84).
Research has found that a typical F/B ratio for adults
is 10.9 [50]. In our study, the F/B ratios in both DKD
and MN were abnormal, indicating inferior
host health.

The potential functions of the gut microbiome in
DKD/MN were predicted using the KEGG database. We
found an increase in the aerobic metabolism module,
containing amino acid metabolism (alanine, aspartate
and glutamate) and the citrate cycle; this result indi-
cated the potential of the microbial environment to
shift toward more aerotolerant conditions (Table S4).
We also observed overexpression of histidine metabol-
ism in DKD; its product histamine might be involved in
mediating the inflammatory response [51]. ABC trans-
porters mediate the transport of hydrophilic com-
pounds and promote the growth of various bacteria,
such as Mycobacterium tuberculosis [52]. The PTS is

involved in the phosphorylation of sugars [53], and the
interconversion of pentose and glucoronate provides
substrates for the synthesis of nucleic acids and main-
tains the reducing state of glutathione. Higher enrich-
ment of these three KEGG pathways was observed in
MN patients, and their roles in MN development remain
to be determined.

Overall, we observed significant differences in micro-
bial composition and function in the gut of DKD or MN
patients. Particularly, microbial profiles based on only
four OTUs could be used to construct a diagnostic
model with high accuracy, which might be used as a
noninvasive option to distinguish DKD from MN. This
project was a new attempt to identify different diseases
on the basis of the gut microbiome. It also provided
the possibility to distinguish different nephropathies
using gut microbial biomarkers. Further studies should
evaluate the effects of fecal metabolites on different
disease statuses and assess the host response to micro-
biota-targeted therapies, with the hope of delaying dis-
ease progression.
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