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Spermatogonial stem cells (SSCs) are exquisitely regulated to reach a balance between proliferation and differentiation in the niche
of seminiferous epithelium. Several extrinsic factors such as GDNF are reported to switch the transition, activating various intrinsic
signaling pathways. Transcriptomics analysis could provide a comprehensive landscape of gene expression and regulation. Here, we
reanalyzed a previously published transcriptome of two cell types (standing for self-renewing and differentiating SSCs
correspondingly). First, we proposed a new parameter, the expression index, to sort the genes considering both absolute and
relative expression levels. Using a dynamic statistical model, we identified a list of 1119 candidate genes for SSC self-renewal
with the best enrichment of canonical markers. Finally, based on interaction relations, we further optimized the list and
constructed a refined network containing integrated information of interactions, expression alternations, biological functions,
and disease associations. Further annotation of the 521 refined genes involved in the network revealed an enrichment of well-
studied signaling pathways. We believe that the refined network could help us better understand the regulation of SSCs’ fates, as
well as find novel regulators or targets for SSC self-renewal or preservation of male fertility.

1. Introduction

Spermatogonial stem cells (SSCs) of the testis serve as a
source pool for the continuous process of spermatogenesis
and preserve fertility across nearly the whole lifetime of male
mammals [1]. The small populations of SSCs are the ances-
tors of numerous differentiated and specialized cells includ-
ing spermatogonia, spermatocytes, spermatids, and mature
sperms [2]. Thus, SSCs are rarely found in the seminiferous
epithelium of adult testis. However, to maintain their multi-
potency, SSCs are tightly regulated to reach a balance
between self-renewal and differentiation [3]. Recent studies

showed that SSCs could also be reprogrammed to become
embryonic stem-like cells with pluripotency, which indicat-
ing this precious cell population may be applied in clinic
for the treatment of male infertility and testicular cancers [4].

Previous studies have generally revealed the biological
features for the self-renewal and development of mouse
SSCs [3]. In summary, SSCs are located in the basal part of
seminiferous tubules. The surrounding microenvironment
(including basal membrane, sertoli cells, and peritubular
myoid cells), termed as a niche, is of vital importance
for the fate decision of SSCs. SSCs are attracted to the
niche by CXCL12 and mainly regulated by two growth
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factors for self-renewal: glial cell line-derived neurotrophic
factor (GDNF) and fibroblast growth factor 2 (FGF2). Both
GDNF and FGF2 are successfully used to establish a system
for long-term in vitro culture of self-renewing SSCs [5, 6].
However, the detailed molecular mechanisms for the regula-
tion are not well elucidated.

Following extrinsic signal stimulations from the niche, it
is believed that the intrinsic gene expression within the SSCs
is consequently altered. Gene expression analysis based on
high-thought technologies provides an efficient approach
for initial screening of key regulators. Early in 2006, the
Oatley et al. constructed the transcriptome of mouse SSCs
under GDNF withdrawal using microarray [7]. This dataset
provides a valuable resource for identifying important genes
for the self-renewal and survival of SSCs. For example, sev-
eral genes such as Bcl6b, Etv5, and Lhx1 were further verified
and studied using various functional experiments [8, 9].
Compared to microarrays, the recent emerging RNA-Seq
technology has higher coverage and less noise, which enables
the identification of more differentially expressed genes with
high confidence [10, 11]. Recently, the gene expression pro-
filings of SSCs, differentiating spermatogonia cells, meiotic
cells, and haploid cells, were constructed using RNA-Seq
technology [12, 13], providing abundant resources for study-
ing the regulation of spermatogenesis at the gene level.

The main bottleneck of transcriptomic study is in the step
of statistical and bioinformatics analyses. Usually, a list of
candidate genes were generated using widely accepted statis-
tical criteria (such as a combination of P value and fold
change strategy). Then, automatical functional annotation
based on knowledgebase, such as Gene Ontology (GO) and
KEGG pathway, was performed to translate the gene list to
biomedical significance [14]. We previously proposed a
framework for reanalysis of published proteomics data to
revise candidate protein list and dig novel findings [15].
And we believe that the reanalysis of transcriptomes using
optimized bioinformatics methods could also help us to
better interpret the data.

In the present study, we firstly extracted the expression
data of two cell types (primitive type A spermatogonia
versus type A spermatogonia, approximately standing for
self-renewing and differentiating conditions in vivo) from a
previously published dataset [12]. Then, we evaluated the
expression features of eight canonical markers in RNA-Seq
data.We also proposed a new parameter, the expression index,
to integrate both absolute and relative expression abundances.
Using this parameter, we developed a statistical model for
dynamically screening the best cut-off considering the bio-
logical relevance. Finally, we constructed a refined network
combining the information of physical interaction, expression
change, biological function, and disease association, providing
optimized and well-organized functional annotations for
understanding and studying the maintenance of SSCs.

2. Materials and Methods

2.1. Data Collection and Processing. The quantification values
of protein-coding genes were directly extracted from the cal-
culated results based on fragments per kb of exon model per

million mapped fragments (FPKM) in a previously published
dataset [12]. The data of only two cell types were used: prim-
itive SG-A (primitive type A spermatogonia) and SG-A
(type A spermatogonia). We further filtered out low-quality
data by requiring a minimal FPKM value of 0.1. The differen-
tially expressed genes were identified using the Cuffdiffmod-
ule embedded in the Cufflinks package (version: 2.2.1) [16].
For better representing the absolute abundance of gene
expression, we calculated the percentile rank for each gene.
In addition to fold change, we also used the average change
percentage to represent the relative expression change. Then,
the expression index was calculated by multiplying the
average percentile rank by the average change percentage
for each gene. The Pearson method was applied to analyze
the correlation between the average abundances and fold
changes of canonical markers.

2.2. Dynamical Prioritization of Candidate Genes. To opti-
mize the selection of candidate genes highly associated with
the corresponding research background, we developed a
model which combines expert knowledge and statistical
inference. First, we proposed to calculate a new parameter
for each gene: the expression index (by multiplying the aver-
age change percentage by the average percentile rank). Thus,
a higher expression index represents a more confident
expression change. Then, the overall expression changes
were ranked according to expression change. We further
used two gene lists as expert knowledge (canonical genes
for SSC self-renewal and genes annotated to be associated
with cell proliferation or differentiation) to dynamically
search for an optimized cut-off, which can generate a result
with maximum positive genes. Fisher’s exact test was used
to compare the percentage of positive genes between
dynamic selected genes and all identified genes. A P value less
than 0.05 was considered for a statistically significant enrich-
ment in the selected genes.

2.3. Functional Annotation and Network Analysis. Genes
associated with cell proliferation or differentiation (in terms
of biological process) were extracted from the GO database
[17]. Phenotype information (including abnormal male
infertility and abnormal spermatogenesis) based on mouse
models were obtained from the Mouse Genome Informatics
(MGI) database [18]. The protein-protein interaction rela-
tions of candidate genes were annotated using the STRING
(version 10.5) database with a high confident cut-off score
of 0.7 [19]. We further used the Cytoscape (version 3.2.0)
software to reconstruct, analyze, and visualize the network.
The interactions, biological functions, and phenotype associ-
ations were all integrated to generate a refined network. Path-
ways associated with signaling transduction were predefined
by the Kyoto Encyclopedia of Genes and Genomes (KEGG)
database [20]. Fisher’s exact testwas used to search for enriched
pathways and biological processes in the refined network.

3. Results and Discussion

3.1. Expression Features of Canonical Markers for SSC Self-
Renewal. As described above, communicated to the niche
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factors, SSCs are strictly regulated to keep their multipotency
and to continuously generate different stages of spermato-
genic cells (Figure 1(a)). Till now, a few canonical markers,
including Bcl6b, Csf1r, Etv5, Gfra1, Lhx1, Pou3f1, Ret, and
Zbtb16 (Plzf), are well-studied and known to play important
roles in regulating SSC self-renewal [1, 21, 22]. The present
study is aimed to screen a revised list of genes highly associ-
ated with the maintenance of the SSC pool. First, we chose a
recently published gene expression dataset of multiple mouse
spermatogenic cells quantified by RNA-Seq [12]. Since we

focused on the self-renewal of SSCs, we only used the
data from two cell types: primitive SG-A (are mostly SSCs)
and SG-A (are mostly differentiating spermatogonial cells),
which provides a paired model for analyzing the transition
from self-renewal to differentiation in vivo. In summary, a
total of 13,385 protein-coding genes were identified combin-
ing two cell types (Figure 1(b); Supplementary data 1). We
then evaluated the absolute and relative expression features
of the canonical markers. To better represent the absolute
and relative abundance of gene expression, we calculated
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Figure 1: SSC fate decisions and expression features of transcriptomics data. (a) SSCs are well-regulated in the niche to maintain their
multipotency as well as the capacity for continuous spermatogenesis. (b) Comparison of genes expressed in primitive SG-A and SG-A. (c)
Correlation between fold change and expression level for canonical markers. (d) The traditional strategy for identifying candidate genes
based on statistical consideration only. (e) The proposed optimized strategy for identifying key genes considering both biological relevance
and statistical optimizing.
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the average percentile rank and change percentage, respec-
tively, for each gene. All eight canonical markers were
upregulated in primitive SG-A, which is consistent with
their theoretical change trend, indicating the high quality
of RNA-Seq data.

The average percentiles range from 0.30 to 0.89, which
indicates that most markers are highly expressed in SSCs.
However, the values of fold change only range from 1.25 to
2.86. As shown in Figure 1(c), we further found that the aver-
age abundances of these genes were negatively correlated
with fold change (r = −0 70 and P = 0 05). Thus, the higher
the absolute expression, the lower the relative expression
change, suggesting that only a certain amount of increase in
gene expression is required for the maintenance of SSC self-
renewal. However, it also should be noted that the isolated
cells were a mixture of different cell types. The primitive
SG-A cells contain both SSCs and gonocytes, while SG-A
cells are mostly differentiating SG with a small proportion
of stem cells. Thus, the detected fold change may be underes-
timated to some extent.

Traditional strategies for identification of differentially
expressed (DE) genes were only based on statistical inference.
Usually, a final combination of fold change and P value was
used as a cut-off. However, it seems that the determination
of such a cut-off was rather arbitrary [23]. And it is nearly
impossible to generate reliable P values if there is only one
replication in each group using the current statistical
methods. As shown in Figure 1(d), using a loose statistical
cut-off (P < 0 05), a total of 696 DE genes could be identified.
However, only two canonical biomarkers were covered by
the list. While the medium (P < 0 05 and fold change > 2 0)
and strict (false discovery rate: FDR < 0 05) criterion were
applied, the total number of DE genes and markers was fur-
ther decreased dramatically. And to include all markers in
the list, the cut-off of P value will be increased to 0.63, which
identified a total of 7436 candidate genes. Thus, the candidate
genes identified by statistical consideration only will lose
the majority of canonical markers, resulting in a poor bio-
logical relevance. Here, we proposed a new bioinformatics
approach, which combines expert knowledge and a dynamic
statistical evaluation model, for screening of candidate genes
with high biological relevance (Figure 1(e)). First, we will
start from the canonical markers and develop a statistical
model to enrich these markers. Then, we will also use inter-
action relations to further revise the list and to construct a
refined regulation network. The traditional strategy was not
sensitive to canonical biomarkers, possible due to technical
and biological variation. We believe that the proposed new
strategy will identify more markers and coexpressed genes,
which will be more relevant to the research background.

3.2. Expert Knowledge-Guided and Dynamic Screening of
Candidate Genes for Maintaining SSCs. First, we created a
new parameter for comprehensively evaluating the overall
confidence of expression change: the expression index, which
is equal to the average change percentage multiplied by the
average percentile rank for each gene (Figure 2(a)). The aver-
age change percentages mapped all fold changes to the range
of 0 to 2, which solves infinite values of expression change

(absent change will convert to a value of 2). However, some
values of large fold changes were unreliable due to low
abundance issue. For example, a gene increase from 0.1 to
0.2 (2 folds) is apparently less confident than an increase
from 100 to 200. Thus, we used the value of the average
percentile rank to normalize the change trend, which could
be used to filter out those low values as well as to bubble up
confident changes (Figure 2(b)). After applying this algo-
rithm, the canonical markers ranged from 0.16 to 0.41.

We chose the canonical markers as expert knowledge to
optimize the screening of candidate genes. We created a sta-
tistical model which dynamically evaluates the enrichment of
positive reference genes (canonical markers). By an incre-
ment value of 0.001, we tested the results of identifying pos-
itive genes using all possible cut-off values of the expression
index. As shown in Figure 2(c), as the expression index
increases, the significance of enrichment rises and then falls
as expected. Contrary to the traditional statistical inference
using an empirical cut-off, our mission is to dynamically find
an optimized list of coexpressed genes with maximum posi-
tive results as well as minimum negative results based on
expert knowledge. According to the results, the best cut-off
was an index value of 0.267 (p < 0 001), which identified six
markers in 1119 candidate genes. And the best cut-off to
include all markers was 0.156 (p = 0 010), identifying a total
of 3585 genes.

The selected pair of cell types stands for a transient status
from self-renewing to differentiating. Thus, differentially
expressed genes between these two groups should be highly
associated with cell proliferation and differentiation theoret-
ically. Then, we also tested another model to use all genes
associated with cell proliferation or differentiation as positive
genes (Figure 2(d)). A total of 3517 genes were annotated to
be associated with cell proliferation or differentiation based
on GO annotations (including all of the eight canonical
markers). Similarly, the best cut-off was 0.218 (P = 0 028),
which finds a total of 1844 differentially expressed genes with
547 genes associated with cell proliferation or differentiation
(Supplementary data 2). Among these genes, six canonical
markers were also included. And the best cut-off to include
all markers was 0.121 (P = 0 045) with a cost of incorporat-
ing 5037 genes. Overall, the presented dynamic model
using the expression index provides a simple and robust
strategy for the initial screening of candidate genes directly
associated with the research background. This strategy
could also be applied in other omics data (for both tran-
scriptomics and proteomics analyses) to prioritize the gene
list and find an optimized cut-off in experiments with or
without biological replications.

3.3. Construction of a Refined Expression-Function Relation
Network. Balanced between self-renewal and differentiation,
SSCs were tightly regulated by various extrinsic signal factors
in the niche. Starting from the membrane receptors, a series
of intrinsic genes were thought to be activated or silenced.
Thus, it is important to organize these genes in a network
for better understanding their regulation relationships and
cascade signaling transductions. In addition, the initial list
generated above may contain irrelevant coexpressed genes,
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which share similar expression patterns with canonical
markers but not functionally associated. Using the 1119 can-
didate genes identified above, we first searched for potential
interactions among these genes using the STRING database
[19]. In total, we generated a complex relation network con-
taining 521 genes with 1149 pairs of relations based on
known and predicted protein-protein interactions with high
confidence. To better analyze and visualize this network, we
used the Cytoscape software to reconstruct the network.
We also anticipated that a well-organized network could help
us understand the dynamic landscape of gene regulation as
well as find novel regulators for the self-renewal of SSCs.
Thus, we mapped the absolute and relative expression

information to the network, indicating the change trend
and confidence of expression alternation. We also searched
for all known genes associated with male fertility (based on
the phenotype data of MGI) in addition to the functional
terms of cell proliferation and differentiation. Combining
the information of interaction, expression, biological func-
tion, and disease association (mouse phenotype), we finally
generated a refined network for interpreting the self-renewal
of SSCs at the gene level (Supplementary data 3). In summary,
a total of 192 genes were upregulated in self-renewing SSCs,
while 329 genes were downregulated. For functional annota-
tion, 196 (37.6%) genes were found to be involved in cell pro-
liferation or differentiation (Figure 3(a)), and 54 (10.4%) genes
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Figure 2: Dynamic screening of candidate genes. (a) The formula for calculating the expression index. (b) Distribution of gene count ranked
by the expression index. (c) Dynamically optimizing the best cut-off using the canonical markers as positive reference (d). Optimizing the best
cut-off using genes associated with cell proliferation or differentiation as positive reference.
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were proven to cause phenotypes of male infertility or abnor-
mal spermatogenesis (Figure 3(b)). The percentages of the two
classes of genes in the network are significantly greater than

those in all identified genes (26.3% and 4.6%, resp.), further
indicating that the refined network is highly related to the
corresponding research background.
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GDNF-dependent signaling transduction is a classical
pathway responsible for the maintenance and self-renewal
of SSCs both in vivo and in vitro [24]. Among the refined net-
work, five of the eight canonical markers (Etv5, Gfra1, Lhx1,
Pou3f1, and Ret) were involved, indicating that the pre-
dicted network may cover a wide range of bona fide regula-
tory interactions associated with SSC self-renewal. For
example, Gfra1 is the direct receptor of GDNF, which is
located on the cell surface, and Ret (a tyrosine kinase trans-
membrane) binds GDNF and triggers the activation of mul-
tiple intrinsic signaling pathways [25]. One of the most
studied signal pathways involved in SSC self-renewal was
the PI3K-Akt pathway [26]. As indicated in Figure 3(c), the
direct or cascaded interactions of Gfra1-Ret-Kitl/Hsp90b1
(Kitl and Hsp90b1 are key genes in the PI3K-Akt pathway)
were prioritized in the Gfra1-centric subnetwork. Based on
KEGG database, we further searched for potential regulating
signaling pathways in the refined network. As listed in
Table 1 (Supplementary data 4), a total of 13 pathways were
enriched, containing the most studied pathways for the
maintenance of SSCs including MAPK, PI3K-Akt, Ras, and
Wnt signaling pathways [21, 27].

In addition to prioritization of well-known genes, we sug-
gested that the refined network could also be used to find
novel regulators for SSC self-renewal. For example, in a
previous proteomic study, with the help of biological anno-
tation and network construction, we successfully identified
Raptor as a downstream regulator for GDNF-dependent
cell proliferation [28]. However, it should also be noted that
the present network was derived from RNA-Seq data. Many
signaling pathways are highly regulated at protein level with
the alternation of post-translational modification such as
phosphorylation. Thus, the present network may be limited
for identifying pivotal genes associated with phosphoryla-
tion. However, we believe that this could be improved by
integration of transcriptomics and proteomics data under
similar conditions. Besides, patients with testicular cancer
may lose the ability to generate germ cells following antican-
cer treatments. More and more studies started to establish
models of SSC transplantation for restoring male fertility

[29, 30]. Since the self-renewal of SSCs is the foundation of
continuous spermatogenesis, the network may also help us
in identifying target genes for the preservation of male fertility.

Finally, we comprehensively compared the technical fea-
tures and biological relevance between the refined and tradi-
tional DE gene lists (Figure 3(d)). The present optimized
strategy used canonical markers as true positive genes to
automatically find the best cut-off of the expression index
and generate a list of candidate genes (including 5 of the 8
markers). However, the traditional approach only considered
statistical issue. The cut-off was based on the empirical
P value of 0.05, and only two canonical markers were iden-
tified. We also performed functional enrichment (in terms of
biological process and KEGG pathway) analyses using these
two gene lists. The refined gene list enriched many represen-
tative functional terms including apoptosis, cell cycle, cell dif-
ferentiation, cell proliferation, spermatogenesis, and various
signaling pathways. Although the P value-derived list can
also identify a few terms about cell cycle, apoptosis, cell
differentiation, cell proliferation, and spermatogenesis, no
signaling pathways were enriched. There are two main rea-
sons that the refined gene list obtains better biological rele-
vance. First, the refined list enriched more coexpressed
genes using canonical biomarkers as a positive reference. Sec-
ond, some coexpressed genes without functional associations
were further removed based on the interaction network.

4. Conclusions

Although transcriptomics technology can provide a profiling
of the entire gene expression and regulation, bioinformatics
analysis is a critical step for translating the gene list to bio-
medical significance. Traditional screening of candidate
genes among two groups is usually based on statistical infer-
ence using a one-size-fits-all cut-off. In the present study, we
first ranked the genes considering both absolute abundance
and relative change, by the proposed expression index. Then,
taking well-studied genes (known to be associated with SSC
self-renewal) as the positive reference, we constructed a sta-
tistical model which dynamically screens for the best cut-off

Table 1: Enriched signaling pathways in the network.

Pathway ID Pathway name Gene count P value

4010 MAPK signaling pathway 21 2.7E − 05
4151 PI3K-Akt signaling pathway 21 8.5E − 04
4014 Ras signaling pathway 16 8.9E − 04
4310 Wnt signaling pathway 11 4.8E − 03
4022 cGMP-PKG signaling pathway 12 5.2E − 03
4668 TNF signaling pathway 9 7.7E − 03
4621 NOD-like receptor signaling pathway 6 1.2E − 02
4012 ErbB signaling pathway 7 1.8E − 02
4015 Rap1 signaling pathway 11 4.1E − 02
4068 FoxO signaling pathway 8 5.0E − 02
4921 Oxytocin signaling pathway 12 3.0E − 03
4261 Adrenergic signaling in cardiomyocytes 10 1.2E − 02
4915 Estrogen signaling pathway 7 2.8E − 02
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to prioritize candidate genes. This model was further ver-
ified using predicted genes involved in cell proliferation
or differentiation as positive genes, providing a simple
and robust approach to find an optimized cut-off for iden-
tification of functional important genes with minimal false
discovery rate.

Triggered by exogenous factors secreted by the surround-
ing cells, various endogenous genes are thought to be acti-
vated or silenced for maintaining the proliferation and
survival of SSCs. Although a few key regulators and signaling
pathways are reported, a well-organized level of annotation is
required to provide a comprehensive understanding of the
mechanism of SSC self-renewal in vivo. Here, we chose two
cell types (primitive SG-A versus SG-A) as a transient model
of self-renewing versus differentiating. By reanalyzing the
comparative transcriptome of these cells, we identified a list
of 1119 candidate genes with best enrichment of canonical
markers using the expert knowledge-guided and dynamic
statistical model as mentioned above. Using these genes, we
finally constructed a refined network combining information
of physical interaction, expression change, cellular function,
and disease association. This network contains five of the
eight canonical markers and also enriches the most impor-
tant signaling pathways, indicating a high quality and rele-
vance of gene prioritization. And we suggested that the
refined network could also be used to find novel regulators
for SSC self-renewal, as well as target genes for treatment of
male infertility or testicular cancers.
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