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Abstract
The method of mathematically controlled comparison provides a structured approach for the
comparison of alternative biochemical pathways with respect to selected functional effectiveness
measures. Under this approach, alternative implementations of a biochemical pathway are modeled
mathematically, forced to be equivalent through the application of selected constraints, and
compared with respect to selected functional effectiveness measures. While the method has been
applied successfully in a variety of studies, we offer recommendations for improvements to the
method that (1) relax requirements for definition of constraints sufficient to remove all degrees of
freedom in forming the equivalent alternative, (2) facilitate generalization of the results thus
avoiding the need to condition those findings on the selected constraints, and (3) provide additional
insights into the effect of selected constraints on the functional effectiveness measures. We present
improvements to the method and related statistical models, apply the method to a previously
conducted comparison of network regulation in the immune system, and compare our results to
those previously reported.

Background
Metabolic and signal transduction pathways in biological
systems are typically complex networks that necessitate
the application of mathematical modeling and computer
simulation in efforts to understand their behavior. Math-
ematical models, developed through these efforts, have
value both as tools for predicting system behavior and as
descriptions of the system that facilitate the study of the
embodied design principles [1,2]. A design principle, as
defined by Savageau, is a rule that characterizes a feature
of a class of systems and thus facilitates understanding the
entire class. As these rules are identified and characterized
a catalog of patterns will be developed for use in the iden-
tification of additional instances of these patterns within
biological systems [3]. To gain a greater understanding of

the benefits of one design over another and to understand
the selection criteria driving an evolutionary design choice
we need methods by which objective comparisons of
alternative designs can be performed.

To perform these comparisons we first require a mathe-
matical framework with which we describe the designs of
interest and compare those designs with respect to func-
tional effectiveness measures. The framework chosen here
is based on the form of canonical nonlinear modeling
referred to as synergistic or S-systems. S-systems, devel-
oped as part of Biochemical Systems Theory (BST), are sys-
tems of nonlinear ordinary differential equations with a
well-defined structure [4-6]. The time rate of change of
each quantity in the system is described by a differential
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equation of the form given in Equation 1 where  indi-

cates the first derivative of quantity Xi with respect to time

and  and  are positive-valued functions represent-

ing the influx and efflux respectively.

These quantities may represent, for example, substrate,
enzyme, metabolite, cofactor, or mRNA concentrations
and are referred to generically as pools. The system con-
sists of n equations of this form, one for each of the n
dependent variables in the system. The remaining m vari-
ables, Xn + 1 … Xn + m, represent independent quantities.
The right-hand side of each equation consists of two
terms, one describing the influx or production of the pool

of interest ( ) and one describing its degradation or

efflux ( ). Both terms are in power-law form. Any other

pool (independent or dependent) in the system that influ-
ences production or degradation appears as a factor in the
appropriate power-law term of the effected pool's differ-
ential equation. The exponential coefficient of the factor,
referred to as its kinetic order, determines the direction
and degree to which the change is influenced. Positive
kinetic orders indicate that the influence increases or acti-
vates the flux and negative kinetic orders indicate that the
influence decreases or inhibits the flux. Kinetic orders
associated with the influx term are typically given the label
gi,j where the indices i and j denote the influence of varia-
ble Xj on the influx to Xi. The label hi,j is typically given to
kinetic orders associated with the efflux term. The multi-
plicative factors αi and βi are positive quantities referred to
as rate constants. They scale the influx or efflux rate and
thus control the time scale of the reaction. The validity of
this power-law representation has been analyzed exten-
sively and demonstrated in a variety of biological system
modeling applications [7-9].

The S-system representation offers two key advantages in
the performance of controlled comparisons. First, S-sys-
tems have a form that allows for the algebraic determina-
tion of the system's steady state by solution of a system of
linear equations under logarithmic transformation of the
variables (see Appendix). From this steady-state solution,
it is possible to determine the local stability of the steady
state, the sensitivity of the steady state with respect to
parameter changes, and the sensitivity of the steady state
with respect to variation in the independent variables. The
S-system representation is also advantageous in that it
provides a direct mapping from the regulatory structure of

the system under study to the parameters of the system. If,
for example, the influx to a variable of interest, Xi, is regu-
lated by some other variable Xj then the parameter gi,j will
be non-zero. If the regulation inhibits the influx, the
parameter takes on negative values and if the regulation
activates the influx, the parameter takes on positive val-
ues. This property of S-systems is particularly useful when
performing a controlled comparison of two structures that
differ in their regulatory interactions. The alternative
structure, without a particular regulatory interaction, can
be determined from the reference by forcing the value of
the appropriate kinetic order to 0 (Figure 2).

S-systems provide a convenient method for the character-
ization of systemic performance local to the steady state.
System gains, parameter sensitivities, and the margin of
local stability are easily determined and often form the
basis of functional performance measures used in control-
led comparisons. Logarithmic gains represent the change
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Reference and alternative systemsFigure 1
Reference and alternative systems. Biochemical maps 
for the reference system (with suppression) and the alterna-
tive (without suppression) are given in A and B respectively. 
Adapted from Irvine and Savageau [21].
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in the log value of the steady state of a dependent variable
or flux as a result of a change in the log value of an inde-
pendent variable (see Appendix). A log gain of Li,j = L(Xi,
Xj) can be interpreted as an indication that a 1% change in
independent variable j will result in an approximate Li,j%
change in the steady-state value of dependent variable i.
Logarithmic gains provide a measure of the effect or
"gain" of an independent variable on the steady state of
the system. A related measure, referred to as system sensi-
tivity, measures the robustness or the degree to which
changes in the system parameters (kinetic orders and rate
constants) affect the steady state of the system (see Appen-
dix). A sensitivity of S = S(Xk, gi,j) indicates that a 1%
change in parameter gi,j will result in an approximate S%
change in the steady-state value of dependent variable Xk.

The method of mathematically controlled comparison
provides a structured approach for the comparison of
design alternatives under controlled conditions much like
a controlled laboratory experiment [10]. The approach, as
currently applied, is implemented in the following steps.
(1) Mathematical models for the reference design and one
or more alternatives are developed using the S-system
modeling framework described above. The alternatives
are allowed to differ from the reference at only a single
process that becomes the focus of the analysis. (2) The
alternative design is forced to be internally equivalent to the
reference by constraining the parameters of the alternative
to be equal to those of the reference for processes other
than the process of interest. (3) Using the mathematical
framework, selected systemic properties or functions of
those properties are identified and used to form con-
straints which fix the, as yet, unconstrained parameters in
the alternative design. Typically, steady-state values and
selected logarithmic gains are forced to be equal in the
reference and alternative. Parameters for the process of
interest in the alternative are then determined as a func-
tion of the parameters in the reference so as to satisfy these
constraints. The application of these constraints forces the
reference and alternative to be externally equivalent with
respect to the selected properties. The term "external
equivalence" refers to the fact that the alternative and ref-
erence are equivalent to an external observer with respect
to the constrained systemic properties. Constraints are
imposed until all of the free parameters in the alternative
are determined. (4) Finally, measures of functional effec-
tiveness relevant to the biological context of these designs
are determined and used to compare the reference and its
internally and externally equivalent alternative through
algebraic methods.

In many cases the comparison of these functional effec-
tiveness measures cannot be determined independent of
the parameter values. To improve the applicability of the
method in these cases, Alves and Savageau extended the
method of controlled comparisons through the incorpo-
ration of statistical techniques [11,12]. Under this exten-
sion, parameter values are sampled from distributions
representing prior knowledge about the likely ranges for
those parameters. An instance of the reference design is
constructed from the sampled parameters and an instance
of the alternative is then constructed from the reference by
applying the constraint relationships. Functional effec-
tiveness measures are then computed for the each sam-
pled reference and its equivalent alternative (MR,i and
MA,i). The ratio of the performance measure of the refer-
ence relative to that of the alternative is computed for all
of the samples and plotted as MR,i/MA,i versus a property P
of the reference design. A moving median plot is then pre-
pared by plotting the median of MR,i/MA,i versus the
median of P in a sliding window to reveal both the

Example mapping: pathways to S-systemsFigure 2
Example mapping: pathways to S-systems. The S-sys-
tem framework provides for a straightforward mapping of 
biochemical pathway maps into systems of equations. The 
pathway and equations for cases A and B differ only in the 
feedback inhibition of the first step in the process. This inhi-
bition is represented by a single parameter, g1,3.
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median of the relative measure and its variation across the
range of P. If M is defined such that smaller values indicate
greater functional effectiveness, ratios of MR,i/MA,i < 1
indicate that the reference is preferred to the alternative
according to the given measure. Examination of the den-
sity of ratios and moving median plots allows determina-
tion of preference for the reference over the alternative (or
visa versa) and how that preference varies with the
selected property. These extensions have been applied to
the analysis of preferences for irreversible steps in biosyn-
thetic pathways [13] and to the comparison of regulator
gene expression in a repressible genetic circuit [14].

Rationale for Improvements
While the Method of Mathematically Controlled Compar-
isons has been successfully applied in many cases [13-20],
we offer for consideration enhancements to the method
that extend the application of sampling and statistical
comparison given by Alves and Savageau [11,12]. These
enhancements are offered primarily to (1) allow for the
incremental incorporation of constraints in the model,
(2) provide evidence for the generalization of compari-
sons, and (3) provide additional insight into the effects of
the selected constraints on our interpretation of the
results. The enhancements also address two concerns with
the method as presently applied. First, the current
approach requires that we identify a number of con-
straints sufficient to numerically fix all free parameters. An
objective of our approach is to relax this requirement for
cases where the identification of a sufficient number of
constraints is not practical or not desired. Second, the
enhanced approach incorporates a step that excludes the
use of unrealistic alternatives resulting from the applica-
tion of constraints.

The existing method currently requires the identification
of enough constraints to remove all degrees of freedom
associated with parameters of the alternative model not
fixed by internal equivalence. The construction of an
alternative pair for a given reference in a controlled com-
parison is similar to the process of matching in an epide-
miological study in that both attempt to prevent
confounding by restricting comparisons to pairs that have
been matched on the confounding variable. The key dif-
ference is that in an epidemiological study cases and con-
trols or treatment groups are drawn from the sample
population and then matched whereas in a controlled
comparison the reference is drawn and the alternative is
constructed from the reference to enforce the match. In
both cases we become unable to make statements with
regard to differences in the systemic properties (con-
founding variable) that we have matched on. Since both
the reference and alternative system were matched at a
constraint of our choosing the observation that the
matched property or any function of the matched prop-

erty is equal in both systems adds no information to the
comparison. Unlike the epidemiological study, a
controlled comparison requires us to identify constraints
sufficient to eliminate all of the free parameters in the
alternative. If we cannot identify a sufficient number of
constraints with meaningful interpretations, we may be
forced to select constraints for mathematical convenience.
Since our observations are conditioned on the constraints
imposed in the analysis, the choice of mathematically
convenient constraints may lead to complications in
interpreting the results.

The application of constraints in forming instances of the
alternative design has the potential of producing systems
that are unreasonable with respect to their parameter val-
ues and thus alternative systems constructed through the
application of these constraints must be evaluated for rea-
sonableness. Clearly, these parameter values are related to
the kinetic parameters of the underlying biological
process and thus are expected to fall within ranges repre-
sentative of the physical limits of the modeled process. In
some cases, the application of constraints can yield alter-
natives with parameter values far from those expected in a
realizable system. Unlike the epidemiological study, the
alternative is constructed so as to satisfy the given con-
straints without concern for the reasonableness of the
alternative. Under these conditions, we might mistakenly
compare a reference that matches our prior belief about
realistic parameter ranges to an unrealistic alternative. In

Biosynthetic pathway alternativesFigure 3
Biosynthetic pathway alternatives. Biosynthetic path-
ways similar to that illustrated were compared using the 
method of mathematically controlled comparison by Alves 
and Savageau [13]. These biosynthetic pathways differ only in 
the reversibility of the first step.
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the existing approach, there is no explicit evaluation of the
likelihood or reasonableness of an alternative formed
from a given reference. Constraints on resulting kinetic
orders have been imposed in some previous applications
of controlled comparisons [14,17] but the step has not
been applied in methods using statistical extensions. Con-
sider, for example, the analysis of irreversible step posi-
tions in unbranched biosynthetic pathways presented in
[13]. The structure of the reference and alternative are
illustrated in Figure 3. As part of the numerical compari-
sons, parameter values for kinetic orders and rate con-
stants were drawn from uniform and log-uniform
distributions respectively. Kinetic orders were drawn from
Unif(0,5) for positive or Unif(-5,0) for negative kinetic
orders and log (base 10) rate constants were drawn from
Unif(-5,5). Constraint relationships were applied and ref-
erence models with irreversible steps at each position were
constructed. We repeated the described sampling process
and constructed 4-step alternatives with an irreversible
reaction at the first step. The following parameter values
were drawn for one of the reference systems in our
sampling:

Applying the constraints from [13] yields the following
alternative:

As required by the defined constraints, the steady-state
values, log gains with respect to supply, and sensitivity
with respect to α1 are equivalent in the reference and alter-
native. However, the application of these constraints
resulted in a kinetic order (g1,4 = -290.7) and a rate con-
stant (α1 = 4.8 × 10174) that are well beyond the range of
reasonable values. Since our prior belief is that kinetic
orders should have magnitudes less than 5, this finding
gives rise to concern that the sampled reference is being
compared to an unrealistic alternative in the cases studied.
We therefore recommend that references resulting in
unrealistic alternatives be eliminated from consideration
in statistical comparisons and that the rate of occurrence
of unrealistic alternatives be evaluated as part of the
method.

In most cases, a parameterized model, defined by its
parameter values and implied structure, is but a sample
from a population of models that might all represent the
given design. In these cases one must question the gener-

alizability or robustness of statements made when point
estimates for these parameter values are used in a control-
led comparison. Consider, for example, the immune
response model described in [8,21]. The referenced study
compares the functional effectiveness of systems with and
without suppressor lymphocyte regulation of effector
lymphocyte production (Figure 1). Antigen and effector
step responses to a four-fold increase in systemic antigen
were included as functional effectiveness measures in this
study. The authors developed time courses for both the
reference (with suppression) and alternative system
(without suppression) for a specific set of kinetic orders
and rate constants determined to be reasonable based on
prior knowledge of the system being studied. They com-
pared time courses and concluded that the system with
suppression was superior to one without suppression
with respect to the peak antigen and effector levels in
response to the step challenge. We repeated their calcula-
tions and reproduce the time courses in Figure 4A. As they
observed, the peak levels are lower in the reference system.
Next we examined the step response for models drawn
from a narrow neighborhood about the selected parame-
ters and found that the conclusion does not hold in gen-
eral. Figure 4B illustrates the step response for one such
case. We see that for this case the system without suppres-
sion is superior with respect to peak effector level. The
analysis described by Irvine and Savageau, which however
preceded the extensions of Alves and Savageau by 15
years, requires statistical methods to fully explore the reg-
ulatory preferences of the immune system. We provide
this example as reinforcement to the recommendations of
Alves and Savageau and for reference as we repeat the
comparison of regulatory preferences in the immune sys-
tem model in the sections that follow.

Methods
Below we describe the proposed enhancement to the
method of mathematically controlled comparisons. We
set the following requirements in the development of this
method. (1) In the limit, as the alternative is forced to be
fully equivalent, the conclusions of the improved method
must match those of the currently defined method for
cases in which the current method provides unambiguous
conclusions and the alternatives are reasonable with
respect to our prior knowledge of the parameter ranges.
(2) The improved method should allow for various levels
of equivalence ranging from alternatives independent of
the reference to alternatives that are both internally and
externally equivalent to the reference. (3) The improved
method must avoid comparisons of unreasonable alterna-
tives. (4) Finally, the improved method must provide a
statistically meaningful measure comparable across vari-
ous levels of equivalence and must allow for a test of
homogeneity of conclusions across those levels. The sta-
tistical model and the procedure for implementation of
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the method are described below. An example of its appli-
cation is given in the Results section.

Statistical Methods for Comparison of Alternatives
As described above, a controlled comparison under the
extensions of Alves and Savageau is similar to a prospec-
tive study in epidemiology. In both cases we sample from
a population, construct comparison groups, observe the
frequency of outcomes for a given measure of effective-
ness, and estimate a relative magnitude of effect that indi-
cates the preference for one group over the other with

respect to that outcome. In epidemiological studies, these
comparisons are supported by the methods of categorical
data analysis where observations are separated into
groups based on common traits (reference and alternative
in this study). Categorical data analysis has a strong theo-
retical basis, has been applied extensively, provides mean-
ingful measures of preference in the form of odds or odds
ratios, and allows for the assessment of statistical signifi-
cance in those measures. For these reasons we have cho-
sen to employ the methods of categorical data analysis in
performing controlled comparisons [22].

Step responses to source antigen increaseFigure 4
Step responses to source antigen increase. Step responses to a four-fold increase in source antigen are presented for 
both the nominal values (panel A) (from Irvine and Savageau) and for a case in which the values were drawn from a narrow dis-
tribution about those nominal values (panel B). Systemic antigen responses are shown on the left and effector on the right. 
Solid lines indicate the response for the reference system (with suppression) and dashed lines are used for the alternative. Step 
responses for the nominal values indicate a preference for the system with suppression. The step responses for the sampled 
case indicate a preference for the alternative when considering dynamic peaks for effector concentration.

0 2 4 6 8 10
0

50

100

150

200

Time

A
n

tig
e

n
 C

o
n

ce
n

tr
a

tio
n

Step Response (Nominal)

0 2 4 6 8 10
1

2

3

4

5

6

7

Time

E
ff

e
c
to

r
C

o
n

ce
n

tr
a

tio
n

Step Response (Nominal)

0 2 4 6 8 10
0

10

20

30

40

50

Time

A
n

tig
e

n
 C

o
n

ce
n

tr
a

tio
n

Step Response (Group 8)

0 2 4 6 8 10
1

1.5

2

2.5

3

3.5

4

4.5

Time

E
ff

e
c
to

r
C

o
n

ce
n

tr
a

tio
n

Step Response (Group 8)

A

B

Page 6 of 18
(page number not for citation purposes)



Theoretical Biology and Medical Modelling 2004, 1 http://www.tbiomed.com/content/1/1/1
We begin by defining the categories of observations
important to our analysis. In this analysis we wish to com-
pare a reference design to an alternative design at K levels
of equivalence. Each level of equivalence defines a set of
constraints on the alternative that make it equivalent to
the reference with respect to one or more properties. There
are, therefore, K + 1 comparison groups in this analysis
where the first group includes all instances of the reference
design and the k + 1st group contains all instances of alter-
native designs at equivalence level k. Instances of alterna-
tive designs at level k are equivalent to their paired
references with respect to the same set of constraints.
Although not a requirement of the method, we generally
order the application of constraints to form increasing lev-
els of equivalence. At the lowest level, the model parame-
ters of the alternative design instance and those of the
paired reference are independent. The reference and the
alternative share only the values of the independent vari-
ables and thus are subjected to the same external
environment. The next level constrains the alternative
instance to be internally equivalent to its paired reference
in addition to sharing common values for the independ-
ent variables. Increased levels of equivalence successively
apply constraints eventually resulting in full external
equivalence, the highest level of equivalence. The number
of constraints applied determines the number of levels of
equivalence and thus the number of comparison groups.

Applying constraints in the construction of alternatives
causes the alternative to be statistically dependent on the
paired reference because its parameters are determined
from those of the reference and they share a common set
of values for the independent variables. When comparing
the alternative and reference designs we must, in our sta-
tistical model, account for systematically high or low
functional effectiveness resulting from this dependence.
As such we define a second dimension of grouping to
account for this effect. An instance of the reference design
and all alternative instances derived from that reference
are considered to be part of a matched group. If we sample
J instances of the reference design and construct K alterna-
tives from each reference instance we generate a popula-
tion of J·(K + 1) samples in J matched groups. The
resulting set of instances can then be viewed as being part
of a J by K + 1 table where the K + 1 columns associated
with the comparison groups and the J rows with the
matched groups. We label a sample with the indices of
this table, thus Sk + 1,j is an instance of the alternative
design at the kth equivalence level derived from the jth ref-
erence instance and S1,j is that paired reference instance.

Let M(Sk,j) be a measure that can be determined from the
reference and alternative instances' parameter values and
that orders their functional effectiveness. This measure is
taken to represent the true merit of the design. We cannot,

however, directly measure the true merit of the design and
must infer it from the measurement of M for samples
from a population of instances that represent the design.
We compute M for many instances of the reference design
and its associated alternatives and compare those results
to determine preference for one design over the other.
Estimation of these preferences requires us to define an
outcome that indicates the direction of preference. We can
either independently compare the effectiveness measures
for each instance to a common threshold and represent
the resulting frequency of occurrences as an odds ratio or
we can perform pairwise comparisons of each reference
and its paired alternative and measure the frequency of
occurrence as an odds. Each method has its advantages.
Consider a comparison in which the reference is always
better than the alternative but only by an infinitesimally
small amount. In the first approach we would probably
detect no difference between the two designs because
when compared to a common threshold both groups
would demonstrate about the same odds (an odds ratio of
1) of exceeding the threshold. In the second approach we
would find the odds of preferring the reference design to
be infinite as it is always better than the alternative even
though only infinitesimally so. As with most applications
of statistics, the key to the appropriate choice is in the
question to be answered. For applications of controlled
comparisons we recommend inclusion of both methods
of comparison as they provide both a measure of the mag-
nitude of the difference and allow us to detect strict but
small differences that may have biological significance.

Method 1
Let W be a threshold such that systems for which M >W
are taken to be part of a functionally desirable class. Mem-
bership in this desirable class is therefore represented by a
dichotomous variable given by the outcome of such a test.
We formally define this as follows.

All alternatives in the same group j are derived from the
same reference instance, S1,j, and therefore the Yk,j within
a matched group are correlated. We wish to compare the
odds of an instance of the reference design being a mem-
ber of the desirable class to the odds of an instance of the
alternative design, at equivalence level k. The following
log-linear model is used.

where

Y
M S W

k j
k j

,
, ( )= ( ) >
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• Yk,j is the outcome for Sk,j (1 = member of the desirable
class, 0 = not a member of the desirable class) with respect
to M and threshold W,

• Xk,j are indicators taking value 1 if the instance is an alter-
native at equivalence level k formed from the jth reference
instance.

• ωq,j are a collection of J indicator variables where ωq,j
takes value 1 if q = j and 0 otherwise.

The parameters (θk) are estimated by conditioning out the
nuisance variables (γq) using conditional logistic regres-
sion. The exp(θk) then give the odds ratios for desirable
class membership comparing alternative structure at
equivalence level k to the reference structure after
controlling for group effects. The methods of categorical
data analysis and logistic regression are described in many
texts on statistics, for example [22].

This method allows us to address structural preference
with respect to M by independently comparing both the
population of reference systems and the population of
alternative systems to a common threshold to determine
odds of membership in the desirable class after control-
ling for group effects. The odds of membership for the ref-
erence are compared to the odds for the alternative in the
odds ratios estimated in the regression. Ratios found to be
significantly different from 1 indicate a preference with
respect to measure M. For this method to be applied we
must choose threshold W. For consistency of comparison
with Method 2 we choose W to be the median of the
observed values of M for instances of the reference.
Although this selection for W is somewhat arbitrary, it has
the desirable effect of making the odds of class member-
ship for the reference system equal to 1.

Method 2
The method above provides us with a comparison of the
alternative design and reference design based on a com-
mon threshold test. In Method 2 we perform a pairwise
comparison of each alternative design instance and its
paired reference and compute the odds that the reference
is better than its paired alternative with respect to the
measure of comparison. For this assessment we consider
the general linear model for paired comparison [23].
Under this model the probability that design Di is pre-
ferred over design Dj is then given by

πi,j = F(M(Di) - M(Dj))  (6)

Where F(·) represents a symmetric cumulative distribu-
tion function centered at 0, M measures the true merit of
the design, and πi,j is the probability that Di is preferred
over Dj with respect to measure M. When the logistic dis-

tribution is assumed for F(·), the linear model is equiva-
lent to the Bradley-Terry Model for paired comparisons
(see description in [23]). The Bradley-Terry model is most
often associated with analysis of orderings of objects in
paired comparisons such as paired competitions in sports
or in subjective pairwise comparisons like wine tasting. In
our application we compare, pairwise, the reference
design to several alternative designs under various levels
of equivalence. Each new reference and its associated
alternative instances yields a new set of observations from
matched comparisons of computed measures of effective-
ness. Currently we consider only one reference and one
alternative design under various levels of equivalence. We
can, however, extend the model to include multiple
designs which could be compared simultaneously. Such a
model would be useful in Alves and Savageau's study of
preferred irreversible step positions in biosynthetic path-
ways [13]. Each possible irreversible step location could
be included as another alternative in the statistical model.
For our purposes, we continue with the model comparing
two designs which we describe as follows:

where

xR is an indicator variable taking value 1 if the reference is
used in the comparison (always 1).

xA is an indicator variable taking value 1 if the alternative
is used in the comparison (always 1).

ek are indicator variables taking value 1 if the comparison
is being made at equivalence level k.

The indicators, ek, representing the equivalence levels of
the comparisons are treated as covariates in the model.
The indicators xR and xA take fixed values for our example
as we are comparing only two designs. A more general
form of the model can be constructed to compare several
design alternatives. For the reference instance and each
paired alternative instance we compute the effectiveness
measure M(·). We perform pairwise comparisons
between the reference and each associated alternative to
yield K outcomes per group and the data is then fit by
logistic regression (without intercept). Under the given
parameterization, the design matrix does not have full
rank and so we employ the constraint βR - βA = 0. In this
way, the regression parameter γk gives the log odds of pref-
erence for the reference versus the alternative at the kth

level of equivalence. Performing pairwise comparisons
only within matched groups eliminates within group
dependencies. This method allows us to detect a prefer-
ence for the reference (or alternative) independent of the

π

π β β γ γ

1 1

1 1 1

7
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magnitude of the difference as measured by M as it
depends only on the frequency with which the effective-
ness of a reference exceeds that of a paired alternative.

Procedure for Controlled Comparisons
This section provides a step-by-step procedure for control-
led comparisons under the proposed enhancements. Pri-
mary differences between the enhanced method and prior
applications of controlled comparisons occur in steps 6
through 10.

Step 1 – Model Development
Using the chosen mathematical framework we develop a
mathematical model for the designs being compared,
identifying each of the dependent and independent varia-
bles and the differential equations describing the behavior
of the dependent variables. The mathematical
representation is derived from the biochemical map of the
system under study using the procedures described in [9].
We identify the parameters associated with the process or
step of interest and identify the parameters fixed by the
definition of the alternative (e.g., fixing a kinetic order at
0 for an influence we wish to eliminate in the alternative).

Step 2 – Identification of Functional Effectiveness Measures
Based on our knowledge of the system's function we iden-
tify functional effectiveness measures. This step is depend-
ent on the system under study. Previous studies have
employed measures of margin of stability [13,14,17], sen-
sitivity [14,17,21], aggregated sensitivity [13], logarithmic
gains [13-15,21], response time [13,14,20,21], and step
response overshoot [21]. These measures are computed
through either steady-state or dynamic analysis using the
mathematical framework.

Step 3 – Determination of Sampling Space
We identify distributions representing our prior knowl-
edge for each of the parameters. These sampling distribu-
tions represent the population of models being studied.
The sampling space is chosen based on estimated variabil-
ity in the model parameters (based on regression results)
or on uncertainty in our prior opinion about the parame-
ters. In cases where the parameter value distributions are
not known, a uniform distribution is employed. All con-
clusions of the analysis are conditioned on the chosen
sampling space.

Step 4 – Identification of Constraints
We identify constraints that reduce the differences in the
reference and alternative design instances. These con-
straints are defined in terms of steady-state systemic prop-
erties that can be computed from the mathematical model
(steady-state values of dependent variables, logarithmic
gains, sensitivities, etc.). Previous studies have employed
steady-state values of dependent variables [13-15,20,21],

specific logarithmic gains [13-15,20,21], combinations of
logarithmic gains [21], or specific sensitivities [13] in the
definition of constraints. For each constraint, we identify
a relationship that fixes remaining free parameters in
terms of the parameters of the paired reference instance.
Constraint relationships are determined using symbolic
steady-state solutions developed with a computer algebra
system such as the Matlab Symbolic Toolbox. For this
study we have employed BSTLab, a Matlab toolbox capa-
ble of developing symbolic solutions for S-system steady
states, sensitivities, and logarithmic gains [24].

Step 5 – Sampling of the Reference Design's Population
We construct an instance of a reference design by sam-
pling model parameter values from the distributions
defined in Step 3. The model structure and the sampled
parameters fully define one instance of the reference sys-
tem. For this study we sampled 1,000 reference design
instances for the main results and an additional 5,000
instances to confirm some of our findings.

Step 6 – Construction of Alternatives
For each sampled reference design we construct one or
more alternatives by applying the constraints identified in
Step 4. We first construct an independent alternative by
sampling parameters from the distributions defined in
Step 3 followed by the application of constraints on the
parameters that are fixed by the alternative design's struc-
ture. We then construct additional alternatives by the
application of constraints starting with internal equiva-
lence and ending with full (internal and external) equiva-
lence. The parameters computed through the application
of constraints in the alternative are then checked against
the range of reasonable parameter values. Sampled refer-
ences and associated alternatives are discarded when any
of their parameters exceed the range of reasonable values.
Steps 5 and 6 are repeated until the desired sample size is
achieved.

Step 7 – Evaluation of Functional Effectiveness
Functional effectiveness measures, identified in Step 2, are
computed for instances of the reference and associated
alternatives. Alternatives and references are compared to
the common threshold (for Method 1) and each alterna-
tive is compared to its associated reference (for Method 2)
with respect to each measure. For Method 1 a binary out-
come is recorded for each instance and effectiveness meas-
ure and the outcomes for Method 2 are recorded as
categorical values indicating that the reference is better
than, equal to, or worse than the alternative with respect
to the given performance measure.

Step 8 – Analysis of Outcomes
We analyze the outcomes for each case using conditional
logistic regression (for Method 1) or logistic regression
Page 9 of 18
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(for Method 2). The estimated parameters for the regres-
sion model can then be interpreted as odds ratios (com-
parison to a common threshold) or odds (paired
comparisons) for preference of the reference system over
the alternative given a specified level of equivalence. The
analysis also provides confidence intervals on these
parameters allowing us to measure the significance of our
statements with respect to the given sampling of the refer-
ence design population. We perform this analysis using a
statistical computing system such as R [25].

Step 9 – Identification of Significant Differences
Odds or odds ratios found to be statistically significant
indicate differences between the reference and alternative
populations. Odds or odds ratios that are not significantly
different from the null value of 1 are taken as an
indication that in this sampling there is no evidence of a
difference between the reference and alternative design
with respect to the given performance measure at the
given level of equivalence. The ability to detect small dif-
ferences in preference depends on the size of the sample
used in the analysis. In these studies we have taken
between 1,000 and 5,000 randomly constructed groups
(one reference and one or more alternatives). We summa-
rize these data in the form of analysis tables giving the
odds and odds ratios for these comparisons along with
indications of significance and indications of those meas-
ures fixed by equivalence.

Step 10 – Generalization of Differences
We next examine the homogeneity of conclusions across
the levels of equivalence with respect to the direction of
the effect and with respect to magnitude. Where statisti-
cally meaningful differences are required, contrasts on the
regression parameters are computed.

Results
We illustrate the proposed enhancements by repeating the
analysis of network regulation in the immune system per-
formed by Irvine and Savageau [21] and summarized in
[8]. In particular, we focus on their comparison of systems
that include suppression of effector lymphocyte produc-
tion and those that do not. The schematic representations
of the reference design (with suppression) and the alterna-
tive (without suppression) are given in Figure 1. The only
difference in the designs occurs in the step associated with
the production of effector lymphocytes where, in the
reference design, the production is inhibited by the con-
centration of suppressor lymphocytes. Using the proce-
dures in [9] the system of equations is written as follows.

In this model all of the gi,j and hi,j are greater than 0 except
for g2,3 which takes values less than 0 in the reference
design and is fixed equal to 0 in the alternative.

To facilitate comparison with the results of Irvine and Sav-
ageau, we select the same seven functional performance
measures. The first two performance measures are the
basal levels of systemic antigen and effector lymphocytes,
determined by the steady-state values of X1 and X2. We
also include the antigenic gain and the effector gain deter-
mined by L1,4 and L2,4. Dynamic analysis yields two more
measures given by the magnitude of the overshoot of sys-
temic antigen and effector lymphocytes in response to a
four-fold step increase in source antigen. These values are
determined by integrating the system of equations for
each case, initially at steady state, in response to the four-
fold increase in source antigen. The difference between
the peak value of the time course and the new steady state
as a fraction of the new steady-state value are taken as the
functional performance measure. Finally we include the
sensitivity of the logarithmic gain L1,4 with respect to
parameter h2,2 as a measure of the system sensitivity with
respect to parameter variation (S(L1,4, h2,2)). In all cases,
lower values indicate a more desirable design. The ration-
ale for the selection of these measures is given in [21].

Values for each of the parameters are sampled in a neigh-
borhood about the parameter values given in [8] from the
following distributions.

The rate constant β3 is fixed to set the time scale. When
sampling instances of the alternative design, the value of
g2,3 is set to 0. The distributions for kinetic orders are trun-
cated to prevent positive kinetic orders less than 0.1 and
negative kinetic orders greater than -0.1. The values of the
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independent variables X4, X5, and X6 are sampled from the
following distributions.

log10(X4), log10(X5), log10(X6) ~ N(0, σ2)  (10)

The analysis is conducted at σ = 0.1 for baseline results
and again at σ = 0.2 to address sensitivity with respect to
the sampling space.

We define four levels of equivalence for this analysis. The
lowest level requires only that the alternative instance
adhere to the sampling distributions for parameters
described above. Instances drawn as such are representa-
tives of the alternative design but do not exhibit internal
or external equivalence with the paired reference system.
The only values shared between the alternative and the
paired reference are those of the independent variables.
We next define an internally equivalent alternative as one
in which the values for α1, α3, β1, β2, β3, g1,1, g1,4, g3,2, g3,6,
h1,1, h1,2, h2,2, and h3,3 in the alternative are equal to the
associated values in the paired reference. We define a par-
tially equivalent alternative as one that is both internally
equivalent and that also has steady-state values of
dependent variables equal to those of the paired reference.
This constraint is used to fix the value of α2 in the alterna-
tive instance. Symbolic solutions for the steady-state val-
ues of the dependent variables are computed for both the
reference and alternative, expressions for X2 are set equal
and solved for α2. To construct a partially equivalent alter-
native we form an internally equivalent alternative and
additionally compute the value of α2 to satisfy the con-
straint. The fourth level of equivalence, referred to as full
equivalence, incorporates constraints sufficient to remove
all remaining degrees of freedom in the formation of the
alternative. The fully equivalent form is constructed by
forcing two additional constraints which fix the values of
g2,1 and g2,5. The value for g2,1 is determined by requiring
that L1,4 be equal in both the reference and alternative sys-
tems and the value for g2,5 is determined by requiring that
L1,5 + L1,6 be equal in both systems. Symbolic solutions for
the log gains are computed, set equal and solved for the
desired parameter. Fully equivalent systems are then
formed by forcing internal equivalence and by fixing α2,
g2,1, and g2,5 to satisfy the given constraints. The selected
constraints match those employed by Irvine and Savageau
[21].

Groups of cases were constructed by sampling the param-
eter distributions defined above. For each group we drew
one set of values for the parameters of the reference, one
set of values for the independent variables, and for each
level of equivalence we drew a set of values for those
parameters not fixed by the associated constraints. Five
cases were constructed for each of 1,000 groups consisting
of one reference and four alternatives, one for each of the

four levels of equivalence. Fourteen cases were identified
having values of g2,5 less than 0.1 (the lower bound on our
accepted range for g2,5). Two of those 14 cases had values
of g2,5 less than 0 demonstrating that application of the
constraints can lead to a change in the alternative design
(an activation becomes and inhibition) unless checks for
reasonableness of constrained parameters are employed.
Groups were also checked for the existence of stable
steady states. A total of 160 groups were eliminated
because of unreasonable parameters or because one or
more cases in the group did not exhibit a stable steady
state at either the baseline conditions (X4, X5, and X6) or
at the steady state for a four-fold increase in source anti-
gen. Summary statistics were computed for each of the
constrained parameters (Table 1). Eliminating the groups
identified above resulted in 4200 cases in 840 groups that
were further analyzed.

Functional performance measures were computed for
each case and analyzed according to both Method 1 and
Method 2 using the statistical package R [25]. Density
plots for each of the effectiveness measures and associated
medians for the reference design are given in Figure 5. For
Method 1, functional effectiveness measures for all cases
were compared to the median over all reference cases. The
outcome was defined such that odds ratios greater than 1
indicate a preference for the reference design. For Method
2, functional effectiveness measures for each case were
compared to the functional effectiveness measures of the
paired reference. Cases in which the performance meas-
ures were equal were eliminated prior to the regression as
they contribute no information to an estimate of prefer-
ence. Outcomes were again defined such that odds greater
than 1 indicate a preference for the reference design. The
conditional logistic regressions for Method 1 were com-
puted using the clogit function and the logistic regressions
for Method 2 were computed using glm with binomial
family and logit link. Regression parameters were
exponentiated to yield odds ratios (Method 1) and odds
(Method 2). Results with σ = 0.1 for Method 1 are given
in Table 2 and for Method 2 in Table 3. Comparisons that
were fixed by constraint are indicated in the table. Regres-
sion parameters were considered to indicate a preference
if they were determined to be statistically different from
the null value at the α = 0.05 level. The process was
repeated for σ = 0.2 to examine sensitivity with respect to
the sampling distributions. Those results are given in
Tables 4 and 5.

We find that the first two measures (basal levels of antigen
and effector lymphocytes) show no statistically significant
difference between the reference and alternative design
even when the reference and alternative instances are
independent. This finding holds for both methods of
analysis. Examining the pairwise scatter plots for these
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Table 1: Summary statistics for model parameters. Summary statistics for all of the parameters fixed by equivalence were computed 
across the three alternatives for which equivalence constraints were applied after elimination of cases which violated the requirement 
for steady state or lower bounds for g2,1 or g2,5.

Parameter
Property α2 g2,1 g2,5

Minimum 0.065 0.137 0.100
1st Quartile 0.830 0.395 0.501
Median 1.001 0.468 0.928
Mean 1.074 0.470 0.804
3rd Quartile 1.203 0.544 1.032
Maximum 22.965 0.843 1.398
Standard Deviation 0.682 0.107 0.300

Performance measure distributionsFigure 5
Performance measure distributions. Smoothed histograms were computed using R (density function) and are presented 
for each of the 7 functional performance measures for each of the equivalence levels. The dashed vertical line indicates the 
median of the distribution for the reference system. The alternative is preferred when more of its probability mass is distrib-
uted to the left of the dashed line.
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cases (Figure 6) we see little correlation at this level of
equivalence. The introduction of internal equivalence cre-
ates a much stronger correlation between the values but
the correlation follows the null line (same basal level in
both reference and alternative) and thus still shows no sta-

tistically significant difference for paired comparisons.
The introduction of partial and full equivalence requires
these measures to be the same and thus contributes no
information to the comparison.

Table 2: Odds ratios for comparison using Method 1. Odds ratios for preference of system with suppression using conditional logistic 
regression (Method 1). The data consisted of 840 groups of 5 cases each (reference and four alternatives) sampled as described. Values 
shown give the odds that the reference system is preferred over the alternative. Values marked with asterisks are significant at the α = 
0.05 level. Kinetic orders and rate constants were sampled with σ = 0.1. Cells marked with an odds ratio of 1 or = indicate cases that 
were fixed by equivalence.

Functional 
Performance 
Objective

Independent 
Alternative

Internally 
Equivalent

Partially Equivalent Fully Equivalent Irvine and 
Savageau

Minimize Basal Level 
of Systemic Antigen

0.76 0.94 1 1 =

Minimize Basal Level 
of Effector 
Lymphocytes

0.85 1.1 1 1 =

Minimize Antigenic 
Gain

0.34* 0.39* 0.36* 1 =

Minimize Effector 
Gain

1.4* 1.5* 1.8* 1 =

Minimize Dynamic 
Levels of Antigen

32* 28* 34* 11* +

Minimize Dynamic 
Levels of Effector

2.3* 1.9* 2.4* 0.97 +

Minimize Sensitivity to 
Parameter Variation

11* 12* 13* 5.5* +

Table 3: Odds ratios for comparison using Method 2. Odds for preference of system with suppression using paired comparisons and 
logistic regression (Method 2). The data consisted of 840 groups of 5 cases each (reference and four alternatives) sampled as described. 
Values shown give the odds that the reference system is preferred over its paired alternative. Values marked with asterisks are 
significant at the α = 0.05 level. Kinetic orders and rate constants were sampled with σ = 0.1. Cells marked with an odds ratio of 1 or = 
indicate cases that were fixed by equivalence. † Odds of ∞ shown for measures were reference was found to be better than the 
alternative in every case sampled.

Functional 
Performance 
Objective

Independent 
Alternative

Internally 
Equivalent

Partially Equivalent Fully Equivalent Irvine and 
Savageau

Minimize Basal Level 
of Systemic Antigen

0.91 0.98 1 1 =

Minimize Basal Level 
of Effector 
Lymphocytes

1.0 0.98 1 1 =

Minimize Antigenic 
Gain

0.63* 0.31* 0.25* 1 =

Minimize Effector 
Gain

1.2* 2.1* 2.2* 1 =

Minimize Dynamic 
Levels of Antigen

3.9* 69* 55* 55* +

Minimize Dynamic 
Levels of Effector

1.6* 1.9* 2.2* 1.2* +

Minimize Sensitivity to 
Parameter Variation

2.2* 22* 21* ∞† +
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Functional effectiveness measures of antigenic gain and
effector gain show differing preference for the alternative
and reference designs. The alternative design shows statis-
tically significant odds of having a lower antigenic gain

than the reference for the independent, internal, and
partial equivalence cases. The reference system, however,
demonstrates statistically significant preference for
reduced effector gain. These findings are again consistent

Table 4: Odds ratios using Method 1 with increased sampling variance. Results from sensitivity analysis using increased variance in 
sampled population (σ = 0.2 versus σ = 0.1) giving odds ratios for preference of system with suppression using conditional logistic 
regression (Method 1). The data consisted of 460 groups of 5 cases each (reference and four alternatives) sampled as described. Values 
shown give the odds that the reference system is preferred over the alternative. Values marked with asterisks are significant at the α = 
0.05 level. Kinetic orders and rate constants were sampled with σ = 0.2. Cells marked with an odds ratio of 1 or = indicate cases that 
were fixed by equivalence.

Functional 
Performance 
Objective

Independent 
Alternative

Internally 
Equivalent

Partially Equivalent Fully Equivalent Irvine and 
Savageau

Minimize Basal Level 
of Systemic Antigen

1.2 0.87 1 1 =

Minimize Basal Level 
of Effector 
Lymphocytes

0.92 1.1 1 1 =

Minimize Antigenic 
Gain

1.2 0.61* 0.48* 1 =

Minimize Effector 
Gain

2.2* 1.6* 1.4* 1 =

Minimize Dynamic 
Levels of Antigen

4.9* 4.5* 3.2* 3.8* +

Minimize Dynamic 
Levels of Effector

0.62* 0.59* 0.50* 0.44* +

Minimize Sensitivity to 
Parameter Variation

5.4* 5.3* 5.2* 2.5* +

Table 5: Odds ratios using Method 2 with increased sampling variance. Results from sensitivity analysis using increased variance in 
sampled population (σ = 0.2 versus σ = 0.1) giving odds for preference of system with suppression using paired comparisons and logistic 
regression (Method 2). The data consisted of 460 groups of 5 cases each (reference and four alternatives) sampled as described. Values 
shown give the odds that the reference system is preferred over its paired alternative. Values marked with asterisks are significant at 
the α = 0.05 level. Kinetic orders and rate constants were sampled with σ = 0.2. Cells marked with an odds ratio of 1 or = indicate cases 
that were fixed by equivalence. † Odds of ∞ shown for measures were reference was found to be better than the alternative in every 
case sampled.

Functional 
Performance 
Objective

Independent 
Alternative

Internally 
Equivalent

Partially Equivalent Fully Equivalent Irvine and 
Savageau

Minimize Basal Level 
of Systemic Antigen

1.2 0.82* 1 1 =

Minimize Basal Level 
of Effector 
Lymphocytes

0.98 1.2 1 1 =

Minimize Antigenic 
Gain

0.89 0.59* 0.58* 1 =

Minimize Effector 
Gain

1.4 1.5* 1.6* 1 =

Minimize Dynamic 
Levels of Antigen

1.8* 5.8* 6.8* 30* +

Minimize Dynamic 
Levels of Effector

0.98 0.76* 0.69* 0.55* +

Minimize Sensitivity to 
Parameter Variation

2.1* 5.5* 6.0* ∞† +
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across both methods of analysis. Introducing constraints
to achieve full equivalence causes these gains to be equal
in both the reference and alternative. The introduction of
constraints on L1,4 and L1,5 + L1,6 hides the differential
preference with respect to effector and antigen gain. Anal-
ysis using the incremental introduction of constraints per-
mits the observance of these differences.

Dynamic responses for both antigen peak levels and effec-
tor peak levels demonstrate a preference for the reference
design. Even for an independent alternative (no internal
or external equivalence), the odds of an instance with sup-

pression being preferred over an instance without sup-
pression with respect to dynamic levels of antigen and
effector are 32 and 2.3 for Method 1 and 3.9 and 1.6 for
Method 2. The strong preference for the design with
suppression is seen at all levels of equivalence for both
Method 1 and Method 2 when considering dynamic levels
of antigen. A significant preference for the design with
suppression is also seen for dynamic levels of effector. The
finding under this measure does lose significance under
full equivalence for Method 1. We conclude that the refer-
ence design is better than or equal to the alternative in all
cases.

Pairwise comparison of selected performance measuresFigure 6
Pairwise comparison of selected performance measures. Scatter plots of 840 pairs were produced in R and show basal 
systemic antigen level (top), basal effector level (middle), and sensitivity (bottom) in the reference (x-axis) versus the same 
value in the associated alternative (y-axis) for all equivalence levels. The dashed diagonal line corresponds to the null condition 
where the reference and the alternative are equal. The reference is preferred over the alternative when more pairs fall above 
the diagonal. System sensitivity shows a clear preference for the reference with all cases preferring the reference under full 
equivalence.
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Sensitivity to parameter variation, as measured by S(L1,4,
h2,2) demonstrates a clear preference for the design with
suppression. In population level comparisons (Method
1), the odds of preference for the system with suppression
were 11, 12, 13, and 5.5 for the four levels of equivalence.
In pairwise comparisons (Method 2) the odds for prefer-
ence of the reference were 2.2, 22, 21 for the independent,
internally equivalent, and partially equivalent cases.
Under full equivalence the reference was preferred in
every case sampled. Clearly, the design with suppression
is preferred, independent of our introduction of
constraints.

Overall, the design with suppression is equal to or pre-
ferred in six out of the seven functional effectiveness
measures and this conclusion can be generalized to the
lowest level of equivalence. We also find that these obser-
vations apply to both population-based comparisons
against a common threshold and controlled for group
effects (Method 1) and paired comparisons (Method 2).
We conclude that observations of preference for the
system with suppression over the system without suppres-
sion are very general and are conditioned only on the
sampling space used to draw members of the populations
studied. We find that these observations differ from those
of Irvine and Savageau only with respect to the minimiza-
tion of antigenic gain and to some extent in the
minimization of dynamic effector levels. This difference
in finding, as determined by antigenic gain, would be
expected as Irvine and Savageau employed a fully equiva-
lent alternative in their comparison that was based on a
constraint on L1,4. Their study would not have been able
to detect a difference in preference based on this measure.
Differences in dynamic measures would also be expected
as the dynamic data depends on the parameters of the sys-
tem and a controlled comparison would, as discussed in
previously, require a sampling of the parameter space.

Analysis of sensitivity with respect to the sampling distri-
butions indicated that in 6 of the 7 measures, the prefer-
ences held as described above. For dynamic levels of
effector, the preference shifted from the system with sup-
pression (reference) to the system without (alternative).
Under both methods and across all levels of equivalence
the preference shifted away from the reference and either
became insignificant or shifted slightly in favor of the
alternative. To verify these findings we repeated the entire
analysis with a larger starting sample (5000 groups versus
1000 groups, results not shown). The same shift in prefer-
ence was observed for the larger sample size, and we
conclude that our observations with respect to this meas-
ure should be conditioned on the chosen sample space.

Discussion
The primary purpose of this analysis was to demonstrate
proposed enhancements to the method of mathemati-
cally controlled comparisons. Through this analysis we
have demonstrated the incremental introduction of con-
straints and have identified that in one measure a
preference for the alternative was detected consistently
across levels of equivalence that would not have been
identified through comparison using the fully equivalent
alternative. The conclusions reached in this analysis,
which qualitatively match those of Irvine and Savageau,
are more general in that we demonstrate the existence of
preference for the system with suppression with fewer
constraints and that these preferences additionally appear
in population-level comparisons to a common threshold
(Method 1). Our use of methods from categorical data
analysis (logistic regression) and odds (or odds ratios) as
a measure of preference provides a statistically meaningful
method for comparing the results; and estimation of the
confidence interval for those measures provides a method
for assessing the sufficiency of the sampling used in the
analysis. The compilation of these results in a table of
increasing equivalence provides a convenient display of
the results and facilitates generalization to the fewest set
of constraints.

The analysis also indicated that unreasonable alternatives
can result from the application of constraints even when
sampling in a small region about reasonable nominal val-
ues. By using the S-system based framework, we are rely-
ing on an equivalence between the canonical S-system
representation and the biochemical network structure in
this analysis. The application of constraints that result in
kinetic orders that change sign or approach 0 is, therefore,
equivalent to a change in the structure of the alternative.
This would invalidate our assumption that the alternative
constructed from the reference by application of con-
straints results in a representative of the alternative bio-
chemical system design. The incorporation of a step that
explicitly checks the reasonableness of constructed alter-
natives eliminates the potential for such problems.

Our proposed enhancement to the method of controlled
comparisons provides results consistent with the currently
defined method for the fully equivalent case, allows for
the incremental introduction of constraints and generali-
zation of results, eliminates comparison with unrealistic
alternatives, and provides a consistent measure of
preference that can be compared across levels of equiva-
lence. We find that in this specific analysis, the results of
Irvine and Savageau can be generalized and that some dif-
ferential preference is observed for antigenic and effector
gains that would not have been observable in their fully
equivalent analysis. In general, we conclude that there are
different levels of confidence at which we might declare
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one design better than another and that the assessment of
these differences requires a more complete exploration of
the implications of constraints and sample spaces on the
conclusions we reach. As we continue to search for design
principles among the many pathways now being studied
we need to fully characterize the contexts in which a pref-
erence exists. The method of mathematically controlled
comparisons coupled with the canonical nonlinear repre-
sentations of S-systems and well-chosen statistical meth-
ods offers significant potential to facilitate these searches.
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Appendix
S-systems are systems of ordinary differential equations of
the following form [26].

The S-system representation offers a particular advantage
in that it allows for the determination of the system's
steady state by solution of a system of linear equations.
Setting the time derivatives to 0 and taking logs results is
a linear system of equations from which the log steady-
state values of the n dependent variables can be deter-
mined from the values of the m independent variables
and the system parameters [26].

S-systems additionally provide for the convenient charac-
terization of systemic performance local to the steady
state. Logarithmic gains that represent the change in the
log value of the steady state of a dependent variable or flux
as a result of a change in the log value of an independent
variable are computed as follows [26].

System sensitivities measure the degree to which changes
in the system parameters (kinetic orders and rate con-
stants) affect the steady state of the system. Sensitivities
are often used as a measure of the robustness of the
system.

Logarithmic gains and sensitivities used in this analysis
were computed using the implicit differentiation method
described in Chapter 7 of [9].
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