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A crucial biological process called angiogenesis plays a vital role in migration, growth, and wound healing of endothelial cells and
other processes that are controlled by chemical signals. Angiogenesis is the process that controls the growth of blood vessels within
tissues while angiogenesis proteins play a significant role in the proper working of this process. The balancing of these signals is
necessary for the proper working of angiogenesis. Unbalancing of these signals increases blood vessel formation, which causes
abnormal growth or several diseases including cancer. The proposed work focuses on developing a two-layered prediction
model using different classifiers like random forest (RF), neural network, and support vector machine. The first level performs
in silico identification of angiogenesis proteins based on the primary structure. In the case the protein is an angiogenesis
protein, then the second level predicts whether the protein is linked with tumor angiogenesis or not. The performance of the
model is evaluated through various validation techniques. The model was evaluated using k-fold cross-validation, independent,
self-consistency, and jackknife testing. The overall accuracy using an RF classifier for angiogenesis at the first level was 97.8%
and for tumor angiogenesis at the second level was 99.5%, ANN showed 94.1% accuracy for angiogenesis and 79.9% for tumor
angiogenesis, and the accuracy of SVM for angiogenesis was 78.8% and for tumor angiogenesis was 65.19%.

1. Introduction

The biological process in which new blood vessels develop
from preexisting blood vessels is called angiogenesis [1]. It
is a normal process that plays a vital role in the migration,
growth, and healing of endothelial cells. Angiogenesis itself
is controlled by chemical signals. Usually, the consequences
of these chemical signals remain balanced which means that
new blood vessels only develop on a need basis. But some-
times these signals can be unbalanced and may increase
blood vessel formation, which in return causes abnormal
growth or diseases [2, 3]. Angiogenesis plays a vital role in
the development and growth of cancer cells [4, 5]. Just like
normal cell growth, tumor cells also need oxygen and other
nutrients to grow and expand. These elements are present in
the blood. Tumor cells send chemical signals that stimulate

the growth of new blood vessels. Without the angiogenesis
process, abnormal or tumor cells cannot grow beyond 1-
2mm in size [6, 7]. But this abnormal angiogenesis process
not only causes cancer but also is a precursor of several dis-
eases like leukemia, hematologic diseases, muscular degener-
ation, and eye diseases [8–10].

Cancer is ranked as the leading cause of death in the 21st
century around the world. According to a survey report pub-
lished in 2015 by the World Health Organization (WHO),
cancer is the first and second major reason for death before
the age of 70 in 91 countries around the globe [7]. Further-
more, according to the cancer statistics report 2018 by the
International Agency for Research on Cancer and Cancer
Research UK, 9.6 million people around the world are dying
due to cancer [7, 11]. This ratio is predicted to increase in
the coming years.
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Researchers, scientists, and biologists all around the
world are searching for different techniques for developing
different drugs and systems to fight against this deadly dis-
ease [12]. Until now, a lot of researchers have contributed
their knowledge to develop different systems for tumor pre-
diction at different stages of its life cycle. Different strategies
were proposed to control this disease like chemotherapy [13,
14], radiation therapy [15, 16], surgeries, and bone marrow
transplant also known as cord blood and vaccines [17]. Can-
cer can attack the brain that is the most crucial part of the
human body. It has the most delicate and complex structure,
so it is difficult to inject drugs to cure it. But different
approaches can deliver drugs like high-dose chemotherapy,
blood-brain barriers, and disruption [18]. Many therapies
for tumors revolve around the attempt to suppress the
tumor angiogenesis process. Scientists have discovered many
ligands that can bind to tumor angiogenesis proteins such
that their function is inhibited. Hence, identification of
angiogenesis and tumor angiogenesis proteins is crucial in
finding novel and effective tumor therapies.

Formerly, several mathematical [3] and computational
models have been developed for the classification or identifi-
cation of various proteomic and genomic attributes [19].
The proposed work establishes a computational model based
on position and combinational information of a primary
sequence that attempts to accurately identify angiogenesis
and tumor angiogenesis proteins. Since tumor angiogenesis
proteins are also characterized as angiogenesis proteins, the
similarity of their obscure features can often lead to an
ambiguous outcome. Ambiguity among seemingly similar
angiogenesis and tumor angiogenesis proteins is resolved
by a two-layer classification model. The initial layer distin-
guishes between angiogenesis and nonangiogenesis proteins
while the second layer deciphers if a protein identified as an
angiogenesis protein is tumor causing or not. The two-
layered model helps alleviate ambiguity and yield more
accurate and assiduous results.

The rest of the paper is organized as follows. Section 2
illuminates the importance of angiogenesis uncovered in
the previous research and also discusses the state-of-the-
art models used for in silico identification of proteomic
attributes. Section 3 discusses the methodology adopted
for the proposed in silico identification model. Section 4
illustrates the accuracy of the model obtained through
well-defined rigorous testing methodologies. Section 5 pro-
vides a general discussion regarding the performance of the
proposed model.

1.1. Current State of the Art. The crucial role of angiogenesis
in tumor progression was first discovered by Judah Folk-
man in 1971 [20]. Angiogenesis is a crucial process of vas-
cular system growth through the sprouting and splitting of
blood vessels [21]. Tumor cells also require a constant flow
of blood for their growth for which they simulate the
growth of blood vessels through secretion of various tumor
angiogenesis proteins or growth factors. Cancer treatment
therapies are aimed at finding inhibitors for such growth
factors. Identification of angiogenesis and tumor angiogene-
sis proteins bears enormous significance in cancer research

as they are targets of such inhibitors [22]. Most of the cancer
research revolves around finding ligands and substances that
will bind with tumor angiogenesis proteins and inhibit its
role [23]. Scientists use various methodologies for the identi-
fication of protein attributes [24–28]. In silico identification
techniques have evolved and received acclaim over the past
few years as they provide robust and fast results and are
cost-effective [29, 30]. Scientists have used various mathe-
matical and computational models to identify attributes of
proteins based on the composition and positioning of amino
acid residues [31]. A position-based mathematical model,
namely, position-specific scoring matrix (PSSM), was intro-
duced in 1982 [32]. Numerous prediction models have been
designed that incorporate the use of PSSM for the identifica-
tion of proteomic attributes. However, since PSSM did not
incorporate the composition relevant information into the
model, therefore it lacked a major aspect that determines
proteomic attributes. In 2001, Chou introduced the pseudo
amino acid composition model that encompassed position
as well as composition information into the model and
hence provided better results [33]. Many generalizations
and variants have since been proposed to provide even better
results [31]. The choice of the most appropriate classifier
plays a pivotal role in the design of such methodologies. A
multitude of classifiers have been engaged for the prediction
of posttranslational modification sites including random for-
est, support vector machine, neural networks, and deep
learning. In [34], the authors incorporate adapted normal
distribution biprofile, Bayes, with PseAAC to formulate a
prediction model. The accuracy is further improved using
kernel sparse representation classification and minimum
redundancy and maximum relevance algorithm [35]. Subse-
quently, an improved depiction uses a deep learning algo-
rithm formulated by [36]. Deep learning has emerged as
an encouraging model for the resolution of a multitude of
problems [37–39]. The proposed work presents a two-
layered model based on position and composition relative
features and statistical moments [31] for the identification
of angiogenesis and tumor angiogenesis proteins which are
probed on various classifiers to accrue the best results.

2. Materials and Methods

Angiogenesis has been identified as a critical process that
needs to be subjugated to disrupt the progression of cancer.
Angiogenesis proteins especially the ones that lead to tumor
angiogenesis have a crucial significance in this process. Since
they promote the development of new blood vessels within
the cancerous tissue, therefore they are considered an
important biomarker for early detection of cancer.

Tumors also use the same process for their growth; how-
ever, it is possible to uniquely identify the growth factors
that are responsible for its growth. In terms of proteomic
features, angiogenesis and tumor angiogenesis have mutual
properties. Therefore, to fulfill the arduous challenge of dis-
tinctly identifying tumor angiogenesis proteins, a two-
layered approach is adopted as shown in Figure 1.

The first layer of the model detects whether or not a pro-
tein is an angiogenesis protein, using the primary structure
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of that protein. In the case it is an angiogenesis protein, then
the second layer of the model is invoked to decide whether
the angiogenesis protein can potentially cause cancer or not.

The proposed workflow is shown in Figure 2, consisting
of the following five-step approach; initially, we will collect
the well-reviewed and experimentally tested dataset consist-
ing of angiogenesis proteins preprocessed to remove redun-
dancies. Further, feature extractions are performed to
transform the biological data into its equivalent mathemati-
cal matrix. In the third step, the obtained feature matrix is
used to train the model for further prediction. In the fourth
step, the model is evaluated for its correctness, sensitivity,
specificity, and MCC. In the fifth step, we developed the
webserver.

2.1. Dataset Collection. The dataset was collected from the
UniProt database using meticulously designed search parame-
ters. UniProt is a Universal Protein Resource that contains
huge information about the sequence of proteins and their
biological functions [22]. A dataset containing positive
samples was composed for both angiogenesis and tumor
angiogenesis using the UniProt keyword “Angiogenesis.”
Similarly, negative samples were also collected. UniProt has
no keyword for “Tumor Angiogenesis” proteins. Nonethe-
less, they comprise within the set of angiogenesis proteins;
therefore, tumor angiogenesis proteins were manually
curated from the acquired dataset. Each sample within the
dataset was manually analyzed for annotated proteomic
properties and published evidence within the database to
form a set of tumor angiogenesis proteins. However, ambig-
uous samples were left out. After the collection of data from
UniProt, the CD hit suite (http://weizhong-lab.ucsd.edu/
cdhit_suite/cgi-bin/index.cgi) was used to reduce the homol-
ogy of data samples. Clustering of the angiogenesis and

tumor angiogenesis datasets was performed by setting the
sequence identity parameters at 60%. Ultimately, 761 posi-
tive and 2776 negative clusters were formed for the angio-
genesis dataset. Similarly, 256 positive and 448 negative
clusters were formed for the tumor angiogenesis dataset. A
representative sequence was selected from each cluster to
form the final dataset.

A = A+ ∪ A−: ð1Þ

The above equation shows the benchmark dataset used
in this work, where A+ represents the positive data samples
of angiogenesis protein and A− shows the negative data.
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Figure 1: Flowchart of the proposed system.
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Feature extraction
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Figure 2: The workflow of the proposed model is shown which
includes five steps: data collection and its preprocessing, feature
extraction, training, model evaluation, and the construction of the
webserver.
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Also, the positive tumor angiogenesis samples are repre-
sented as T+, and negative tumor angiogenesis proteins are
represented as T− as shown in the equation below:

T = T+ ∪ T−: ð2Þ

2.2. Feature Extraction. A robust and efficient methodology
for the transformation of biological sequences into a numer-
ical notation for incorporation into a machine learning algo-
rithm is the most pivotal concept in the design of such
predictive models [31, 40]. This conversion must keep intact
the original information or features of the sequence for
analysis in some numerical form. For this purpose, each pri-
mary sequence within the collected data is converted into a
fixed-size vector. A feature vector of static length is formed
which represents a primary sequence and remains essentially
invariant upon the scale of the sequence [41]. Incorporation
of such a transformation model is ideal as most of the state-
of-the-art classifiers work with vectors [22, 42, 43]. A vector
described in a model may also lose complete information of
the pattern sequence [44]. For this problem, Chou’s PseAAC
was proposed which is used by many scientists for the con-
struction of genomic and proteomic prediction models and
their applications [45, 46]. Later, this model was improved
to provide a better correlation perspective among residues
that reflect onto feature coefficients.

Let P be a sequence of proteins of length L, which is rep-
resented as

P = R1R2R3⋯R16R17R18⋯RL, ð3Þ

where Ri is an arbitrary residue of a polypeptide chain with
length L.

Feature extraction yields a vector with numerous numer-
ical coefficients. This transformation from a variable-length
polypeptide chain into a fixed-length feature vector is illus-
trated in the following equation:

Δ Pð Þ = Ψ1Ψ2 ⋯Ψu ⋯ΨΩ½ �T, ð4Þ

where Δ is the transformation function, Ψi is an arbitrary
coefficient, and Ω is the constant length of the feature vector
[22, 31].

2.3. Statistical Moments. The proposed methodology
develops on the use of statistical moments to form a numer-
ical representation such that the obscured information
within the primary structure of proteins stays intact. These
moments form a succinct numerical form such that the orig-
inal data can be reconstructed without any significant loss of
information. Moments can be obtained up to several orders;
each provides a deeper perspective into specific aspects of
data like positioning, eccentricity, skewness, and peculiarity
[31]. Mathematicians and statisticians have devised many
moments generating coefficients incarnated based on well-
defined distribution functions and polynomials [35, 44].

In the proposed work, Hahn moments, raw moments,
and central moments are organized to form a feature set.
The Hahn moment bears location- and scale-oriented vari-

ance and is calculated based on the Hahn polynomial. Cen-
tral moments abide information regarding asymmetry,
mean, and variance. The central moments are derived for
the centroid of collective data making these moments scale
variant and location invariant. Subsequently, raw moments
are scale and location variants and represent properties like
asymmetry, variance, and mean.

A matrix P′ with m ×m dimensions is formulated for
a two-dimensional residual protein representation where
= d ffiffiffiffi

L
p e.

P′ =

R11 R12 R13 ⋯ R1m

R21 R22 R23 ⋯ R2m

⋮ ⋮ ⋮ ⋮ ⋮

Rm1 ⋯ ⋯ ⋯ Rmn

2
666664

3
777775: ð5Þ

The vector P is easily transformed into matrix P′ by
using a simple mapping function explained in [47]. The
primary sequence is fitted into a two-dimensional matrix
so that it could be formulated into the Hahn polynomial
which is orthogonal. The same two-dimensional notation
was used for deriving raw and central moments. The
Hahn moment is computed using the Hahn polynomial
as given below.

Hv,u
n r,Nð Þ = N +U − 1ð Þn N − 1ð Þn

× 〠
n

i=0
−1ð Þi −nð Þi −rð Þi 2N + v + u − n − 1ð Þi

N + u − 1ð Þi N − 1ð Þi
×
1
i!
:

ð6Þ

Central moments are computed using the equation
given below.

μst = 〠
k

p=1
〠
k

q=1
p − �xð Þs q − �yð ÞtP′pq: ð7Þ

The following equation is used to compute the raw
moments.

Mst = 〠
k

p=1
〠
k

q=1
psqtP′pq: ð8Þ

In equations (7) and (8), s and t represent the order of
raw moments. Orthogonality of these moments renders its
use assiduous as their inverse functions can be used to
reconstruct data. Detailed explanation and use of these
notations can be found in [48].

2.4. Frequency Vector Determination. The cumulative fre-
quency of occurrence of each specific amino acid residue is
furnished into a frequency vector. Information about the
distribution of amino acid residues within the primary
sequence is summarized into this frequency vector which is
represented as
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FV = f1, f2, f3, ⋯ f20, ð9Þ

where fi refers to the frequency of occurrence of an arbitrary
distinct amino acid residue.

2.5. Position Relative Incidence Matrix (PRIM) Calculation.
The primary sequence of the proteins forms the basis of for-
mulation of feature vectors of primary structures which are
otherwise obscure. Information pertaining to position rela-
tive incidence of arbitrary protein residues is formulated as
a matrix of size ð20 × 20Þ. The Position Relative Incidence
Matrix (PRIM) is illustrated as

XPRIM =

X1,1 X1,2 ⋯ X1,j ⋯

X2,1

⋮
Xi,1

⋮

X2,2 ⋯

⋮
Xi,2 ⋯

⋮

X2,j ⋯

⋮
Xi,j ⋯

⋮
XN,1 XN,2 ⋯ XN,j ⋯

X1,20

X2,20

⋮
Xi,20

⋮
XN,20

2
6666666666666

3
7777777777777

:

ð10Þ

The sum of the relative position of the jth protein resi-
due corresponding to the first occurrence of the ith residue
is computed in the above matrix given as Xij. The matrix
contains all the possible permutations for such occurrences
as explained in [48].

2.6. Determination of Reverse Position Relative Incidence
Matrix (RPRIM). More obscure features of the primary
sequence are uncovered with the help of the Reverse Posi-
tion Relative Incidence Matrix (RPRIM). The RPRIM is
obtained by forming the PRIM of the reversed primary
sequence. XRPRIM is illustrated as

XRPRIM =

R1,1 R1,2⋯ R1,j⋯

R2,1

⋮
Ri,1

⋮

R2,2⋯

⋮
Ri,2⋯

⋮

R2,j⋯

⋮
Ri,j⋯

⋮
RN,1 RN,2⋯ RN,j⋯

R1,20

R2,20

⋮
Ri,20

⋮
RN,20

2
6666666666666

3
7777777777777

, ð11Þ

where Ri,j is an arbitrary element of XRPRIM.

2.7. Accumulative Absolute Position Incidence Vector (AAPI
V) Calculation. The AAPIV matrix is used to calculate the
sum all the positions at which each native amino acid occurs
within the primary sequence; hence, it bears a length of 20
and is denoted as

AAPIV = v1, v2 , v3,⋯v20½ �: ð12Þ

Any ith element in the above matrix is computed as

vi = 〠
n

k=1
Pk, ð13Þ

where Pk is the position of occurrence of a native amino acid
while n is its frequency of occurrence.

All the above-defined features are aggregated to form a
feature vector. The dimensionality of P′, XPRIM, and
XRPRIM is reduced by computing their Hahn, central, and
raw moments. Ultimately, a fixed-size feature vector is
formed to represent primary structures of varied lengths.

3. Prediction Algorithm

After extraction of feature vectors from positive as well as
negative sequences, the data is used to train classifiers. A
diverse set of currently widespread classifiers were used for
the purpose which includes random forest, neural network,
and support vector machine. Comparison of results yielded
from each classifier work enables the identification of the
most suitable classifier with the highest accuracy.

3.1. Random Forest. The random forest (RF) classifier was
trained at two levels for the prediction of angiogenesis and
tumor angiogenesis proteins. At the first level, the classifier
was used to identify angiogenesis and nonangiogenesis pro-
teins while at the second level the angiogenesis protein was
passed through another classifier to identify if the protein
is tumor causing or not. The random forest is a very power-
ful classifier used for classification and regression problems
[49, 50]. Initially, it converts the whole data into decision
trees [23, 51]. Furthermore, a random forest classifier is
applied to each tree to predict a class. The class with the
highest votes becomes the models’ prediction result [41] as
illustrated in Figure 3.

3.2. Artificial Neural Network (ANN). Subsequently, the arti-
ficial neural network (ANN) was also similarly employed at
two levels. ANN has interconnected layers of neurons [52].
The connectionist architecture of the backpropagation net-
work is illustrated in Figure 4. The ANN mechanism used
is based on a feedforward network and uses the backpropa-
gation algorithm to reduce error. An input layer is clamped
to the input feature vectors. It also has a hidden layer that
receives selected numbers of neurons from the input layer
and forms the main processing unit of the whole network.
The activation unit of ANN sums all preceding weighted
inputs in addition to bias values [23, 31]. The output of
the 3-layer feedforward network with error backpropagation
is represented by

Om = f 〠
h

y=1
Wym × f 〠

k

x=1
WxyIa

 ! !
, ð14Þ

where the input layer has k neurons and the hidden layer has
h neurons. Partial output calculated by the mth neuron in
the network is denoted by Om. Supposing that the arbitrary
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node receives an input Ia, then Wxy represents the weight of
the edge connecting node x to node y. Similarly, Wym repre-
sents the weight of the yth node connected to an arbitrary
output layer neuron m. The classical sigma function which
determines the activation of neurons is denoted as f in

f xð Þ = 1
1 + e−xð Þ : ð15Þ

Actual activated levels in the output units are compared
with the target output for every training iteration. The error
rate hence observed is denoted by ∈ and is calculated by the
difference between the expected output and actual activated
output given as

∈ = 0:5〠
o

i=1
Oi − Pið Þ, ð16Þ

where Oi is the target output, Pi is the actual calculated output
by the network, and o is the number of neurons in the output
layer. The gradient descent method is used to minimize the
error rate. The error generated at the output layer is sent back
to the input layer. The set of all the weights is represented by a
vector V . The backpropagation procedure selects a differential
ΔV such that it lessens the error. This is continued iteratively
until convergence is achieved as shown below:

V t + 1ð Þ =V tð Þ+ΔV tð Þ, ð17Þ

Input data

SubsetSubsetSubset

Tree 1 Tree 2 Tree n……

Class 1 Class 2 Class 3

Maximum
voting 

Final class

Figure 3: Random forest classifier architecture.

Input layer
Hidden 
layer

Output layer

Error

Input 1

Input 2

Input 3

Input 4

Input N

Error back propagation

. . . . .

Figure 4: Architecture of ANN.
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where

ΔV = η −
∂ ∈
∂W

� �
V =V tð Þj : ð18Þ

This equation shows a change in weight at time t + 1, and
a positive constant η signifies the learning rate usually set
between 0 and 1. The change in weights is expressed as

ΔVu,v = −η
∂ ∈
∂Wu,v

: ð19Þ

Here, ΔVu,v shows the minimal ∈ weight among the uth

and vth neurons in the ith iteration. This procedure is followed
in both backward and forward passes of input signals. It is a
lightweight procedure that consumes less memory space,
and it is extensively used for the training of ANN. Patterns
are repetitively offered to the network to train it and to make
it capable of minimizing the mean square error (MSE) as
shown in

MSE =
1
2n

〠
n

j=1
〠
k

i=1
Po
i −Oo

ið Þ2: ð20Þ

The actual output received at the ith neuron of the output
layer is represented as Oo

i , and Po
i represents the expected

value where the total number of input samples is n and there
are k output neurons.

3.3. Support Vector Machine (SVM). A support vector
machine (SVM) is a machine learning classifier that is used
in regression-related problems. SVM works by attempting
to fit in a hyperplane in an N-dimensional space where N
represents the number of feature elements that represents
the samples distinctly. Hyperplanes are simple decision
boundaries that classify the data points, and these data
points are present on both sides of the hyperplane, which
ideally partitions different classes. The hyperplane is most
optimally adjusted by means of support vectors. Figure 5
illustrates points on either side of the hyperplane belonging
to different classes, namely, class A and class B.

4. Results and Discussion

4.1. Evaluation of the Model. In the current study, the dataset
was constructed on two levels. The first level uses 785 positive
and 2776 negative samples regarding angiogenesis proteins
whereas the second level encompasses 256 positive and 448
negative samples for tumor angiogenesis proteins. A feature
vector input matrix (FIM) was formed for both angiogenesis
and tumor angiogenesis datasets separately. Every single row
of FIM is a feature vector that represents a single data sample.
Also, an Expected Output Matrix (EOM) was formed corre-
sponding to FIM. All the classifiers were trained using both
FIM and EOM. FIM was given as an input for training the
model where EOM was used to compute errors and retrain
until convergence is achieved [23, 31, 43, 45].

All the classifiers were implemented using Python ver-
sion 3.6 using SciKit Learn API. Subsequently, results gath-
ered using this framework are rigorously analyzed in terms
of their performance parameters.

A major design issue regarding the design of a new
prediction model is to set up some parameters to measure
its accuracy. Researchers have predominantly used four
descriptive metrics for performance analysis. These metrics
are as follows:

(1) Sp measures the specificity which quantifies the abil-
ity of the model to identify positive samples accu-
rately [46]

(2) Sn measures the sensitivity, which represents the
accuracy in predicting negative data samples

(3) Acc is used to measure the overall accuracy of the
model

(4) MCC is for measuring the stability of the model

(5) The following formulation is used to quantify these
metrics.

Specificity Spð Þ = TN
TN + FPð Þ , ð21Þ

Senstivity Snð Þ = TN
TP + FNð Þ , ð22Þ

Accuracy Accð Þ = TP + TNð Þ
TP + FP + TN + FNð Þ × 100, ð23Þ

MCC =
TPð Þ TNð Þ − FPð Þ FNð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TP + FNð Þ TN + FPð Þ TP + FPð Þ TN + FNð Þp ,

ð24Þ
where true negatives are represented by TN, true positives
are represented by TP, false positives are represented by
FP, and false negatives are represented by FN [43, 53, 54].

But unfortunately, the formation of equations (21), (22),
(23), and (24) is somewhat cryptic for biologists [55].
Another more intuitive format has been suggested by scien-
tists in [56, 57], and their modifiers were introduced in

Class A

Class B

X

Y

Hyper
plane

Figure 5: Architectural diagram of SVM.
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[47]. Symbols used to represent these equations are N+, N−,
N+

−, and N−
+. Explanation of these representations is given in

Table 1.
Hence, these metrics are also calculated as

Sn = 1 −
N−

+
N+ ,

Sp = 1 −
N−

+
N− ,

Accuracy = 1 −
N+

− +N−
+

N+ +N− ,

MCC =
1 − N+

−/N+ð Þ + N−
+/N−ð Þð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 + N−
+ −N−

+ð Þ/N+ð Þð Þ 1 + N+
− −N−

+ð Þ/N−ð Þð Þp :

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð25Þ

4.2. Validation Methods. Testing is another important factor
for the validation of the predicting models [22, 31, 42, 45].
The validation phase encompasses four most commonly
used tests discussed below.

4.2.1. Self-Consistency. The self-consistency test is the most
trivial and intuitive of the tests. A trained model is simply
tested on the dataset that was used to train it. Capability of
a model to learn from a given dataset is underscored with
this basic but useful evaluating benchmark. Good results
merely indicate that the classifier has the ability to find
obscure patterns within the training data. Self-consistency
testing was performed on angiogenesis and tumor angiogen-
esis datasets upon which the proposed model was trained.
Results obtained from self-consistency tests are illustrated
in Table 2 showing the overall performance of the proposed

Table 1: New symbol description for Chou’s fourth step.

Symbols Explanation

N+ Represents the total number of true positives in the dataset

N+
− The total number of true positives in the dataset projected incorrectly

N− The total numbers of true negatives in the dataset

N−
+ The total number of negatives projected incorrectly

Table 2: Self-consistency results for angiogenesis and tumor angiogenesis.

Angiogenesis Tumor angiogenesis
Predictor TP FP TN FN Acc (%) Sp (%) Sn (%) MCC TP FP TN FN Acc (%) Sp (%) Sn (%) MCC

RF 783 0 2784 0 100 100 100 1 255 1 447 1 99.7 99.6 99.8 0.9

ANN 766 7 2580 204 94.1 99.1 92.7 0.9 256 0 307 141 79.9 100 68.5 0.6

SVM 31 752 2783 1 78.9 4 100 0.2 12 244 447 1 65.2 4.7 99.8 0.2

Table 3: k-fold cross-validation results.

Level 1 Level 2
Predictor Fold TP FP TN FN Acc (%) Sn (%) Sp (%) MCC TP FP TN FN Acc (%) Sn (%) Sp (%) MCC

RF

5

723 60 2784 0 98.1 92.3 100 0.95 254 2 448 0 99.7 99.2 100 0.9

ANN 653 130 2780 4 96.2 83.4 99.9 0.8 246 10 428 20 95.7 96.1 95.7 0.9

SVM 31 752 2783 1 78.8 4 100 0.2 6 250 448 0 64.5 2.3 100 0.1

RF

10

706 77 2784 0 97.8 99.4 100 0.9 253 3 0 448 99.5 98.8 100 0.9

ANN 776 7 2580 240 94.1 99.1 92.7 0.8 256 0 307 141 79.9 100 68.5 0.7

SVM 31 752 2783 1 78.8 4 100 0.2 12 244 447 1 65.19 4.7 99.8 0.2

Table 4: Jackknife results.

Angiogenesis Tumor angiogenesis
Model TP FP TN FN Acc (%) Sn (%) Sp (%) MCC TP FP TN FN Acc (%) Sp (%) Sn (%) MCC

RF 781 26 2784 0 99.3 100 100 1 255 1 447 1 99.7 99.6 99.8 0.9

ANN 653 130 2780 4 96.3 83.3 99.9 0.8 246 10 428 20 95.7 96.1 95.5 0.9

SVM 783 0 2784 0 100 100 100 1 6 250 448 0 64.5 2.3 100 0.1
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model using random forest (RF), artificial neural network
(ANN), and support vector machine (SVM) classifier.

The results indicate that the random forest classifier has
the best capability to learn and decipher obscure patterns
that peculiarly characterize each sample.

4.2.2. Cross-Validation. The cross-validation technique is
used when unknown data for testing is not readily available
[45, 58]. The dataset is randomly divided into multiple par-
titions or folds spanning over a comprehensive sample space
hence rendering cross-validation as a rigorous test. Parti-
tions are devised in a manner such that they are disjointed
from each other and are comparable in size. A partition is
left out while the model is trained on the rest of the data.
Once the model is fully trained, the left-out partition is used
as unknown data to test the model. These steps are recapit-
ulated for each fold. The overall accuracy of the model for
the cross-validation test is reported by taking the mean of
accuracy yielded against each fold.

Cross-validation tests were performed by partitioning
the benchmark dataset into 5-folds and 10-folds. Table 3
depicts the results of the test.

The random forest exhibits the best results at both levels
with an accuracy of 99.7% for the identification of angiogen-
esis proteins and an accuracy of 99.5% for the identification
of tumor angiogenesis proteins.

4.2.3. Jackknife Testing. Jackknife testing is the most rigorous
testing methodology. In each iteration, it leaves out a single
sample while the model is trained on the rest. After sufficient
training, the model is tested with the left-out sample. This
process exhaustively proceeds for all data samples. Hence,
this test is repeated N times, where N represents the size of
the overall dataset. In every iteration, the testing data sample
is different, so all samples are tested exactly once. This tech-
nique is the most rigorous which also makes it slower
[59–63]. After successfully training and testing, the number
of true positive, false positive, true negative, and false nega-
tive was obtained [55].

Since the sample is tested exactly once, therefore the
overall accuracy obtained for this test remains unique [31,
40, 45, 46].

RF results illustrated in Table 4 for angiogenesis and
tumor angiogenesis proteins portray higher accuracies and
are reported as 99.3% and 99.7%, respectively, in compari-
son with other classifiers.

4.2.4. Independent Set Testing. Independent test evaluates
how well a model performs on unknown data. Initially, the
data is partitioned such that the larger partition is used for
training and the left-out partition is used as unknown data
for testing. Once the model is completely trained, then inde-
pendent set testing is performed using the left-out data. An

Table 5: Independent set results.

Angiogenesis Tumor angiogenesis
Model TP FP TN FN Acc (%) Sn (%) Sp (%) MCC TP FP TN FN Acc (%) Sp (%) Sn (%) MCC

RF 211 27 833 0 94.5 88.7 100 0.9 70 0 142 0 100 100 100 1

ANN 227 14 827 3 98.4 94.2 99.6 0.9 59 12 141 0 94.3 83.1 100 0.9

SVM 3 238 833 7 77.2 1.2 99.2 0.02 5 66 131 10 64.2 7.0 92.9 0.01
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Figure 6: Comparison based on self-consistency.
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independent set needs to be formulated intelligibly such that
the training data encompasses comprehensive obscure pat-
terns and the test data thoroughly queries the ability of the
model to decipher these patterns. Otherwise, testing results
may be ambiguous. Results obtained from independent test-
ing illustrate the overall accuracies of RF, ANN, and SVM
classifiers after independent testing as presented in Table 5.

The random forest shows the best results as compared to
ANN and SVM classifiers at both levels for the identification
of angiogenesis as well as tumor angiogenesis proteins while
the performance of the ANN classifier is better than that of
the SVM classifier.

Working with classification models renders performance
measurement as an essential task quantified using classifica-
tion scores. But this type of performance is not suitable while
dealing with flawed datasets with heavy class imbalance. In
such cases, ROC (Receiver Operating Characteristic) curves
provide a graphical view along with quantitative analysis of
the overall scenario. ROC is a prevalently used performance
evaluation method for evaluating any classification model.
The ROC curve is plotted by mapping the True Positive Rate
(TPR) against the False Positive Rate (FPR). It depicts the
accuracy with which the model is capable of distinguishing
among classes. TPR is plotted along the y-axis while FPR is
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plotted along the x-axis. Estimation of the area under the
curve is a measure of the model’s performance. The best
possible accuracy is 1, and the worst is 0.5. A good measure
of separability means that the model has accuracy near 1,
and similarly, accuracy near 0 indicates that the model
has the worst measures of separability. Consequently, an
accuracy of less than 0.5 indicates that the model will per-
form exactly the opposite of what a model was recom-
mended to do.

Various testing techniques were applied to gauge the
effectiveness of the classifiers as discussed earlier. To priori-
tize the classifiers based on efficiency, a comparison is
depicted through a ROC curve. Figure 6 represents the com-

parison based on testing performed in the previous section.
Figures 6–10 depict that RF shows the best results in com-
parison with ANN and SVM. The RF curve encompasses
an area close to 1 implying that the model has the best mea-
sure of separability. Graphical representations accentuate
that RF and ANN both exhibit better results as compared
to SVM. However, in the case of jackknife testing, SVM clas-
sifier accuracy is high as compared to that of ANN as illus-
trated in Figure 10.

A similar comparison is performed for classifiers at the
second level which predicts tumor angiogenesis proteins.
Figures 11–15 illustrate the results of various test techniques
performed on the tumor angiogenesis dataset. These figures
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connote that the RF classifier exhibits better results in com-
parison with the ANN and SVM classifier supported by the
fact that the area under the RF curve is approximately
approaching 1.

5. Webserver

Formulation of the robust dataset and feature extraction
methodology forms the foundation of a computationally
intelligent model for efficient prediction of uncategorized
proteomic sequences. However, the availability of such a tool
is also of extreme importance so that the research commu-
nity could benefit from it [45]. To make a novel predictor
for the forbearance of all users and biologists around the
globe, there is a need for a user-friendly and publically acces-
sible webserver. In the final step of Chou’s 5-step rule, a web-
server is devised for this purpose [48]. The webserver
enables scientists and biologists to easily access and to utilize
such prediction applications without getting into the com-
plex mathematical details. The webserver for the proposed
work will soon be made available. Meanwhile, its code has
been made available along with a readme file at https://
github.com/RabiaKhan-94/Thesis_WebServer.git which can
be easily set up by an intermediate-level Python developer.

6. Discussion and Conclusion

This study proposes a prediction model for the classification
of angiogenesis and tumor angiogenesis. A robust well-
defined methodology was adopted for dataset collection.
Duplicate and redundant data were removed, and homolo-
gous sequences up to 60% were excluded. Variable-length
proteomic sequences were transformed into fixed-length
feature vectors using a position- and composition-based
technique. Position relative information was further trans-
muted into a succinct form using statistical moments. Three
classifiers random forest (RF), artificial neural network
(ANN), and support vector machine (SVM) were used to
find the best results. All of these algorithms are powerful,
robust, and well understood. The random forest (RF) and
artificial neural network (ANN) can deal with linear as well
as complicated nonlinear problems. The current study
reveals that RF showed the best results among these classifi-
cation approaches. As a result of cross-validation, RF exhib-
ited an accuracy of 97.8% for angiogenesis proteins and an
accuracy of 99.5% for tumor angiogenesis, where ANN
showed an accuracy of 99.1% for angiogenesis and 79.9%
for tumor angiogenesis. Additionally, the accuracy of SVM
for angiogenesis was 78.8%, and for tumor angiogenesis, it
was 65.19%. The current study has shown different perfor-
mances for all approaches. Consequently, it concludes that
the results exhibited by RF are better than ANN and SVM.
On the other hand, the random forest takes less time for
training as compared to the neural network. Another impor-
tant strength of RF is that it is less susceptible to overfitting
which is not the case with a neural network. The robustness
of the feature extraction technique plays a significant role in
the overall accuracy of the model. Feature extraction
uncovers obscure features more pertinent to the composi-

tion and sequence of the primary structures. The meticu-
lously collected data helps the model to produce better
results. The in silico nature of the model makes it an alluring
opportunity as it is timely and cost-effective. Biologists and
scientists can greatly benefit from the proposed tool for the
characterization of proteins and understand their role in
angiogenesis and tumor angiogenesis processes. Further-
more, the model can prove to be effective in identifying the
biomarkers that cause a tumor. Additionally, it augments
the work of biologists and scientists in research aimed at
finding new treatments and discovering new drugs.

Tumor-causing angiogenesis proteins are important bio-
markers for the onset of cancer. Timely identification of
these proteins can help in the treatment and possible cure
of the disease. This study proposes a robust in silico tech-
nique for the identification of tumor angiogenesis using a
two-level predictor. The first level indicates whether a pro-
tein is an angiogenesis protein or not while the second level
identifies whether the given protein is responsible for tumor
angiogenesis or not. A mature feature extraction technique
was used to gather features for the benchmark dataset. Clas-
sifiers like RF, SVM, and ANN were trained using the resul-
tant feature vectors. Once the models are thoroughly trained,
they are rigorously tested using test methods like k-fold
cross-validation, self-consistency, independent set testing,
and jackknife testing. The random forest classifier showed
99.3% accuracy for angiogenesis and 99.7% for tumor angio-
genesis, and ANN showed an overall 96.23% accuracy for
angiogenesis and 95% for tumor angiogenesis. On the other
hand, SVM showed 78.65% accuracy for angiogenesis and
65.19% for tumor angiogenesis.

7. Future Works

Advanced drug therapies and treatments integrate the use of
ligands that target tumor angiogenesis proteins to inhibit
them. Inhibition of these tumor growth factors disrupts its
growth, and in some cases, the tumor even dies out. Tools
that help the discovery and identification of tumor angio-
genesis proteins greatly help cancer researchers to identify
these growth factors in a timely and cost-effective manner.
One such tumor growth factor has been uncovered; there
is an incessant need to identify ligands that can inhibit them.
In silico models that simulate ligand bindings with tumor
growth factors can also greatly enhance tumor research. Fur-
ther, in the future, the proposed model can be made more
adaptive by incorporating updated data and using deep
learning features.
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