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Competition is ubiquitous in perception. For example, items in the visual field compete for processing resources,
and attention controls their priority (biased competition). The inevitable ambiguity in the interpretation of sensory
signals yields another form of competition: distinct perceptual interpretations compete for access to awareness.
Rivalry, where two equally likely percepts compete for dominance, explicates the latter form of competition. Building
upon the similarity between attention and rivalry, we propose to model rivalry by a generic competitive circuit that is
widely used in the attention literature—a winner-take-all (WTA) network. Specifically, we show that a network of two
coupled WTA circuits replicates three common hallmarks of rivalry: the distribution of dominance durations, their
dependence on input strength (“Levelt’s propositions”), and the effects of stimulus removal (blanking). This model
introduces a form of memory by forming discrete states and explains experimental data better than competitive
models of rivalry without memory. This result supports the crucial role of memory in rivalry specifically and in
competitive processes in general. Our approach unifies the seemingly distinct phenomena of rivalry, memory, and
attention in a single model with competition as the common underlying principle.
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Introduction

When confronted with complex and potentially am-
biguous input, human sensory systems have to deal
with two forms of competition. First, different items
in the visual field compete for processing resources;
second, different possible interpretations of the sen-
sory signal compete for perceptual awareness.

Attention as biased competition
The first form of competition is typically resolved
by attention, enhancing one stimulus at the expense
of the other.1 This is most evident in the framework
of biased competition,2 where attention corresponds
to resolving competition by setting biases (i.e., con-
trolling priority) according to task demands.3 Bi-
ased competition has become one of the most

influential attention models4,5 and is supported by
ample physiological evidence: when two stimuli are
brought into a cell’s receptive field (RF), of which
one alone would drive the cell and the other would
not, the cell’s response to the combined stimulus
falls in-between the two individual responses, as a
consequence of competition. When, however, one
stimulus is attended, the neuron’s response quickly
behaves as if only the attended stimulus would be
present in the RF; that is, competition is biased in
favor of the attended stimulus.6

Attention and memory
Attention and visual working memory are tightly
linked.7,8 For example, items held in working mem-
ory can interfere with attentional selection and
vice versa.9–12 Consistent with such evidence, an
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early formalization of the biased competition idea,
Bundesen’s theory of visual attention13 (TVA) and
its later neural implementation (neural theory of
visual attention, NTVA),14 describes attention as
a race of competing items for visual short-term
memory. TVA formalizes the interplay of Broad-
bent’s two mechanisms of attention:15 filtering, the
mechanism for the selection of items, and pigeon-
holing, the mechanism to allocate evidence to cat-
egories. Since filtering represents the probability of
an item to be selected, while pigeonholing represents
the probability of a category to be selected, their
complementary functions parallel the aforemen-
tioned two forms of competition: filtering resolves
competition between items; pigeonholing resolves
competition between different categories, including
different perceptual interpretations. NTVA14 pro-
vides a neuronal implementation of these mech-
anisms that is consistent with physiological data.
In NTVA, filtering and pigeonholing are related to
specific neural mechanisms, namely the allocation
of RFs to select elements and of gain control to select
categories. In an extension of the NTVA, a Poisson
counter model is used to explain how during visual
identification mutually confusable stimuli can be
resolved.16 It implies that while the stimulus is ana-
lyzed, temporary categorizations are made at a con-
stant Poisson rate. The response is then based on the
category that was chosen most frequently. Thereby,
the Poisson counter model provides a mechanism
by which the interplay of attention and memory can
resolve competition between distinct perceptual in-
terpretations of a visual stimulus.

Rivalry as a model for competition
The second form of competition, the competi-
tion of perceptual interpretations for awareness,
is unavoidable during natural vision. Because of
the inherent ambiguity when mapping the out-
side world on the receptive surface,17 prior knowl-
edge is needed to infer the most likely interpreta-
tion. Such prior knowledge can manifest itself in
terms of fixed rules about object structure—with
Gestalt laws as a prime example18—or formalized
in terms of Bayesian prior distributions,19–23 which
may be flexibly adapted to environmental and mo-
tor constraints.24 On the basis of sensory input
alone, many perceptual alternatives may be equally
likely, but the combination of this likelihood with
the prior assumptions allow the sensory system to

arrive at a unique interpretation of the world. If
no sufficiently strong prior information is available
to resolve the ambiguity in the input, the system
will nonetheless perceive one unique interpretation
at any point in time, but the dominant interpreta-
tion alternates over time. This phenomenon is re-
ferred to as rivalry, which can be induced either
through bi- or multistable figures, such as geo-
metrical figures that alternate in three-dimensional
interpretation,25,26 figure-ground reversals,27,28 or
overlaid patterns that alternate between compound
and constituents,29,30 or as “binocular rivalry,”
when two sufficiently distinct patterns are pre-
sented to either eye31 (for review, see Ref. 32).
Most forms of rivalry have several properties in
common.33,34 The times that a certain precept dom-
inates are distributed with a leptokurtic (heavy-
tailed) distribution35 and respond in a well-defined
manner to changes in input strength (Levelt’s
propositions36).

The role of memory in rivalry
If the stimulus is removed (“blanked”) for a consid-
erable duration (>500 ms) during a rivalry task, the
probability that the same perceptual interpretation
reemerges after the blank increases substantially.37,38

Thus, blanking stabilizes the percept. In contrast,
for short blank durations (<500 ms), the percept
tends to destabilize and thus the alternative percept
is more likely to emerge after the blank than expected
by chance.37 The time course of the blanking effect
is reminiscent of a recently proposed “third stage” in
visual working memory encoding that protects an
item from deletion when its processing takes longer
than the completion of a competition epoch,39 and
it is tempting to speculate that the stabilization of the
blanked percept is a consequence of such protective
maintenance.

Stabilization of the percept across extended peri-
ods of blanking indicates that a form of memory—in
this case, the dominant percept before onset of the
blank period—plays a role in rivalry. Additional ev-
idence for the role of memory in rivalry comes from
experiments with tri-stable rivalry (i.e., a stimulus
with three possible percepts). In these experiments,
the sequence of states is not Markovian (i.e., pre-
vious percepts influence processing of the current
perceptual state40). For brief intermittent presenta-
tions, the dominant percept is location specific: at a
given location of the visual field, the same percept is
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Figure 1. Network models: the three models tested in this study. (A) Model 1: a single WTA circuit; each excitatory unit is
recurrently coupled to itself with weight � and to the inhibitory unit with weight �2. In turn, the inhibitory unit is coupled to both
excitatory units with weight �1, but not to itself. Input is applied to both excitatory units, and the perceptual states are recorded
directly from these units. (B) Model 2: identical to model 1, except that both excitatory units are adapting (see Methods in the
Supporting Information for details). (C) Model 3: two WTA circuits, as used in model 1, are coupled by connecting their excitatory
units across circuits; all connections between the circuits have the same weight �, but feedback connections cross between the two
sets of neurons representing different states. Input is applied to map I, and percepts are recorded from map P.

dominant at onset after blanking throughout.41 Al-
though these biases in onset rivalry are highly vari-
able between observers, they remain stable within
the same individual over weeks. This suggests
involvement of long-term memory. Taken together,
blanking, the non-Markovian property of tri-stable
rivalry, and the observer-specific location bias of
onset rivalry show that rivalry is influenced by a
number of memory processes that operate on a
variety of time scales.

A common framework for rivalry and attention
as competitive processes—winner-take-all
circuits
In neuronal circuits, competition is frequently im-
plemented by winner-take-all (WTA) circuits. WTA
behavior emerges if a population of excitatory neu-
rons is recurrently connected to itself and shares
a common inhibitory signal42,43 with sufficiently
high gain. Such recurrent connectivity is a building
block of neocortical circuitry44–46 and is readily im-
plemented in neuromorphic hardware.47 WTA net-
works can model arbitrary state machines,48 states
can remain in the absence of input, and state tran-
sitions can be triggered by external input given the
current state.

WTA circuits have frequently been used in models
of attention. The output stage of the saliency map,49

which must select a winning location, is typically im-
plemented as a WTA circuit. More deeply, attention
models can be built by cascading WTA circuits50 or
by implementing WTA mechanisms between visual
filters.51 In a related architecture, Hahnloser et al.52

argue that a recurrently coupled map alone can-
not implement attention to a region of the map, but

rather propose an excitatory reciprocal coupling be-
tween the map and a “pointer” map, whose neurons
are more broadly tuned in space.

Here, we propose to exploit the structural similar-
ity between rivalry and attention as forms of compe-
tition and present a WTA model of rivalry. We start
with a generic WTA model rooted in neocortical
physiology43 and test the extent to which it replicates
the dominance distributions and Levelt’s proposi-
tions as main hallmarks of rivalry. We then demon-
strate that the required memory state emerges from
the network’s dynamics. The model predicts interac-
tions between blanking duration and input strength
that we subsequently test experimentally.

Materials and methods

Modeling
Our aim is to construct a comprehensive model of
rivalry that replicates the three key features com-
mon to all rivalry processes: leptokurtic dominance
distributions, Levelt’s propositions, and the role of
memory, in particular for the phenomena related
to stimulus blanking. We propose that a network
consisting of two coupled WTA circuits exhibits all
these features. For comparison, we also analyze rep-
resentatives of other modeling approaches that have
been proposed for rivalry by embedding them in the
WTA framework.

Specifically, we here compare three models of ri-
valry (Fig. 1), which serve as prototypes for broad
classes of rivalry models: first, networks of self-
exciting units with mutual inhibition (model 1);
second, the same network augmented with an adap-
tation mechanism in the excitatory units (model 2);
third, our new approach, two coupled networks that
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implicitly form a memory state (model 3). In this
section, the models are outlined; for a detailed math-
ematical description, implementation details, and
parameter choices (Table S1), the reader is referred
to the methods described in the Supporting Infor-
mation.

The fundamental circuit for all three cases is a
single WTA network. This network consists of two
excitatory units and one inhibitory unit. Each exci-
tatory unit excites itself and projects to a global in-
hibitory unit, which, in turn, projects back to both
excitatory units. Units are mean-rate approxima-
tions of the activity of a group of individual neurons,
and activity is modeled with respect to average rates
rather than individual spike times. Since there is no
explicit mapping from the time units in the sim-
ulation to real time, we consistently use a unit of
1000 steps of the Euler integration (see Methods in
the Supporting Information) as the time unit when
reporting modeling data and parameters. Simula-
tions were performed in Matlab (The MathWorks,
Natick, MA, USA) on the basis of the code available
at http://www.ini.uzh.ch/�urut/DFAWTA48; each
condition (combination of input currents) was
simulated five times with different random noise
patterns.

Model 1: mutual inhibition. For model 1, the
fundamental WTA circuit is considered in isola-
tion (Fig. 1A). Even though the inhibitory unit is
modeled explicitly, this network corresponds to a
network with self-exciting units that mutually in-
hibit each other,53 except for the delayed inhibition
caused by the inhibitory unit. To probe the model,
input currents with Gaussian noise are applied to
both excitatory units. The value of the input cur-
rent represents the sensory input corresponding to
one of the possible percepts. The activity level of the
excitatory units determines which percept is cur-
rently dominant. The perception belonging to one
unit is considered dominant whenever the activity
of the respective unit exceeds double the activity
of the other unit. The remainder constitute transi-
tion periods, which were not considered further in
the present context, neither experimentally nor in
modeling.

Model 2: mutual inhibition with adaptation.
Many models of rivalry assume a form of “fatigue”
or habituation; that is, if a percept has been domi-
nant for some time, its representation fatigues and

thus the other percept becomes dominant. On a
neuronal level, the equivalent of such fatigue is neu-
ronal adaptation. In model 2, we implement adap-
tation by adding an additional term to each excita-
tory unit (Fig. 1B). Otherwise, model 2 is identical
to model 1. This results in a model of mutual in-
hibition with adaption, akin to the model used in
Ref. 54.

Model 3: two coupled circuits, implicit memory
state. When the external input is removed from a
single WTA network, its activity relaxes back to zero
and it therefore has no memory. As this is in conflict
with experimental evidence, in particular with the
increased survival probability of a percept after pro-
longed stimulus removal (blanking), we consider a
third model that implicitly implements a memory
state in its dynamics. To do so, we couple two of the
WTA circuits as used in model 1 (Fig. 1C). One of the
circuits (I, with excitatory units i1 and i2) represents
the input layer, while the other (P, with excitatory
units p1 and p2) represents the perception layer,
from which activity is “recorded.” Importantly, the
feedforward connection from the units of the in-
put circuit (i1 and i2) project to the corresponding
perception units (p1 and p2, respectively), while
the feedback projections map onto the input corre-
sponding to the alternate percept (p2 to i1 and p1 to
i2). This network can maintain its current winner
(state), even if the external input is removed.43 Such
persistent activity that is maintained in the absence
of external input endows the network with a mem-
ory, because the state active during the removal of
external input is maintained (see Ref. 48 for details).
In the context of rivalry, this makes the percept after
the blank period has ended conditional on the state
(i.e., the percept) before stimulus removal.

Model input; simulation of blanking. In typical
simulation runs, constant input with Gaussian noise
is supplied to both input neurons (model 1/2: u1
and u2; model 3: i1 and i2) of the network. Stimulus
strength is set by the mean current applied. For sim-
ulating stimulus removal and reappearance (blank-
ing), we in addition model a sensory neuron that is
located upstream (i.e., lower in the visual hierarchy)
to the rivalry circuit. This is done by modulating
the injected current accordingly: at stimulus onset,
the current transiently rises to thrice the sustained
value, followed by a rapid exponential decay to the
sustained value (� function t/� � × exp(1 − t/� �),
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with time constant � � = 0.025). Stimulus offset is
modeled by the current decaying to baseline level
(activity of 0.1) in the shape of a hyperbolic tangent
(half life: 0.080). Stimulus durations were fixed to
1.0 and blank duration was varied between 0.1 and
2.0 in steps of 0.1 (all times in units of simulated
time as defined above).

Analysis of modeling data. To mimic an instruc-
tion in which observers report exclusive dominance,
we define a percept to be dominant, whenever the re-
spective unit’s activity exceeds the other unit’s activ-
ity by at least a factor of 2. Periods in which none of
the percepts are dominant according to this defini-
tion are defined as transition periods. We define the
dominance duration of a percept as the time from its
onset to its offset irrespective of whether the same or
another percept follows. For further analysis, we ex-
cluded every first and last dominance duration since
these are not restricted by the network dynamics but
by onset and offset of the simulation. Since domi-
nance durations within a trial cannot be expected
to follow a Gaussian distribution, we quantify the
distribution of dominance durations in each condi-
tion by the distribution’s median. For comparison to
the experimental data and among models, we nor-
malize all dominance durations by the condition
with highest input to both eyes. For quantification
of the dominance of one state, which is indepen-
dent of the respective median dominance duration,
all dominance durations of this percept obtained
in one simulation period were added. Denoting
the resulting sums for the two percepts as D1 and
D2, respectively, we define the relative dominance
as:

Drel = D2 − D1

D2 + D1
. (1)

Analysis of blanking. To quantify the effect of
blanking, we define a percept’s survival probabil-
ity as the number of blanking intervals for which
the dominant percept before and after the blank
was identical divided by the total number of blanks.
To closely match our experimental instructions and
accounting for human reaction time, the dominant
percept for each presentation interval is measured
0.1 time units after the onset of the respective pre-
sentation. Similarly, we define a switch probability
across blanks as the number of blanking intervals
for which the dominant percept before and after the

blank was different. Since, occasionally, observers
(and models) do not report a dominant percept
during a presentation interval, survival probability
and switch probability do not necessarily add up to
1 and the difference of their sum and 1 quantifies
such failures to report.

Unlike in behavior, the recorded units signal a
percept even during the blanking period. Such “hal-
lucinations” can easily be suppressed by an addi-
tional downstream gating mechanism that allows
a percept only to get to awareness, if any input is
present. Here, we do not model this explicitly, but
merely ignore the period of the blank as such for
further analysis.

Behavioral experiments
Observers. Five observers (age: 21–26 years; four
female) participated in experiment 1; five (age: 24–
26 years, three female) participated in experiment 2.
Two observers participated in both experiments.
All had normal or corrected-to-normal vision and
were naive to the purpose of this study. All gave
written consent before the experiment. The experi-
ments conformed with the Declaration of Helsinki
and were approved by the local ethics committee
(Ethikkommission FB04).

Stimuli. Each eye was presented one sinusoidal
grating (3.4 cycles per degree; mean luminance =
25.1 cd/m2), oriented +45° in one eye and −45°
in the other. Gratings had full contrast in a circular
patch of 0.3° radius outside of which contrast fell off
with a Gaussian profile (SD = 0.11°). To facilitate
fusion, the patch was surrounded by an alignment
annulus (radius = 1°, width = 0.06°) of white noise
of the same mean luminance.

The contrasts of the gratings were adjusted to each
individual’s detection threshold, which was defined
as the 75% correct level as identified by a 2AFC
QUEST55 procedure. For none of our observers
was there any significant difference in threshold be-
tween their eyes. Similar to the methods described
in Ref. 56, the lowest contrast used was 0.75 log10

above this threshold; the highest contrast was 100%
Michelson contrast, and the four contrast levels in
between were logarithmically spaced. This defines
six contrast levels in each individual, which here-
after are referred to as contrast 1 to contrast 6.

Apparatus. Stimuli were presented separately to
each eye through a stereoscope on two 21-in.
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Samsung Syncmaster CRT screens at a viewing
distance of 30 cm by an Optiplex Dell computer
running Matlab with a Psychophysics toolbox ex-
tension (http://psychtoolbox.org57,58). Each screen
had a resolution of 1280 × 1024 pixels, a refresh
rate of 85 Hz, and was � corrected to achieve the
same linear mapping of pixel values to stimulus lu-
minance in both eyes. Eye position was monitored
throughout the experiment by an Eyelink-1000 (SR
Research, Osgoode, ON, Canada) eye-tracking de-
vice, and the device was calibrated at the onset of
each trial; although in the context of this study, eye-
tracking data are not considered further.

Procedure: experiment 1. After identifying the
individual’s detection threshold, observers per-
formed 72 2-min experimental trials, chunked into
12 blocks of 6 trials. For these trials, each of the six
contrast levels was combined with any other level
and this was done for both possible assignments of
grating orientation to eye (72 = 6 × 6 × 2). Order
of these trials was random. To control for changes
in overall behavior and for normalization purposes,
between experimental trials 3 and 4 of each block,
an additional control trial that used full-contrast
stimuli in each eye (contrast level 6) was inserted.
For these 12 control trials, we did not observe any
significant change for any individual in any measure
of interest. To have an equal amount of experimen-
tal trials in each condition, in the main analysis
control trials were used only for normalization of
dominance durations and not analyzed otherwise.

Participants reported their current percept by
pressing and holding one of two buttons on a
game pad. They were instructed to fixate the grat-
ings throughout an experimental session and only
report a percept when it appeared clearly domi-
nant and refrain from any button press, when both
percepts appeared about equal.

Procedure: experiment 2. In the second exper-
iment, each trial started with 90 s of continuous
presentation of the rivalrous stimuli, followed by a
180-s period of intermittent presentation and an-
other 90 s of continuous presentation. In the inter-
mittent part, stimuli were repeatedly presented for
0.5 s and removed for a fixed period of blanking.
Across trials, three different contrasts (levels 2, 4, 6
to both eyes) and four different blanking durations
(0.5, 1, 2, and 4 s) were used, resulting in 12 tri-
als per participant. Since presentation duration was

short, participants were instructed to press the but-
ton indicating their percept only once during each
presentation period or shortly afterward and press
no button during the blanking periods. Otherwise,
the procedure was identical to experiment 1.

Data analysis. Akin to the analysis of the mod-
eling data, we define each period during a trial in
which exactly one button was pressed as dominance
period for the respective percept, and other periods
as transition periods. In each trial, the time before
the first button press and the last dominance pe-
riod, which the trial end interrupted, were excluded
from analysis. To normalize for interindividual dif-
ferences in group analyses and comparisons to mod-
eling, all dominance durations were divided by the
median dominance duration of the 12 control trials
with full contrast to both eyes. Definitions of relative
dominance, dominance durations, and switch rate
are then analogously defined to analyzing modeling
data.

Since we did not observe any differences between
grating orientation, we pooled dominance dura-
tions across orientations. For the analysis of rela-
tive dominance and switch rate, we separate by left
and right eye, resulting in an effective 6 × 6 design
with six levels for left-eye contrast and six levels for
right eye contrast. Since we did not observe any eye
to be preferred for any observer, analysis of median
dominance durations, where the contrast to the eye
whose dominance duration is considered (ipsilat-
eral eye) has to be distinguished from the other eye
(contralateral eye), is pooled across eyes.

Results

To compare different computational models of
rivalry, we simulated three different networks of in-
creasing complexity. Model 1 is a single WTA cir-
cuit with mutual inhibition and noisy input; model
2 adds adaption; and model 3, by combining two
WTA circuits, an implicit memory state. We assessed
each model according to three hallmarks of rivalry:
dominance distributions, Levelt’s propositions, and
the effects of periodical stimulus removal, and com-
pared the predictions to new experimental data.

To simulate rivalry, noisy external inputs were
provided to units u1 and u2 in the single WTA cases
or to units i1 and i2 of the circuit I in the double
WTA case, respectively. Input strength was modeled
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Figure 2. Raw activity. Activity traces for the three models when noisy input (strength 6.5 for models 1 and 2 and strength 5.5
for model 3) is applied to both eyes (see Methods in the Supporting Information for units). All models show bistable behavior,
with the excitatory units (blue, red) alternating in dominance. The currently dominant percept, according to the definition used
throughout, is indicated by the red and blue bars on top of each plot for models 1 and 2, and for the percept units of model 3. Green
trace represents the activity of the inhibitory unit.

by adjusting the mean of the input currents and
adding Gaussian noise of constant standard devia-
tion. In the behavioral experiments, input strength
was given by the log contrast of the stimulus relative
to the individual’s threshold.

Example data, dominance durations, and
dominance
In the experimental data, all observers experienced
rivalry, and valid dominance data (exactly one but-
ton pressed, no interruption by trial end) were
obtained for 85.8% of the total time (range across
observers and conditions: 76.3–95.4%). The re-
maining time consists of periods of mixed percepts,
transition periods, and discarded data at the begin-
ning and end of the trial.

All three model networks show bistable behav-
ior (Fig. 2), which allows us to define periods of
perceptual dominance. Akin to the experimental
instruction to report a percept only if it is clearly
dominant, we define a percept to be dominant in
simulation if its unit’s activity exceeds twice the ac-
tivity of the other unit. Using this criterion and the
same end-of-trial exclusion as in the experimental
data, we can—again averaged over all conditions—
identify a dominant percept for 68.6% (range: 0–
95.6%) of time for model 1, 87.3% (81.8–91.1%)
of time for model 2, and 89.9% (88.8–91.1%) for
model 3. Except model 1, in which for some asym-
metric input conditions one percept is dominant
throughout, yielding no valid data, the amount of
data usable therefore is comparable to the experi-
mental situation.

Distribution of dominance durations
To address the most typical rivalry situation in which
both percepts are about equally strong, we first
consider the conditions in which stimuli of the same
strength were presented (symmetric input). This
was done by injecting currents of the same mean into
each input unit (simulation) or presenting stim-
uli of the same contrast to each eye (experiment).
While absolute values of dominance durations and
the spread of distributions typically vary largely
between individuals and rivalry type,59 nearly all
rivalry types exhibit leptokurtic (heavy-tailed) dom-
inance durations. Our experiment 1 confirms this
tendency, with showing leptokurtic dominance dis-
tributions for all contrast levels tested (minimal
kurtosis: 6.3, with values larger 3 implying lep-
tokurtic distributions; Fig. 3). Across all symmet-
ric input conditions, all models show a kurtosis of
larger 3, with minimum values over conditions of 5.1
(model 1), 9.9 (model 2), and 4.2 (model 3). How-
ever, model 1 and 2 show an abundance of short
dominance durations (Fig. 3, left panels and re-
spective insets) as compared to model 3 (and to a
lesser extent our experimental data). Nonetheless,
all models qualitatively replicate the leptokurtic dis-
tribution of dominance durations that is common
to nearly all rivalry phenomena.

Levelt’s propositions
For a more detailed analysis of the dependence of
rivalry on input strength, we consider situations
in which both input strengths are varied indepen-
dently. For a broad range of rivalry phenomena, the
dependence of dominance, dominance durations,
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Figure 3. Dominance distributions. Example distributions of dominance durations for the three models and experiment 1 for
a medium input strength. Modeling data are based on a single simulation run and experimental data on a single individual.
Dominance durations are pooled over both percepts. Insets depict finer resolution for the left-most bin (model 1) or two left-most
bins (model 2), corresponding to five time units to ease comparison with model 3.

and switch rates on the two input strengths
then follows certain rules, typically referred to as
Levelt’s propositions.36 Here, we test the extent to
which our models reproduce Levelt’s propositions
and again compare the data to our experimental
observation.

Levelt’s first proposition: increase of stimulus
strength in one eye will increase the predominance
of the stimulus. For all models and the experi-
mental data, we calculate the relative dominance
of each combination of input strengths (input cur-
rents or contrast levels, respectively). By definition,
a relative dominance of 0 corresponds to equal dom-
inance of either percept, positive values dominance
of percept 2 or right eye, negative values of percept
1 or left eye. Consistent with Levelt’s first proposi-
tion, we find relative dominance to increase when
input to the right eye or the corresponding input
unit u2 or i2 is increased, to decrease when input
to the left eye (or unit u1 or i1) is increased, and
to fall around 0 when the input to both is the same
(Fig. 4A). Quantitatively, however, there are sub-
stantial differences: model 1, the single WTA cir-
cuit, only has a narrow band around equal input
strength in which dominance does not get stuck at
the extreme. When input is applied asymmetrically,
there is no mechanism to release the nondominant
state from suppression as soon as noise becomes
negligible. Adaption in model 2 counters this ef-
fect, and the extremes are approached in a more
shallow fashion. Importantly, a qualitatively very
similar behavior is observed for the double WTA
network of model 3, even though there is no explicit
adaptation mechanism at the level of an individual
unit. The experimental data also show a broad range

and smooth variation as do models 2 and 3. Unlike
those models, however, experimental data reach the
extremes of full dominance, while these models do
not exceed a relative dominance of about ±0.5 (i.e.,
one input dominating for 75% of time) for the
input range tested. Nonetheless, the double WTA
(model 3) and the single WTA with adaptation
(model 2) similarly capture the smooth transition of
relative dominance from one eye to the other when
input strength is changed.

Levelt’s second proposition: increase of stimulus
strength in one eye will not affect the mean domi-
nance time for the same eye. Of the four Levelt’s
propositions, the second is arguably the most coun-
terintuitive and has been challenged recently.56,60

The resulting revised version of this proposition
states that “changes in contrast of one eye affect the
mean dominance duration of the highest contrast
eye.”56

To analyze our models and data with respect
to Levelt’s second proposition, we plot the domi-
nance duration of one eye/input unit as a function
of the input of this (ipsilateral) eye/input unit and
the other (contralateral) eye/input unit (Fig. 4B).
For analysis, we fix one input strength and vary the
other (i.e., we proceed either along rows or columns
of the panels in Fig. 4B). We then can consider ei-
ther the dominance durations of the “fixed” input
or of the “variable” input. For illustration, Figure
S1 shows some of the data of Figure 4(B) in this
representation.

The modified version of Levelt’s second propo-
sitions predicts that the median dominance dura-
tion of the percept receiving higher input strength
should vary most. In the extreme cases of highest
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Figure 4. Levelt’s propositions. (A) Levelt’s first proposition tested for the three models and data of experiment 1; relative
dominance is color coded individually per panel. In the panel for model 1, some simulations are stuck within the same state
throughout, and—as for all analysis the last period is excluded—no data is available, indicated in gray. (B) Levelt’s second
proposition: log dominance duration for one eye (ipsilateral eye) while input strength to this eye and to the other eye (contralateral
eye) are varied independently. Data are collapsed over both eyes (left/right) or units (i1/i2, p1/p2). Log scale is used for illustration,
and correlations are computed on the original data. (C) Levelt’s third and fourth propositions: dependence of switch rate on input
strength to either eye.

and lowest fixed input strength, this would result
in decreasing dominance durations of the percept
receiving fixed input strength in the first case and in
increasing dominance durations of the percept re-
ceiving variable input strength in the latter, while the
dominance durations of the other percepts remain
stable.

At lowest fixed input strength, all networks show
qualitatively the same behavior as the experimen-
tal data (Fig. S1A); namely, the median dominance
duration of the percept receiving variable input in-
creases with increasing input strength, while the me-
dian dominance durations of the percept receiving
fixed input strength stays largely constant. The sim-
ulated and experimental data are thus in line with
the modified version of Levelt’s second proposition.
However, when the fixed input strength is increased,
the single WTAs behaves differently from the double
WTA model. Only the double WTA model is con-
sistent with the experimental data (Fig. S1B and C).

To quantify this, we compute correlations be-
tween fixed input strength and median dominance
durations for each level of variable input strength
and vice versa (i.e., we compute correlations within
either each row or column of the panels in Fig. 4B).
For experiment and model 3, correlations between
input strength and median dominance durations of
the percept receiving variable input are strictly pos-
itive and significant for all input strengths (double
WTA: all r(9) > 0.96, all P < 3.7 × 10−6; experi-
ment: all r(4) > 0.90, all P < 0.019)). In contrast,
dominance durations of the input receiving fixed
input strength and input strength to the variable in-
put are correlated negatively for all input strengths
(double WTA: r(9) < −0.96, P < 1.82 × 10−5));
experiment: r(4) < −0.89, P < 0.014)). The single
WTA without adaptation (model 1) still trends to
a negative correlation for the fixed input and the
positive correlation for the variable input, even
though not always significant (fixed: r(9) < −0.50,
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P < 0.11; variable: r(9) > 0.61, P < 0.045). In con-
trast, the single WTA with adaptation (model 2)
shows positive correlations between median dom-
inance durations and input strength for both, the
percept receiving variable and fixed input strengths
(all r(9) > 0.85, all P < 0.00089), which is—for the
variable input—the exact opposite of the experi-
mental observation. Hence, models 1 and 3 replicate
the modified version of Levelt’s second proposition,
whereas a single WTA with adaptation (model 2)
shows qualitatively different behavior.

Levelt’s third proposition: increase of stimulus
strength to one eye will increase the alternation
frequency. Levelt’s third and fourth proposition
are closely linked. Both make predictions on the al-
ternation frequency (here: switch rate), when input
strength is varied. The switch rate is the number
of switches in dominance per unit time (simulation
time or seconds). Every transition from one per-
cept to the other or from one percept to the same
percept when there was a transition time in between
(same-state transition) is considered a switch for the
present purpose.

Levelt’s third proposition states that when in-
put strength or contrast to one unit/eye was fixed,
increasing input strength/contrast to the other
would result in a higher switch rate. In its revised
version,60 the proposition instead states that switch
rate is “maximal at and symmetric around equi-
dominance.” Our experimental data, which reach
up to high-contrast levels, confirm the revised ver-
sion of the proposition (Fig. 4C, right). Model 1
replicates this property, but switch rates rapidly
drop to 0 when leaving equi-dominance (Fig. 4C,
left). The single WTA with adaptation (model 2), in
turn, does not show the symmetry around equi-
dominance (Fig. 4C, second panel). In contrast,
the double WTA (model 3) shows a distribution of
switch rates that is symmetric (Fig. 4C, third panel)
and maximal around equi-dominance. Hence, only
model 3 qualitatively captures the revised version of
the third proposition and is in line with the experi-
mental data.

Levelt’s fourth proposition: increase of stimulus
strengths in both eyes will increase the alternation
frequency. This proposition predicts an increase
of switch rate when stimulus strength is increased
simultaneously in both units/eyes, which would be
reflected by an increase of switch rate along the

diagonals in Figure 4(C). Again, models 1 and 2
deviate qualitatively from this prediction by show-
ing a decrease along the diagonal toward increasing
input strength (model 1: r(9) = −0.94, P = 2.2 ×
10−5; model 2: r(9) = −0.98, P = 1.0 × 10−7). In
contrast, model 3 qualitatively captures the increase
with increasing input strength, which we also ob-
serve in our experimental data (model 3: r(9) =
0.67, P = 0.024; experimental data: r(4) = 0.97, P =
9.4 × 10−4).

In sum, even though models 1 and 2 capture
some aspects of rivalry, only model 3 is—at least
on a qualitative level—in line with the experimental
observation.

Blanking
Another key phenomenon of rivalry is blank-
ing: after the stimulus is removed intermittently
for a sufficiently long time (>500 ms), the per-
cept stabilizes,37,38 whereas it destabilizes when the
blanking duration is shorter than about 500 ms.37

Stability here means that the same percept is dom-
inant before and after the blank (see Methods).
Blanking is an example of the involvement of mem-
ory in rivalry. The double WTA model (model 3)
has memory for the current percept (its state). We
next test this model’s ability to replicate the main
features of blanking. Experimentally (experiment
2) and in simulation (Fig. 5A), we vary blanking
duration and input strength (Fig. 5B). Example
traces of activity in model 3 already indicate that the
model may replicate the tendency for longer blank
durations to lead to more stabilization (Fig. 5C) in
line with the experimental example (Fig. 5D).

Quantitatively, we investigate blanking with re-
spect to survival probability, the number of times
a percept remerges after the blank is divided by the
number of all blanks (Fig. 6A). This number would
be 0 if percepts perfectly alternated, 1 if there was
the same percept always present, and 0.5 if alter-
nations were random (as there is no bias to either
percept in simulation nor experiment). As a con-
sequence of the definition of dominance in simu-
lation and the instruction to only report a percept
when it was clearly dominant, a dominant percept
is not always identifiable (especially for models 1
and 2) during the presentation. Hence, we also an-
alyze switch probability as the fraction of blanks
after which the other precept reemerges after a blank
(Fig. 6B). The difference between 1 and the sum of
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Figure 5. Blanking, model output. (A) Time course of an experimental blanking trial. Blank intervals are not to scale. (B) Input
function for modeling blanking in the models; typical example with added noise. At onset there is a steep rise with exponential
decay to the sustained activity; at offset a smooth relaxation to baseline. (C) Example traces of model 3 for three different blanking
durations. Blue and red curves correspond to neurons p1 and p2, respectively. (D) Experimental data for blanking in a single
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Figure 6. Blanking, model results. (A) Survival probability, (B) switch probability, and (C) their sum for the three models and the
data of experiment 2. Different line colors indicate different input strengths (consistent within each column as given in the top-row
panels).

switch and survival probability (Fig. 6C) provides
the fraction of unidentifiable transitions through
a blanking period. Not surprisingly, the two sin-
gle WTA models (models 1 and 2) do not replicate
the blanking phenomenon. Once the input decayed
(cf. Fig. 5B), no information about the preceding
state is left, and switch and survival probability are
similar (Fig. 6A and B, left columns). In addition,
there are many situations (up to 67.2%; Fig. 6C,
left columns) in which the presentation time does
not allow for a clear dominant percept to emerge
after a blink. In contrast, the double WTA model
(model 3) replicates the increase of survival proba-
bility with increasing blanking duration (Fig. 6A,
third panel) and the corresponding decrease of
switch probability across the blank (Fig. 6B, third
panel). In addition, there are fewer (up to 25.2%)
presentations during which a dominant percept
cannot be identified and these situations occur
mainly at short blanking durations (Fig. 6C). This
is in line with the experimental data, where no
dominant percept was reported in up to 18.8%
of the total experiment time. This happened pri-
marily at short blanking durations, possibly due

to the short time between presented stimuli. The
model makes an important further prediction,
namely that survival probability should decrease
with stronger input. Our experimental data (Fig. 6,
right column)—at least qualitatively—confirms this
prediction.

Discussion

In this paper, we argue that rivalry can be under-
stood as the result of a competition, just like atten-
tion can be understood as competition with prior-
ity control. WTA networks have been suggested as
models of attention52,61,62 and combining two WTA
circuits together results in networks that have mem-
ory states.48 Here, we demonstrated that a WTA
model with state dependence replicates all key fea-
tures of rivalry. In contrast, we found that simpler
models without a memory state were unable to re-
produce key aspects of rivalry. In particular, state-
less models were unable to reproduce the phenom-
ena of blanking. We conclude that memory plays an
important role in competitive processes. Our model
provides a first approach to how rivalry, attention,
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and memory can be integrated into a single neu-
ronally motivated model.

Limits of the present model
The present model was constructed to reproduce the
key aspects common to nearly all forms of rivalry. As
such, the model does not reproduce each and every
aspect of any given rivalry experiment. In particular,
we did not explicitly model time constants in a quan-
titative fashion. Furthermore, the input strength will
depend on experimental details (as does the defini-
tion of what constitutes input strength in the first
place63), and in the case of blanking, the survival
probabilities in some cases can take far lower values
than those found in our simulations and experi-
ments. Models of a specific rivalry phenomenon
would then have to include the upstream sensory
circuits that realistically represent the input, where
we here just made the reasonable but simplifying
assumption that log stimulus contrast maps linearly
to input currents. A specific model would also need
to include the motor representation of the effector
to report the precept64,65 and include a notion of the
rivalry stimulus’ spatial extent to capture the spatial
dynamics of dominance transitions.66,67 Unlike in
the experimental data and in contrast to their ex-
cess in models 1 and 2, extremely short dominance
durations are absent for the double WTA model.
To some extent this is a tradeoff between switch-
ing and memory, and to some extent it is a conse-
quence of our definition of dominance (twice the
other activity). This criterion was chosen to mimic
the notion of (near) exclusive dominance in the ex-
perimental condition, and indeed, periods of no
report were similar in frequency in model 3 and
the experiment. While this is clearly a limitation of
the present model, which has no natural mapping
of its time axis to experimental time, a more de-
tailed downstream readout and modeling the spa-
tial distribution of dominance at any given point
in time, will presumably allow relaxation of this
criterion.

All these restrictions notwithstanding, with the
double WTA we succeeded in modeling key prop-
erties that are common to all forms of rivalry in
a single model: leptokurtic distributions, Levelt’s
propositions, and blanking.

Other modeling approaches for rivalry
Many attempts have been taken to model rivalry,
capturing specific aspects. Many models of rivalry

replicate the leptokurtic distribution of dominance
durations.54,68–73 Some of them also account for Lev-
elt’s second proposition, even though all of them
only tested its original version fixed at highest input
strength and did not investigate behavior at other
fixed input strengths.54,68,71 Levelt’s fourth propo-
sition has also been simulated by some of the ex-
isting models,68,72 but how switch rate behaves un-
der asymmetrical input has not been reported. The
stabilizing effect of stimulus removal has been repli-
cated over a large range of blanking and presentation
durations by Noest et al.74 and has been refined with
a multi-timescale extension by Brascamp et al.75 to
cover their experimental findings. Still, this model is
specifically designed to account for blanking behav-
ior and percept choice at stimulus onset, leaving Lev-
elt’s propositions unaddressed. Wilson54 extended
his network to incorporate memory and thereby
replicated the basic stabilizing effect of blanking,
but leaves the functional relation between blank du-
ration and survival probability unaddressed. The
model of Gigante et al.73 also accounts for blanking
but leaves Levelt’s propositions unaddressed. Thus,
most networks perform well in replicating some of
the key hallmarks of rivalry, but rarely are all of
them addressed in a single framework. Only very
few networks target all characteristics of rivalry and
if they do, the whole range of input strength is not
investigated. Hence, the double WTA network we
presented here is the first to address Levelt’s propo-
sitions, as well as blanking, for a wide range of input
strengths.

Rivalry and memory
The key motivation for using the double WTA net-
work is the memory state implicitly modeled by
its dynamics. Consequently, only this network was
able to reproduce the phenomenon of blanking.
Of particular note is that this form of memory
resulted in replicating Levelt’s propositions. For a
long time, rivalry was considered a memoryless
process and thus, successive dominance durations
were assumed to be independent and the timing of
switches are unpredictable.35,76,77 Recently, this no-
tion has been challenged experimentally, both on
short timescales of a few transitions40,78 up to long-
term fluctuations.79 In addition, some physiologi-
cal measures that have been tied to rivalry, such as
eye position,25,80,81 (micro-)saccade frequency,82,83

eye blinks, and pupil size,84,85 can also be used as
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predictors of subsequent dominance,81,84 again ar-
guing for some information about subsequent states
being available and thus against a memory-free
process.

Rivalry and attention
As discussed above, we note that attention and ri-
valry are conceptually similar competitive processes.
Many of the markers of rivalry, including eye posi-
tion, saccades, and pupil size are also markers of
attentional processes. In addition, attention and
rivalry are also related behaviorally. Already von
Helmholtz noted in his discussion of Schröder’s26

staircase and related multi-stable figures that he
could volitionally switch his percept.17 Similarly,
for binocular rivalry, von Helmholtz17 states that
he could exert attentional control to keep one pat-
tern dominant—an “arbitrary” amount of time for
a simple line stimulus and by performing a task
(e.g., counting) with the respective percept for more
complex patterns. Recent research agrees with this
notion: although transitions in rivalry seem to be
spontaneous, some degree of volitional control can
be exerted86,87 and usefulness for the task can in-
crease the dominance of the corresponding percep-
tual state.88 Attention to a stimulus speeds up rivalry
switching89,90 and if attention is withdrawn from a
stimulus, it has a stabilizing effect similar to stimulus
removal; that is, rivalry is essentially abolished.91,92

While the relation between attention and rivalry is a
topic of intense research, these phenomena have so
far been regarded as separate. In contrast, we here
propose that both constitute a form of competi-
tion. This study is a first attempt to include memory
and rivalry in a common model that has also been
used to model attention. We expect that the present
model can be extended to explicitly model the inter-
actions between rivalry, memory, and attention. In
summary, our model suggests that competition—
with or without priority control—is a fundamental
principle that links seemingly distinct phenomena.
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64. Wohlschläger, A. 2000. Visual motion priming by invisible
actions. Vis. Res. 40: 925–930.

65. Beets, I.A.M., F. Rösler, D.Y.P. Henriques, et al. 2010. On-
line action-to-perception transfer: only percept-dependent
action affects perception. Vis. Res. 50: 2633–2641.

66. Wilson, H.R., R. Blake & S.-H. Lee. 2001. Dynamics of
travelling waves in visual perception. Nature 412: 907–
910.

67. Naber, M., O. Carter & F.A.J. Verstraten. 2009. Suppres-
sion wave dynamics: visual field anisotropies and inducer
strength. Vis. Res. 49: 1805–1813.

68. Laing, C.R. & C.C. Chow. 2002. A spiking neuron model for
binocular rivalry. J. Comput. Neurosci. 12: 39–53.

69. Wilson, H.R. 2003. Computational evidence for a rivalry
hierarchy in vision. Proc. Natl. Acad. Sci. USA 100: 14499–
14503.

70. Lago-Fernández, L.F. & G. Deco. 2002. A model of binocular
rivalry based on competition in IT. Neurocomputing 44: 503–
507.

71. Freeman, A.W. 2005. Multistage model for binocular rivalry.
J. Neurophysiol. 94: 4412–4420.

72. Moreno-Bote, R., J. Rinzel & N. Rubin. 2007. Noise-induced
alternations in an attractor network model of perceptual
bistability. J. Neurophysiol. 98: 1125–1139.

73. Gigante, G., M. Mattia, J. Braun, et al. 2009. Bistable per-
ception modeled as competing stochastic integrations at two
levels. PLoS Comput. Biol. 5: e1000430.

74. Noest, A.J., R. VanEe, M.M. Nijs, et al. 2007. Percept-choice
sequences driven by interrupted ambiguous stimuli: a low-
level neural model. J. Vis. 7(8): 10, 1–14.

75. Brascamp, J.W., J. Pearson, R. Blake, et al. 2009. Intermit-
tent ambiguous stimuli: implicit memory causes periodic
perceptual alternations. J. Vis. 9(3): 3, 1–23.

76. Blake, R., R. Fox & C. McIntyre. 1971. Stochastic proper-
ties of stabilized-image binocular rivalry alternations. J. Exp.
Psychol. 88: 327–332.

77. Fox, R. & J. Herrmann. 1967. Stochastic properties of binoc-
ular rivalry alternations. Atten. Percept. Psychophys. 2: 432–
436.

78. VanEe, R. 2009. Stochastic variations in sensory awareness
are driven by noisy neuronal adaptation: evidence from serial
correlations in perceptual bistability. J. Opt. Soc. Am. A 26:
2612–2622.

79. Suzuki, S. & M. Grabowecky. 2002. Evidence for perceptual
“trapping” and adaptation in multistable binocular rivalry.
Neuron 36: 143–157.
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