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Abstract: Electrically conductive materials that are fabricated based on natural polymers have seen
significant interest in numerous applications, especially when advanced properties such as self-
healing are introduced. In this article review, the hydrogels that are based on natural polymers
containing electrically conductive medium were covered, while both irreversible and reversible
cross-links are presented. Among the conductive media, a special focus was put on conductive
polymers, such as polyaniline, polypyrrole, polyacetylene, and polythiophenes, which can be po-
tentially synthesized from renewable resources. Preparation methods of the conductive irreversible
hydrogels that are based on these conductive polymers were reported observing their electrical
conductivity values by Siemens per centimeter (S/cm). Additionally, the self-healing systems that
were already applied or applicable in electrically conductive hydrogels that are based on natural
polymers were presented and classified based on non-covalent or covalent cross-links. The real-time
healing, mechanical stability, and electrically conductive values were highlighted.

Keywords: electrically conductive hydrogel; conjugated polymers; self-healing hydrogel; renewable
polymers

1. Introduction

Natural polymers are often made of polysaccharides and proteins [1] with a huge
variety in chemical structures, physical, and biological properties. Polysaccharides such as
cellulose [2,3], chitosan [4–6], alginate [7], gum Arabic [8], starch [9,10], carrageenan [11,12],
and hyaluronic acid [13] have been developed to different applications [14–16] due to their
biodegradability, biocompatibility, less inflammatory response, producing eco-friendly by-
products, and low cost in some cases, such as cellulose [17]. According to the hydrophilic
nature of polysaccharides, they show great potentials to form hydrogels.

Hydrogels can be defined as a state of matter between solid and liquid states that are
made of cross-linked systems that contain fluids and show no flow in the steady-state con-
dition. These networks can be obtained via either physical or chemical cross-linking bonds
in the presence of a medium that fills the gaps and pores of these matrices. Accordingly,
hydrogels can absorb water up to as much as 1000 times of its dry weight owing to the
hydrophilic functional groups in the polymer, but do not dissolve owing to the cross-links
between the polymer chains [18]. Synthetic polymers such as poly(vinyl alcohol) [19],
poly(ethylene oxide) [20], poly(ethylene glycol), and poly(acrylamide) [21] can form hy-
drogels as well with higher mechanical strength than that of natural polymers. However,
natural polymers are still preferred due to their biocompatibility and biodegradability.

The production of electrically conductive hydrogels emerged a few decades ago to
obtain hydrogels that conduct electricity and to open up new applications for hydrogels.
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Biopolymers such chitosan [22], cellulose [23], chitin [24], alginate [25], and hyaluronic
acid (HA) [26,27] inherently act as insulators. Therefore, such conductive hydrogels have
been fabricated mainly by incorporating electrically conductive mediums to the hydrogel
networks during or after the gel formation.

In general, there are two types of hydrogels, i.e., irreversible and self-healing (re-
versible) hydrogels that are based on the nature of the cross-links that occurred between
the polymer chains. Each type of hydrogel opens new avenues for applications that span
from water treatments to tissue engineering.

A self-healing hydrogel is a soft material that can absorb and retain water in three-
dimensional networks and can automatically recover its mechanical strength after suffering
an external mechanical damage [28]. Based on this characteristic, self-healing hydrogels,
which are basically made of polymeric matrices, have been used in numerous applications
to increase reliability, prolong the life time, and reduce material wastes [29].

With the tremendous technological development in semi/superconductors that relies
on electrically conductive mediums such as conductive polymers [30–33], carbon-based
fillers [34,35], or metallic particles [36,37], the need for imparting self-healing properties into
the conductive substrates has become a necessity. In self-healing and electrically conductive
hydrogels, self-repairing behavior is not limited to restoring the mechanical property but
also to restoring the electrical conductivity. Hydrogels that are conducting electricity
showed an outstanding performance in bio-applications such as electro-stimulated drug
delivery systems [38–40], biocompatible neural tissue engineering materials [41,42], and
wearable strain sensors [43]. Moreover, it has been reported that electro-conductive self-
healing hydrogels are able to completely restore the original mechanical strength after
the healing process unlike other self-healing mechanisms [44]. Typically, the self-healing
efficiency of non-conductive hydrogels attains up to 90% [45], 80% [46], or less of the
original mechanical strength.

The potential of tuning both the mechanical strength and the electrical conductivity
values of the self-healing hydrogels offers a wide diversity in applications that spans from
ultrasensitive and soft hydrogels for strain sensors [47] to very tough hydrogels for articular
cartilage replacement [48]. More recently, a conductive self-healing hydrogel has been used
as a binder in a silicon-based anode in lithium-ion batteries. Such a new matrix showed
a great potential to maintain the mechanical integrity of the silicon anodes during the
frequent charge-discharge cycle compared to regular binding agents [49].

Here we have reviewed both the irreversible as well as the self-healing electrically
conductive hydrogels, which at least partially are made of natural polymers. In the first
part, electric conductive media, especially conductive polymers, which can be potentially
synthesized from renewable resources were reviewed. In the second part, the review on irre-
versible hydrogels was especially focused on hydrogels that contained conductive polymers
as a conductive medium, as, unlike the other conductive media, the conducive polymers
can be synthesized in already formed hydrogel. The preparation methods of conductive
hydrogels that are based on these conductive polymers were reported by observing their
electrical conductivity values by Siemens per centimeter (S/cm). Subsequently, the review
of all the so far reported self-healing electrically conductive hydrogels that are based on nat-
ural polymers will be provided. The self-healing mechanisms of hydrogel substrates were
classified based on covalent or non-covalent bonds. Non-covalent bonding mechanisms
(hydrogen-bonding, hydrophobic interactions, guest-host interactions, metal-ligand, and
polymer-ions) and covalent bonding mechanisms (Schiff’s base reaction, boron-ester bonds,
disulfide bonds, and Diels-Alder reaction) were surveyed for the hydrogels. The real-time
healing, healing conditions, mechanical stability, and electrical conductivity values were
highlighted.

2. Electrically Conductive Media

Electrically conductive substrates have been produced by incorporating conductive
fillers such as metallic particles, carbon-based additives (carbon black, graphene, graphene
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oxide, carbon nanotube, etc.), and conductive polymers to non-conductive substrates.
Metallic particles and carbon-based additives showed outstanding mechanical, electronic,
and thermal properties resulting in a wide variety of applications in batteries [50,51],
supercapacitors [52], sensors [53], etc. Besides the cost concern of these fillers, additional
modifications have to be conducted to such fillers to enhance the dispersity behavior in
the polymeric substrates. Moreover, the concentration of such filler has been reported as
a very critical parameter for controlling the electrical performance of the final composite.
Conductive polymers are considered as a new generation of conductive substrates and
show electrical conductivity that is similar to that of other conductive materials.

2.1. Electrically Conductive Polymers

Electricity has been linked, in our minds, with wires from a long time ago since electric
devices appeared. From those times, it has been thought that metals are the best way to
conduct electric current; these metals are frequently found in everyday devices such as
bulbs, phones, computers, TVs, etc. Currently, in many applications, non-metal substrates
such as conductive polymeric materials that can act as conductors are replacing the metal
ones [54].

Electrons of good conductive metals are delocalized as the valence (outermost) elec-
trons of a metal atom, which are held loosely, thus allowing them to flow more freely.
Polymers can also be as conductive as metals when the monomeric units can form in the
polymer in a so called conjugated system [55]. In such a system, the polymeric chain
backbone contains alternating double and single bonds [56,57]. This alternating structure
enables overlapping p-orbitals in which the π-electrons are loosely bound and accordingly
can flow as shown in Figure 1 of poly(acetylene) [58].
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Figure 1. (a) Conjugated system of p-orbitals and (b) alternating double and single bonds enabling
p-orbitals overlapping in poly(acetylene).

However, the conjugated polymer has to be doped by the addition of electrons (re-
duction) or the removal of electrons (oxidation) to promote electrons to flow. In the doped
conjugated polymers, the π-electrons can move around the polymer molecules [59,60]. Ac-
cordingly, undoped conjugated polymers conduct electricity in a very low semiconductor
range 10−2–10−8 S/cm. In contrast, the electrical conductivity of the doped conjugated
polymers increases several fold to meet the requirement of different electric applications
such as rechargeable batteries [61,62], solar cells [63–65], chemical, and gas sensors [66–68],
etc. (Figure 2) [53].
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mercialized by Covestro. 
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In the light of the electrochemical principles that are described above, only a few
polymeric structures meet these requirements; the most used are polyaniline [69], polypyr-
role [70], polyacetylene [71], polycarbazole [72], polythiophene, and its derivatives [73]
(Figure 3). In the following sub-sections, we will focus on conductive polymers which can
be potentially synthesized from monomers that are available from renewable resources.
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2.1.1. Polyaniline (PANI)

Polyaniline is considered an intrinsically conducting polymer that is synthesized by
chemical or electrochemical polymerization of aniline [74]. PANI is regarded as the most
interesting of the conductive polymers due to its ease of synthesis from very low-cost
monomer, varied properties, and stable electric performance compared to other poly-
mers [75]. Aniline has been known for decades and is derived from fossil raw materials
and used for dying cotton fabrics [76]. Very recently, aniline has been derived from biomass
instead of petrochemical precursor [77] by the fermentation of sugar [78] and finally com-
mercialized by Covestro.

The electrochemical polymerization of aniline has many advantages over other tech-
niques because it does not need a special procedure for the purification of PANI from
solvent, unreacted monomer, and oxidizing agents. It occurs on an electrode that is made
of an inert conducting substrate in an aqueous solution of low pH [79]. However, the
chemical polymerization of aniline (Figure 4) using various oxidants, most commonly
ammonium persulphate, in strong acid medium at 0 ◦C results in two structural units;
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reduced phenylenediamine unit and oxidized quinone diimine unit (Figure 4III) [80,81].
The PANI chain is electrically conductive only when the ratio of these two units is 1:1 and
is known for its greenish color [82].
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2.1.2. Polypyrrole (PPy)

The polymerization of pyrrole [83] can be performed either by chemical oxidation [70]
or electrochemically [84]. In the first step, the oxidation is accompanied by an electron
release from the pyrrole ring, forming a radical cation [85]. In the next step, the two
generated radical cations are coupled, followed by the deprotonation of two hydrogen
atoms to yield bipyrrole (Figure 5a). This step is repeated many times to produce the
polymer chains. In addition, the radical cation can react with the pyrrole ring to produce a
polymer by a chain-growth polymerization mechanism (Figure 5b). Both mechanisms are
expected to take place simultaneously. Similarly to PANI, PPy also requires a doping agent
to increase the electrical conductivity [86]. Recently, a single-step conversion of renewable
furfural to pyrrole in 75% yield was reported, therefore, PPy can be also considered as a
potential renewable polymer [87].

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 6 of 27 
 

 

 
Figure 5. The polymerization of pyrrole via (a) cation radical coupling and (b) chain-growth mech-
anism. 

2.1.3. Polyacetylene (PA) 
Polyacetylene (PA) is constructed from the polymerization of acetylene to obtain pol-

ymer chains of repeating units of olefin [88,89]. PA is another polymer which can be con-
sidered as potentially renewable, as acetylene can be produced from calcium carbide 
which is obtained from calcium carbonate [90,91]. PA is considered as the first conductive 
polymer compared to metals and it exists in two isomeric forms: trans and cis confor-
mations (Figure 6); the highest electrical conductivity is achieved for the trans confor-
mation [92].  

Initially, PA was polymerized by using Ziegler–Natta catalysts [93–95] in which acet-
ylene gas was used. Lately, PA has been produced by using radiation polymerization via 
ultraviolet [96], gamma [33], or glow-discharge [97] radiations. Recently, PA has been syn-
thesized via ring-opening metathesis polymerization using a cyclooctatetraene (COT), 
which is much easier to handle than acetylene gas [73]. COT could be isolated from certain 
fungi [98] or produced from 1,4-butadiene, which is also available from natural resources 
[99–102]. In general, the instability towards air and the difficulty in processing make the 
applications of PA very limited compared to the other conductive polymers. 

 
Figure 6. Cis/trans isomers of polyacetylene. 

2.1.4. Polythiophene (PT) 
Polythiophene can be produced by oxidative polymerization of thiophene using fer-

ric chloride at ambient temperature (Figure 7). In addition, in a voltaic cell, a PT film can 
be produced electrochemically on an anode from a solution of thiophene mixed with elec-
trolyte solutions [103]. 

 

Figure 5. The polymerization of pyrrole via (a) cation radical coupling and (b) chain-growth mechanism.



Int. J. Mol. Sci. 2022, 23, 842 6 of 25

2.1.3. Polyacetylene (PA)

Polyacetylene (PA) is constructed from the polymerization of acetylene to obtain
polymer chains of repeating units of olefin [88,89]. PA is another polymer which can be
considered as potentially renewable, as acetylene can be produced from calcium carbide
which is obtained from calcium carbonate [90,91]. PA is considered as the first conductive
polymer compared to metals and it exists in two isomeric forms: trans and cis conformations
(Figure 6); the highest electrical conductivity is achieved for the trans conformation [92].
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Initially, PA was polymerized by using Ziegler–Natta catalysts [93–95] in which acety-
lene gas was used. Lately, PA has been produced by using radiation polymerization via
ultraviolet [96], gamma [33], or glow-discharge [97] radiations. Recently, PA has been
synthesized via ring-opening metathesis polymerization using a cyclooctatetraene (COT),
which is much easier to handle than acetylene gas [73]. COT could be isolated from
certain fungi [98] or produced from 1,4-butadiene, which is also available from natural
resources [99–102]. In general, the instability towards air and the difficulty in processing
make the applications of PA very limited compared to the other conductive polymers.

2.1.4. Polythiophene (PT)

Polythiophene can be produced by oxidative polymerization of thiophene using ferric
chloride at ambient temperature (Figure 7). In addition, in a voltaic cell, a PT film can
be produced electrochemically on an anode from a solution of thiophene mixed with
electrolyte solutions [103].

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 7 of 27 
 

 

S H

R

S H

R

Fe3+ Fe2+ S

R

S

R

S

R

S

R

H

Fe3+ Fe2+

S

R

S

R

H

H

 
Figure 7. Proposed mechanism of thiophene oxidative-polymerization via ferric chloride. 

Doping by using any oxidizing agents, as shown in Figure 8, is a very critical step to 
obtain an electrically conductive PT salt form. Among different oxidizing agents that are 
used for doping of PT, highly electrical conductive PTs were achieved by using iodine and 
bromine [104]. 

The production of thiophene from furan, which can be prepared from renewable fur-
fural, was also reported. However, it is worth mentioning that the highly toxic hydrogen 
sulfide is needed in the synthesis [105]. 

 
Figure 8. Proposed chemical structure of the electrically conductive PT salt. 

2.2. Carbon-Based Electrically Conductive Fillers 
Nowadays, carbon nanotubes [106], carbon black [107], graphite [108], and carbon 

fibers [109] are mostly employed to obtain electrically conductive composites. This is 
thanks to their chain-like structure and the ability to form electric conductive networks, 
especially for the carbon fibers [110]. In general, carbon-based fillers are produced from 
thermal treatments of organic carriers with or without inorganic additives.  

Commonly, the conductivity profile of the carbon-based filler concentrations in the 
matrix followed the S-shaped (Figure 9) curve, which means that the conductivity can 
increase dramatically in a narrow loading range of the filler [111]. 

Figure 7. Proposed mechanism of thiophene oxidative-polymerization via ferric chloride.

Doping by using any oxidizing agents, as shown in Figure 8, is a very critical step to
obtain an electrically conductive PT salt form. Among different oxidizing agents that are
used for doping of PT, highly electrical conductive PTs were achieved by using iodine and
bromine [104].

The production of thiophene from furan, which can be prepared from renewable
furfural, was also reported. However, it is worth mentioning that the highly toxic hydrogen
sulfide is needed in the synthesis [105].
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2.2. Carbon-Based Electrically Conductive Fillers

Nowadays, carbon nanotubes [106], carbon black [107], graphite [108], and carbon
fibers [109] are mostly employed to obtain electrically conductive composites. This is
thanks to their chain-like structure and the ability to form electric conductive networks,
especially for the carbon fibers [110]. In general, carbon-based fillers are produced from
thermal treatments of organic carriers with or without inorganic additives.

Commonly, the conductivity profile of the carbon-based filler concentrations in the
matrix followed the S-shaped (Figure 9) curve, which means that the conductivity can
increase dramatically in a narrow loading range of the filler [111].
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The critical aspect of incorporating such a carbon-based filler into the composite
matrices is that the filler concentration which must be as low as possible to retain the
mechanical and physical properties of the hosting matrix. Also, dispersity in the polymeric
medium is another challenge to the carbon-based fillers. Therefore, graphene, reduced
graphene oxide and graphene derivatives [112] have attained great attention to obtain
well-distributed electric conductive fillers [112].

2.3. Metallic-Based Media

Many nanometer to micrometer-sized metallic particles have been used as electri-
cal conducting agents for non-conducting polymers. Silver [113], nickel powder [114],
zinc [115], copper [116], and many other agents have been mixed at various concentrations
in solid composites or flexible substrates using different techniques for numerous applica-
tions, such as anti-static materials [117], sensors [47,118,119], electromagnetic interference
shielding material [120], and photovoltaic cells [121]. It is acknowledged that metal salts,
such as lithium chloride, are insulators and do not conduct electricity. However, when
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these metal salts are dissolved in electrolytes (in battery applications), they dissociate to
ions that facilitate charge to flow [122]. Here, a confusion can happen by considering
metal ions as conductive media. Typically, authors measure the metal salts’ effect on the
ionic conductivity by assembling a voltaic cell for measurements and results come by
Siemens units.

3. Preparation of Electric Conductive Hydrogels Based on Natural Polymers
3.1. Irreversible Electrically Conductive Hydrogels

Irreversible hydrogels are highly interesting due to the ability of irreversible bond
dissociation under controlled and stimulated conditions, simple preparation, and stability
under various pH values [123]. Irreversible hydrogels of biopolymers are mostly formed by
covalent bonds between liner or branched polymers with di/multifunctional cross-linking
agents [124]. Accordingly, the mechanical performance, stiffness, and microstructure of this
type of hydrogel are precisely tuned by the density of the cross-links.

Irreversible electrically conductive hydrogels that are based on biopolymers, listed
in Table 1, have been demonstrated by incorporating electrically conductive media. Such
hydrogels can be prepared by mixing of conductive medium with hydrogel precursors
followed by the cross-linking step. In addition, in the case of conductive polymers, there
is an additional way in which conductive hydrogels can be produced, namely by the
synthesis of conductive polymers in pre-formed hydrogels. Given this specificity, here
we will report several examples of production and properties of electrically conductive
irreversible hydrogels of natural polymers that contain conductive polymers namely PANI,
PPy, and PT. It should be pointed out here that a special precaution that is taken during
the acetylene gas polymerization [125] makes the fabrication of electrically conductive
hydrogel that is based on PA very difficult and, to our best knowledge, there are no data
on the fabrication of the conductive hydrogel that is based on PA and natural polymers
up-to-date.

Table 1. The composition and properties of irreversible electrically conductive hydrogels that are
based on natural polymers substrates that are filled with conductive polymers.

Gelation Mechanism Polymeric
Substrates

Electric Conductive
Mediums Conductivity Mechanical

Performance References

Graft-polymerization via
acrylic acid

Carboxymethyl
cellulose PANI 0.75 S/cm N/A [69]

Graft-polymerization via
acrylamide

Carboxymethyl
cellulose PANI 2.71 × 10−4 S/cm N/A [126]

Chemical cross-linking via
glycerol diglycidyl ether

Carboxymethyl
cellulose PANI 6.31 × 10−3 S/cm N/A [127]

Hydrogen bonding
interaction via phytic acid Regenerated cellulose PANI 2.5 × 10−2–

6.8 × 10−1 S/cm
1.08–2.71 MPa [128]

Chemical cross-linking via
PPy grafted onto HA and

polymerized afterward
HA PPy ~7.3 × 10−3 S/cm 3 Kpa [32]

Chemical cross-linking via
acrylic acid and APS

Nanocrystalline
cellulose PPy 8.8 × 10−3 S/cm 4.16 Mpa [129]

Graft-polymerization via
acrylic acid Chitosan PPy 10−3 S/cm N/A [130]

Hydrogen bonding
interaction via

β-glycerophosphate
Chitosan PPy 1.9–4.4 × 10−3 S/cm N/A [131]

Ion-interaction via calcium
cations

Carboxymethyl
chitosan/alginate PPy 2.41 × 10−5–

8.03 × 10−3 S/cm
N/A [132]

Physical cross-linkers via
CaCl2, MgCl2 and BaCl2

Carrageenan PT N/A N/A [11]

Chemical cross-linking via
glutaraldehyde

Carboxymethyl
chitosan/chitosan PT N/A N/A [73]

N/A: Not available; APS: ammonium persulphate; MPa: MegaPascal; KPa: kilopascal; S/cm: Siemens
Per Centimeter.
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The preparation of conductive hydrogels that are based on PANI has shown tremen-
dous attraction towards different applications such as water treatment [69], supercapaci-
tors [126], and bone tissue engineering [7]. Bagheri et.al [69] first prepared hydrogel by the
polymerization of acrylic acid in the presence of carboxymethyl cellulose (CMC), a small
amount of a cross-linker, and ammonium persulfate (APS) as an initiator (Figure 10). Since
the formed sulfate anion radicals can trap the hydrogen from the hydroxyl groups of the
CMC, grafting of the acrylic acid onto CMC can occur as well during the polymerization
and, thus, it is directly chemically incorporated into the hydrogel structure [21]. The CMC
hydrogel was immersed into aniline solution which was polymerized by ammonium per-
sulfate and doped by hydrochloric acid. The prepared conductive hydrogel showed an
electrical conductivity as high as 0.75 S/cm. The conductivity was similar to the conductiv-
ity value of 0.65 S/cm that was determined for the PANI-based hydrogel that was prepared
purely from polyacrylamide [30].
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Conductive acrylamide-grafted CMC hydrogel was reported by Suganya et al. [126],
with the same synthetic approach as in the case where polyacrylic acid-grafted CMC
hydrogels was used. The authors, however, used a five times lower concentration of aniline
during the oxidative polymerization. Therefore, the electrical conductivity of the prepared
hydrogel was significantly lower and reached a value of 2.71 × 10−4 S/cm.

The CMC hydrogel was prepared also using glycerol diglycidyl ether (GDE) as a
cross-linker in an alkaline medium at 40 ◦C for 24 h [127]. Similarly, as in previous cases,
the hydrogel was immersed into the aniline solution and subsequently polymerized by
ammonium persulfate, while in this case it was doped by benzene sulfonate. The results
showed that increasing electrical conductivity was obtained by decreasing the CMC and/or
GDE concentration. The doping with benzene sulfonate increased the electrical conductivity,
reaching the maximal value of 6.31 × 10−3 S/cm.

Khorshidi et al. [7] used oxidized polysaccharides such as oxidized alginate and
hyaluronic acid that were mixed with gelatin and conductive filler, such as graphene.
The mixture was spontaneously gelled through a Schiff-base mechanism in the presence
of electrospun fibers that were prepared from a solution of PANI and polycaprolactone
(PCL) (Figure 11). Due to the small portion of PANI, the final composite hydrogel showed
quite low electrical conductivity of 10 ± 1 × 10−6 S/cm. That was, however, sufficient for
the application as tissue engineering scaffolds with improved adhesion, spreading, and
proliferation of osteoblast-like cells.

An electrically conductive cellulose-based hydrogel containing PANI was prepared
by Xu et al. [128]. The regenerated cellulose hydrogel was prepared by casting a high
concentration solution of sodium hydroxide and urea (12%). The authors invented an
apparatus in a U-shape to conduct interfacial polymerization of aniline on one side of the
cellulose hydrogel. Meanwhile, PANI has been obtained by the oxidation of aniline via
ammonium persulfate and doped by a self-cross-linking agent, phytic acid, as shown in
Figure 12. The obtained scaffold showed an electrical conductivity as high as 0.49 S/cm.
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Electrically conductive hydrogels that are based on PPy have been investigated for
different applications such as sensors [133], medical purposes [32], flexible supercapacitor
electrodes [134], and electronic devices [135]. The common route to obtain PPy was via
conducting the polymerization step in the presence of either the hydrogel or the hydrogel
precursor. Yang et al. [32] prepared an irreversible conductive hydrogel that was based on
HA using PPy for a dual effect, i.e., as a cross-linker and ECP. The authors first coupled
3-aminopropylpyrrole to HA chains to obtain pyrrole groups that were attached to the
polymer chains (Figure 13). Then, pyrrole monomers were copolymerized with the coupled
ones to produce a propylpyrrole-cross-linked hydrogel. Such a hydrogel was soft (~3 KPa)
and showed electrical conductivity of ~7.3 mS/cm.

An electrically conductive composite hydrogel was prepared using nanocrystalline
cellulose that was grafted by acrylic acid in the presence of a cross-linker and APS [129].
The oxidative polymerization of pyrrole was conducted in the presence of the grafted-
nanocellulose. PPy was doped by sodium p-toluenesulfonate to provide electrical con-
ductivity up to 8.8 × 10−3 S/cm. The hydrogel composite was very stable and with the
significantly increased compressive modulus of 4.16 MPa compared to 0.23 MPa for pure
hydrogel, while still achieving a water retention capacity as high as 910%.
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Chemically cross-linked chitosan was also used to prepare electrical conductive hy-
drogels by graft-polymerization of acrylic acid [130]. The fabricated hydrogel was stirred
with PPy, doped with ferric chloride in the presence of polyethylene glycol for better ho-
mogenization, and subsequently mixed also with magnetite nanoparticles (Fe3O4). The
composites with electric conductivity up to 10−3 S/cm were prepared in this approach.
Since the hydrogel was stirred with the additives, such as PPy and Fe3O4, the final compos-
ite was not in the form of a compact hydrogel. Thus, this synthetic approach can be used
only for limited applications.

Contrary to previous work where the compact chemically cross-linked hydrogel was
destroyed during stirring with PPy, Kashi et al. [131] fabricated an injectable hydrogel
that was based on physically cross-linked chitosan using β-glycerophosphate that was
mixed with PPy oligomers. The authors prepared PPy in an imidazolium-based ionic
liquid that was oxidized by ammonium persulfate and doped by sodium perchlorate. The
electroactive hydrogel with electrical conductivity in the range of 1.9–4.4 × 10−3 S/cm,
depending on the PPy content, was prepared. This hydrogel was made for cartilage tissue
engineering to promote tissue repair and regeneration. The soft electrically conductive
hydrogels provide a new level of control over biomaterials that are applied into the human
body, especially in nervous and cardiac tissue engineering where conducting electricity is a
key of successful function [136]. The conductivity values that were achieved in the work
of Kashi et al. were still about one order lower than the normal electrical conductivity of
cartilage tissue. However, higher oligopyrrole content was not tested to avoid cytotoxicity
of the scaffolds.

Chitosan and chitosan derivatives can be mixed with other natural polymers in the
presence of PPy to obtain a chitosan-based conductive hydrogel [132]. Thus carboxymethyl
chitosan was mixed with alginate solution and PPy that was pre-synthesized by oxidation
polymerization using ammonium persulfate and doped by hydrochloric acid. The mixture
was then physically cross-linked via calcium cation by using CaCO3 and D-glucono-δ-
lactone to obtain the electrically conductive hydrogels. Such conductive chitosan-based
hydrogel, fabricated for peripheral nerve regeneration, showed an electrical conductivity
in the range of 2.41 × 10−5–8.03 × 10−3 S/cm depending on the PPy loading.
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Unlike PANI and PPy, a few studies [11,73] have described the synthesis of electri-
cally conductive hydrogels that are based on natural polymers and PTs. Pairatwachapun
et al. [11] fabricated an electrical conductive hydrogel that was based on carrageenan and
PT to fabricate a transdermal patch for delivery of topical drug, namely acetylsalicylic acid
(ASA). The authors used physical cross-linkers (CaCl2, MgCl2, and BaCl2) to fabricate a
hydrogel in the presence of ASA. PT was synthesized separately by an oxidative poly-
merization using ferric chloride and added to the carrageenan hydrogel precursor before
casting. The fabricated matrix was utilized for the electric field-assisted drug delivery
which drastically enhanced the drug delivery rate [11]. Unfortunately, no data for the
electrical conductivity measurement was mentioned for this conductive hydrogel. Another
research group, Pattavarakorn et al. [73], fabricated an electrically conductive hydrogel that
was based on carboxymethyl chitosan/chitosan/PT by using glutaraldehyde as a cross-
linking agent. PT was polymerized in toluene separately and mixed with the polymeric
mixture followed by the chemical cross-linking. The electroactive performance was tested
by measuring the bending response under an applied electric field while the conductive
data were not measured.

3.2. Self-Healing Electrically Conductive Hydrogels

A self-healing hydrogel means that the hydrogel matrix is capable of self-repair after
any mechanical damage, rupture, crack or fracture. The mechanism varies depending on
the chemical structure of the polymeric backbone as well as the type and chemical structure
of the cross-linking points, which can be sensitive to various healing conditions, such as a
specific temperature, pressure, or the exposure of a particular type of radiation [29]. The
self-healing phenomenon can occur based on two different approaches, namely extrinsic
and intrinsic [137]. The extrinsic approach is based on one time healing when external
pressure causes cracks in the substrate that contains microcapsules that are loaded with
healing agents (cyanoacrylate, thiol-acrylate, epoxy, etc.) that can instantly react and heal
the cracks and ultimately produces a curable matrix [138]. Subsequent healing of the
mechanical damage in the same position is, however, limited. On the other hand, the
intrinsic approach relies on dynamic reversible bonds via either physical or chemical bonds,
and, therefore, it is the most applicable approach for many applications [119,139,140].

The original thought of self-healing substrate was the thermoplastic polymer that
converts to liquid at high temperature and turns back to solid at cold temperature. In
hydrogels, there are two main mechanisms that can lead to self-healing behavior based
on the dynamic covalent bonds in chemical cross-links or non-covalent bonds in physical
cross-links (Figure 14) [141].

Dynamic covalent bonds can act as self-healing agents in hydrogels when bonds
such as carbon/nitrogen bonds (hydrazone and imine chemistries), boron-ester bonds,
and disulfide bonds, or bonds that are formed based on reversible radical or Diels–Alder
reactions are present.

Meanwhile, non-covalent bonds, i.e., physical cross-links, can also show a great poten-
tial to provide self-healing hydrogels via multiple hydrogen bonding interactions, ion inter-
action, metal-ligand interaction [142], host/guest interaction, polymer/nanocomposites
interactions, or hydrophobic interactions [139].

So far, there are only a few works describing the preparation and utilization of self-
healing electrically conductive hydrogels filled with any conductive media. A summary of
such hydrogels that are based on both chemical and physical cross-linking can be found
in Table 2. In addition, all these systems are also discussed in the following paragraphs.
For the self-healing systems which were not so far used for the preparation of electrically
conductive hydrogels that are based on natural polymers. Here, examples of self-healing
systems that are applied for non-conductive hydrogels that are based on natural polymers
and/or examples of self-healing systems that are applied for conductive hydrogels that are
based on synthetic polymers are shown to demonstrate the possible applicability of such
self-healing systems for electrically conductive hydrogels of natural polymers.
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Table 2. Self-healing electrically conductive hydrogels that are based on different healing mechanisms,
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Self-Healing
Mechanism

Polymeric
Substrate

Electrical
Conductive
Mediums

Self-Healing
Real-Time Conductivity Mechanical

Performance References
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g Imine bond

Aminated
gelatin/Dialdehyde

alginate
PPy 40 min 1.4 × 10−5 S/cm 0.5 MPa [143]

Polyol/borax Dopamine-
hyaluronic Lithium chloride 1 h 1.1 × 10−2 S/cm 42.4 kPa [122]

Ph
ys

ic
al

C
ro

ss
li

nk
in

g

Hydrogen
bonding

Agarose Copper chloride N/A 0.35 S/cm [144]
Carboxyl
cellulose

nanocrystal
Carbon nanotube 15 s 10−8 S/cm 0.8 MPa [119]

The ion
interactions
mechanism

Chitosan PPy 2 min 5–10 × 10−2 S/cm ~10 KPa [145]

Hydrophobic
interaction Cellulose Multiwall

carbon nanotube 10 min 8.5 × 10−3 S/cm 0.24 MPa [146]

Host-guest
interaction

Cyclodextrin-
modified silk

fibroin
PPy N/A 1 × 10−3 S/cm 4.4 ×10−3 N [147]

N/A: Not available.

3.2.1. Chemically Cross-Linked Self-Healing Electrically Conductive Hydrogels

Among the reversible chemical reactions, a great interest is focused on the ones which
can provide self-healing of the hydrogels under mild conditions, such as room temperature,
with at least 90% efficiency of the mechanical damage repair.

Imine bond is a very dynamic chemical reaction between amino groups and aldehyde
functional groups (Figure 15) unless a reduction of the imine occurs as an adverse reaction.
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strated the application of the hydrogel to serve as repairable wires enabling lightening of 
the LED bulbs, while complete self-healing of two separate parts occurred in 40 min after 
their connection. In addition, since the hydrogel possessed good flexibility, the authors 
showed the dependence of resistance on the angle of bending or change length under 
compression proving a potential application in soft sensors and biocompatible devices. It 
is worth pointing out, as a suggestion for future systems, that more stable hydrazone 
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Figure 15. The chemical reaction to imine formation.

Ren et al. [143] fabricated a self-healing electrically conductive hydrogel that was based
on aminated gelatin, dialdehyde alginate, and PPy (Figure 16). PPy was polymerized via
an oxidizing agent, ammonium persulfate (APS) in the mixture of the gelatin and alginate
derivatives at −20 ◦C. Subsequently, the solution temperature was raised to allow the
formation of imine bonds and to create the electrically conductive hydrogel. The mechanical
strength of the obtained hydrogel reached 0.5 MPa. The electrical conductivity that was
recalculated from the resistance reached 1.4 × 10−5 S/cm. The authors demonstrated the
application of the hydrogel to serve as repairable wires enabling lightening of the LED
bulbs, while complete self-healing of two separate parts occurred in 40 min after their
connection. In addition, since the hydrogel possessed good flexibility, the authors showed
the dependence of resistance on the angle of bending or change length under compression
proving a potential application in soft sensors and biocompatible devices. It is worth
pointing out, as a suggestion for future systems, that more stable hydrazone groups can
be formed between hydrazine and aldehyde/ketone, while the hydrogel can be achieved
faster compared to the hydrogels that are based on imine bonds [148].
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Polyol/borax self-healing hydrogels showed superior advantages over the rest of the
covalent bond mechanisms as the hydrogel can be formed without any need for chemical
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modifications of the polymeric components. Figure 17 shows the simple mechanism of
borax dissociation in water into boric acid and borate ions that can chemically cross-link
the hydroxyl-containing polymers, such as carbohydrates and polyols, through boron ester
bonds. An alkaline medium is preferable for this reaction to provide densely cross-linking
hydrogels as more borate ions (B(OH)4

−) are available over the boric acid (B(OH)3) [140].
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In the practical application of this phenomenon, self-healing, conductive, and adhesive
hydrogels have been fabricated based on sodium hyaluronate chains. The authors [122]
first esterified hyaluronic acid with dopamine to prepare it for a reaction with borax. The
cross-linking with borax was performed in one step with in situ free radical polymer-
ization of acrylamide in the presence of a diacrylamide cross-linker. Thus, in addition
to the polyol/borax covalent bonds, hydrogen bonds between the hydroxyl groups of
catechol units and amide groups of polyacrylamide were also present in the final hydrogel
(Figure 18). Residual-free hydroxyl groups of catechol also provided self-adhesion proper-
ties of the hydrogel. The obtained hydrogel showed a high toughness character of 42.4 kPa
and real-time for healing was 1 h. In this work, lithium chloride salt was used to increase
the electrical conductivity up to 1.1 × 10−2 S/cm compared to 1.8 × 10−4 S/cm that was
determined for the salt-free hydrogel. It should be pointed out here that the authors used
phosphate buffer silane in the hydrogel preparation and that might be the reason for the
relatively high conductivity that was determined for salt-free hydrogel samples.
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Diels−Alder reaction is considered a promising strategy to obtain self-healing hydro-
gels that are promoted by a repeated healing character in a wide range of temperatures.
In general, it is a [4 + 2] cycloaddition reaction between dienes and dienophiles under the
formation of cyclohexene derivatives as shown in Figure 19 [149].
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Figure 19. Principle of self-healing based on reversible Diels-Alder reaction.

The self-healing behavior that is based on the Diels-Alder reaction has been demonstrated
for natural polymers such as the chemistry of fulvene-modified dextran/dichloromaleic acid-
modified poly(ethylene glycol) [150], furyl-modified cellulose nano-crystal/maleimide-end-
functionalized PEG [151], and furan-modified pectin/maleimide-modified chitosan [152].
However, to the best of our knowledge, the Diels-Alder reaction-based self-healing has
not been published so far to develop conductive hydrogels from natural polymers. As an
example that Diels Alder reactions can be successfully used in the presence of conductive
media, Lin et al. prepared self-healing hydrogels that were filled with graphene oxide
and silver nanowires that were based on polyurethane. The electrical conductivity of this
hydrogel was in the order of 10−3 S/cm. The cross-linking was performed based on the
maleimide terminal functional groups that reacted with the furan dangling functional
groups from the polyurethane backbone [153]. In a similar way, both the furan and
maleimide groups could also be bound to natural polymers with the aim to produce
self-healing conductive hydrogels.

Disulfide bond strategy has also been employed to obtain self-healing hydrogels due
to the advantages that include its relatively high bond energy (251 kJ/mol), which leads to
strong bonds between molecules and, at the same time, their reversible reactions at low
temperatures that enable self-healing behavior under mild conditions [139]. The disulfide
S-S-bond is formed by the coupling of two thiol groups during the oxidation process, as
depicted in Figure 20.
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As self-healing electrically conductive hydrogels that were based on natural polymers
were not reported so far, only an example of self-healing non-conductive hydrogel that
was based on natural polymers containing disulfide bonds can be presented here to prove
the potential of this type of reversible bond to be applied for the preparation of conduc-
tive systems as well. Thus, Shu et al. [154] fabricated a self-healing hydrogel based on
disulfide chemistry using hyaluronic acid as a polymer. First, the authors synthesized
dithiobis(propanoic dihydrazide) (DTP) and dithiobis(butyric dihydrazide) (DTB). These
two thiol-containing compounds were linked to HA via a coupling agent (carbodiimide) to
achieve dangling thiol groups along the HA chains (Figure 21). Hydrogels were formed
at pH values from 7 to 9 with rapid gelation behavior. However, no data were mentioned
about the real-time for either the healing or the mechanical strength.

As an example that self-healing based on disulfide bonds can be successfully used
in the presence of conductive media, the electrically conductive self-healing hydrogels
that were based on polyurethane were reported by Zhanyu et al. [155]. In that work,
diisocyanate-terminated urethane prepolymer was synthesized based on polyethylene
glycol (PEG, Mn = 2000 g/mol) to react with 4-aminophenyl disulfide (dithiodianiline)
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to obtain the self-healing hydrogel. The electrically conductive hydrogel was obtained
when the lyophilized hydrogel was allowed to reswell in various concentrations of pyr-
role/isopropanol solution. In situ polymerization of pyrrole was conducted in the presence
of ferric nitrate. The obtained hydrogel combined multifunctionality with an electrical
conductivity of 5.5 × 10−4 S/cm, moderate tensile strength of 1.1 MPa, and a self-healing
real-time of 10 min.
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3.2.2. Physically Cross-Linked Self-Healing Electrically Conductive Hydrogels

Hydrogen bonding of super-macromolecules, inspired by biomolecules, has an impor-
tant role to obtain a cross-linking network, which exhibits reversible interactions, providing
a self-healing character. Agarose belongs to the linear polysaccharides that gel reversibly
in water by a change of temperature. Hur et al. [144] polymerized PPy in agarose warm
solutions using copper chloride as an oxidizing agent to obtain self-healing electrically con-
ductive hydrogels upon cooling down. The final matrix showed an electrically conductive
value of 0.35 S/cm.

An additional self-healing system that is based on multiple hydrogen bonds that are
formed between carboxyl, hydroxyl, amino, and acetamide groups was reported by Cao
et al. [119], who prepared a self-healing electrically conductive hydrogel from carboxyl
cellulose nanocrystals in combination with chitosan-based decorated epoxy natural rubber
latex. The electrically conductive behavior was gained from the carbon nanotubes that were
embedded in the hydrogel matrix. The obtained hydrogel exhibited a real-time self-healing
capability within only 15 s. The mechanical strength of the healed samples showed the
same values as the original samples (0.8 MPa). The hydrogel electrical conductivity was
only in the order of 10−8 S/cm, which was, however, inferred as sufficient for application
as sensors for human–machine interactions.

The ion interactions mechanism is another non-covalent approach to achieve self-
healing hydrogels in which metal ions in specific oxidation levels coordinate with lone
pairs of electrons on polymeric chains. Darabi et al. [145] utilized this approach to obtain
an electrically conductive self-healing hydrogel that was based on chitosan and PPy. In the
first step, PPy was grafted to the pendant double bond of the pre-functionalized chitosan.
In the second step, acrylic acid was graft-polymerized and cross-linked the chitosan-PPy
chains in the presence of iron III (Fe3+) to achieve a double network of chemical and
physical cross-linking. The self-healing property was then based on the reversible ionic
interactions between the ferric ions and the carboxylic groups of PAA and/or NH groups
of PPy (Figure 22). The real-time to reach 100% of original mechanical strength recovery
was only 2 min. The obtained hydrogel showed an electrical conductivity as high as
5–10 × 10−2 S/cm.

Hydrophobic interactions are also capable of providing instant self-healing hydrogels
without any external stimulus with an easy preparation methodology. Yang et al. [146]
investigated the combination of multiwalled carbon nanotubes (MWCNTs) with poly-
acrylamide hydrogel by the utilization of cellulose nanofibers (CNF) as a dispersant. The
self-healing character is provided by the hydrophobic interaction between the CNF and
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polyacrylamide chains. MWCNTs provided good electrical conductivity of 8.5 × 10−3 S/m
while the CNF supported the mechanical strength to reach 0.24 MPa. The real-time self-
healing was 10 min to recover the original shape.
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Host-guest interaction can be used to obtain self-healing substrates based on the
hydrophobic interactions between the two moieties as well. Liu et al. [147] fabricated a self-
healing hydrogel based on regenerated silk fibroin (SF) substrate. The authors introduced
beta-cyclodextrin (β-CD) molecules to the SF backbone by a reaction of monoaldehyde β-
CD with amino groups that were present in the SF structure. The mechanism of self-healing
relies on the host-guest interactions between β-cyclodextrin and the aromatic groups of the
amino acid side chains of SF, such as tyrosine, tryptophan, phenylalanine, and histidine.
To increase the host-guest interactions, ethynylbenzene groups were also attached to the
SF backbone using an azo bridge. The electrically conductive behavior was introduced
by the in situ polymerization of pyrrole using APS as an oxidant and laccase as a catalyst.
In addition, chemical cross-linking was introduced photochemically forming dityrosine
cross-links. Figure 23 shows the proposed mechanism of self-healing of the matrix.
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The obtained hydrogel showed an electrochemical conductivity of 1 × 10−3 S/cm.
Meanwhile, the dissociation force was 4.4 × 10−3 N and 1.1 × 10−2 N for one piece and two
pieces of the hydrogel, respectively. The healing mechanism relied on pressure to repair
the damage in the hydrogel but the real-time healing was not reported.

4. Conclusions & Future Prospects

Electrically conductive substrates hold a prestigious position, especially in the map
of electrical applications. Increasing the surface area of the main components of conduc-
tive substrates showed a significant increase in the electrochemical performance of such
substrates. The electrospinning technique, to fabricate nano-sized fibers, can be utilized
in the coating, decorating, or constructing of electrical components, which are considered
as a turning point to overcome the drawbacks of the traditional way of fabrication. Gen-
erally, electrospun fibers are made of polymers that are capable of being carbonized by
thermal treatments to provide carbon nanofibers or nanotubes. Such carbon segments,
when mixed with different substrates, enhance electro-conductivity. Also, nanoparticles of
inorganic metals and heteroatom-doped metals enhance the electro-conductivity of any
hosted substrate. Impregnated polymers with such electro-conductive segments have
been electrospun either in the form of single filaments, core/shell structures, or hollow
fibers. The electrospun carbon nanofibers or nanotubes have a very large surface area
that facilitates the electron transfer in a much higher magnitude compared to regular com-
posites [156,157]. Also, heteroatoms-doped carbon materials that are based on electrically
conductive polymers can provide electrocatalysis active sites to the matrices for various
applications i.e., excellent oxygen reduction reaction [158].

Self-healing mechanisms are classified into non-covalent and covalent bonds by which
the different matrices have been fabricated. The combination of such electrically conductive
polymers and hydrogels that are fabricated through these mechanisms is yet to be fully
investigated. The potential of many biopolymer substrates has not been explored for the
fabrication of self-healing matrices. Accordingly, novel materials for many applications can
be discovered out of these new combinations. For further development on the utilization
of electro-conductive self-healing hydrogels, here are some suggested prospects.

• Providing electro-conductive hydrogels in different formulations such as microspheres,
electrospun fibers, and adhesive membranes.

• Preparing such electro-conductive self-healing hydrogels in the form of porous plat-
forms. This will increase the surface area of the substrates and can increase their
electrochemical performance several-fold.

• Imparting an adhesive character to such self-healing electrically conductive substrates
will open another application in transdermal drug delivery.
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